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Abstract: Targeted therapies that selectively inhibit certain molecules in cancer cells have been
considered promising for cancer treatment. In lung cancer, evidence has suggested that mesenchymal-
epithelial transition factor (c-Met) oncoprotein drives cancer progression through its signaling trans-
duction pathway. In this paper, we report the downregulation of c-Met by artonin F, a flavonoid
isolated from Artocarpus gomezianus. Artonin F was found to be dominantly toxic to lung cancer
cells by mediating apoptosis. With regard to its mechanism of action, artonin F downregulated
c-Met expression, consequently suppressed the phosphatidylinositol-3 kinase/Akt/mammalian
target of rapamycin signaling, increased Bax expression, decreased Bcl-2 expression, and activated
caspase-3. The depletion of c-Met was mediated by ubiquitin-proteasomal degradation following
co-treatment with artonin F, with the proteasome inhibitor MG132 reversing its c-Met-targeting effect.
The immunoprecipitation analysis revealed that artonin F significantly promoted the formation of the
c-Met–ubiquitin complex. Given that ubiquitin-specific protease 8 (USP8) prevents c-Met degradation
by deubiquitination, we performed a preliminary in silico molecular docking and observed that
artonin F blocked the catalytic site of USP8. In addition, artonin F interacted with the catalytic
residues of palmitoylating enzymes. By acting as a competitive inhibitor, artonin F could reduce the
degree of palmitoylation of c-Met, which affected its stability and activity. In conclusion, c-Met is
critical for cancer cell survival and the failure of chemotherapeutic regimens. This novel information
on the c-Met downregulating effect of artonin F will be beneficial for the development of efficient
anticancer strategies or targeted therapies.

Keywords: artonin F; apoptosis; lung cancer; c-Met; PI3K; Akt; mTOR; proteasomal degradation

1. Introduction

Lung cancer is one of the most severe types of cancer and is the leading cause of
cancer-related mortality worldwide. Lung cancer usually exhibits rapid growth and high
resistance to chemotherapy [1]. The most significant obstacle to successful lung cancer
management is therapeutic resistance and abnormal activation signaling. Several recent
studies have focused on the development of new therapies that target specific signaling
pathways in cancer cells, specifically molecules that target aberrant kinases [2]. Receptor
tyrosine kinases (RTKs) are involved in various processes, including cell proliferation,
survival, migration, invasion, and other cancer-related processes. Abnormalities in RTK
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activation have been linked to disease progression in various human cancers, making them
promising drug targets for cancer treatment [3].

Mesenchymal–epithelial transition factor (c-Met) is an RTK, and it has generated in-
creasing interest, with several clinical trials in progress [4]. For example, the overexpression
of the MET gene has been linked to the development and poor prognosis of lung cancer [5].
In the majority of cancers, analyses have shown that c-Met expression has become ampli-
fied to levels higher than in normal cells. c-Met is also highly overexpressed in 60–80%
of NSCLC. In addition, most of NSCLC cells express c-Met expression more than EGFR
expression. The ligand for this receptor is hepatocyte growth factor (HGF). In normal
cells, the binding of HGF to c-Met triggers a cascade of intracellular signals that mediate
embryogenesis and wound healing [6]. Aberrant HGF/c-Met axis activation promotes tu-
mor development and progression in cancer cells by activating the phosphatidylinositol-3
kinase (PI3K)/Akt, Ras/mitogen-activated protein kinase (MAPK) pathway and other
signaling pathways [7]. A previous study showed that the c-Met receptor is linked to the
development or progression of non-small cell lung cancer (NSCLC) when it is active for an
extended period [8]. An in vitro and in vivo study showed that blocking of c-Met signaling
can inhibit growth and cause the apoptosis of tumor cells, which is the main mechanism by
which chemotherapeutic drugs kill cancer cells [9].

Protein palmitoylation is a lipid modification by modified cysteine thiols on proteins
that produces a thioester with a palmitoyl group. Palmitoylation regulates the stability
of membrane receptors by preventing their ubiquitination [10]. The palmitoylation of
c-Met regulates its stability and trafficking in cancer cells [11]. Stabilized c-Met is bound
to its ligand and activates downstream signaling pathways, including those of Akt, signal
transducer and activator of transcription 3 (STAT3), and ERK, which leads to lung cancer
cell growth, proliferation, and survival. The inhibition of palmitoylation can be a novel
target for c-Met overexpression to prevent cancer invasion and metastasis [12]. As a result,
targeting c-Met provides more opportunities for therapeutic approaches for lung cancer.

The mechanism of c-Met degradation has led to therapeutics targeting these pathways.
The mechanism of c-Met degradation involves the ubiquitin-proteasome pathway. As the
main mechanism, c-Met degradation is induced by the binding of HGF to c-Met, which
leads to its dimerization and phosphorylation at Tyr1003, which is then labeled with ubiqui-
tin for ubiquitination, resulting in the proteasome-activity-mediated lysosomal degradation
of c-Met [13]. Therefore, the conjugation of ubiquitin to plasma membrane receptors is
the major component of the regulatory mechanism for their internalization and lysosomal
degradation. However, deubiquitination, the opposite process, is also critically involved in
regulating the degradation of c-Met by removing monoubiqutin and polyubiquitin chains
from ubiquitin-conjugated proteins, which results in the inhibition of protein degrada-
tion [14]. Therefore, a balance between ubiquitination and deubiquitination determines
the outcome of internalized receptors and their downstream signaling. Ubiquitin-specific
protease (USP) 8 is a deubiquitinating enzyme that plays an important role in enhancing
cell proliferation and promoting cells to enter the S-phase during the cell cycle [15]. Deu-
biquitinating enzymes play a role in the endocytosis of membrane proteins from the cell
surface and thus control lysosomal traffic/degradation. A previous study showed that
USP8 regulates c-Met-mediated degradation in lung cancer. Given that USP8 cleaves the
linkage between ubiquitin and c-Met, it inhibits c-Met ubiquitination and thus protects it
from degradation [16]. For these reasons, the use of an USP8 inhibitor to overcome c-Met
resistance in lung cancer can serve as a viable therapeutic option.

c-Met is an important target for cancer therapy and is found to be overexpressed in
about 60–80% of NSCLC [17]. Several studies indicated that the flavonoid structure haa
been described as a inhibitory effect of c-Met. Therefore, our compound artonin F could
also be acts as the same property. Artonin F is a flavonoid lipid molecule isolated from
the wall of the Artocarpus gomezianus. These plants contain a large diversity of bioactive
compounds, including many prenyl flavonoids and cyclized derivatives that have revealed
interesting anticancer properties [18,19]. The most important compound in the series is
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artonin E, the subgroup of compounds designated artonins, with the derivative artonin
E as a lead anticancer agent [20]. Artonin E belongs to the class of organic compounds
known as xanthone prenylated flavonoids [21]. Interestingly, artonin F also containing a
xanthone functional group. The previous study showed that the xanthones are responsible
for the cytotoxic to cancer cells [22]. The previous study of artonin E, which has a chemical
structure similar to that of artonin F with slightly difference, demonstrated its efficacy
as an anticancer compound in several cancer types [23,24]. In addition, a previous study
of artonin E demonstrated its suppression of cancer cell motility through Akt signaling
pathway [25]. For this reason, the investigation of the cytotoxic of artonin F could provide
important information for the design of new anticancer agents.

2. Results
2.1. Artonin F Induces Apoptosis in Human Lung Cancer Cells

The cytotoxicity of artonin F was assessed to investigate its potential anticancer activity
in human lung cancer cells. The 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bro-
mide assay was used to assess the effects of different concentrations of artonin F (0–50 µM)
on various NSCLCs. The results revealed that artonin F showed significant cytotoxic effects
at concentrations of 20–50 µM in A549 and H292 cells. Moreover, at concentrations of
40–50 µM, artonin F showed significant cytotoxic effects on H460 cells. As a result, artonin
F significantly reduced viability in NSCLC cells in a concentration-dependent manner
compared with that in untreated controls (Figure 1B–D). To determine the mode of cell
death induced by artonin F, we identified the characterized apoptotic cells using a nuclear
staining assay. After 24 h of treatment, morphological changes in the form of condensed
and/or fragmented nuclei were observed, indicating that artonin F mediated apoptosis in
lung cancer cells at concentrations ranging from 10 to 50 µM, with a small percentage of
necrotic cells (Figure 1E–J). In addition, flow cytometry analysis with annexin-V-fluorescein
isothiocyanate (FITC)/propidium iodide was performed to confirm the mode of cell death.
The findings confirmed that 50 µM artonin F induced significant apoptosis in H460, H292,
and A549 cells compared with that in untreated cells (Figure 1K–P), confirming apoptosis
as the mechanism of artonin-F-induced cytotoxicity.
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Figure 1. Cytotoxicity of artonin F on human lung cancer cells. (A) Chemical structure of ar-
tonin F. (B–D) Effect of artonin F on cell viability of lung cancer cells (H292, A549, and H460 cells)
was assessed by the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazo-liumbromide (MTT) assay.
(E–J) Morphology of apoptotic nuclei stained with Hoechst 33342 dye and propidium iodide in cells
treated with artonin F, determined by visualized using fluorescence microscopy and percentages
of nuclear fragmented and PI positive cells were calculated. (K–P) Apoptotic and necrotic cells
were determined using Annexin V-FITC/PI staining with flow cytometry. Data are shown as the
mean ± SEM (n = 3). * p < 0.05, ** p < 0.01 versus the non-treated control.

2.2. Artonin F Triggers Apoptosis Cascade through Mechanisms That Involve c-Met Downregulation

The activation of apoptotic pathways in tumor cells is an important strategy for cancer
treatment. Many natural products that have been identified as potential sources of new
anticancer drugs work by inducing apoptosis in cancer cells. To establish the mechanism
associated with artonin-F-induced apoptosis, we examined the major regulators, such as
caspase 3, anti-apoptotic protein Bcl-2, and pro-apoptotic protein Bax, in H460, H292, and
A549 cells. The cells were treated in the same circumstances as the previous experiments.
Compared with the untreated control, the results of the Western blot analysis revealed that
artonin F significantly cleaved and activated caspase-3, upregulated Bax expression, and
downregulated Bcl-2 expression (Figure 2A,B). Taken together, artonin F induced apoptosis
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in lung cancer cells by upregulating the expression of pro-apoptotic proteins, resulting in
cell death.
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Figure 2. Artonin F triggers apoptosis through decreased c-Met and PI3K/Akt/mTOR signaling
in lung cancer cells. (A,B) Effects of artonin F on the protein expression of the apoptosis-related
proteins were detected by Western blot. Blots were reprobed with GAPDH to confirm equal loading
of samples. The relative protein levels were calculated by densitometry. (C,D) Effect of artonin
F on the protein expression of the c-Met/PI3K/Akt/mTOR marker was detected by Western blot.
Blots were reprobed with GAPDH to confirm the equal loading of samples. (E,F) H460 cells were
treated with artonin F and Z-VAD-FMK (20 µM) for 24 h. Expression of the proteins was detected
by Western blot. Blots were reprobed with GAPDH to confirm the equal loading of samples. The
relative protein levels were calculated by densitometry. Data are shown as the mean ± SEM (n = 3).
* p < 0.05, ** p < 0.01 versus non-treated control.

Previous research discovered interactions between pro-survival and apoptotic signals,
which alter the balance between survival and cell death [26]. Accordingly, we performed
a Western blot analysis to investigate the underlying mechanisms of major pro-survival
proteins, such as PI3K, p-PI3K, Akt, p-Akt, mammalian target of rapamycin (mTOR), and
p-mTOR. Furthermore, we detected the level of expression of upstream signaling pathways,
such as c-Met. Lung cancer cells were treated with 0–50 µM artonin F for 24 h, and the
results showed that the ratios of PI3K, Akt, mTOR to GAPDH were reduced in cells treated
with artonin F at the concentrations that induced apoptosis. Furthermore, after 24 h of
exposure to 50 M artonin F, the level of c-Met was significantly reduced (Figure 2C,D). Thus,
the mechanism of action of artonin F can reduce c-Met, as well as PI3K, Akt and mTOR.
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We utilized caspase inhibitor (Z-VAD-FMK) to test the influence of caspase on the total
form of proteins PI3K, Akt, and mTOR. The cells were treated with artonin F in the presence
of Z-VAD-FMK and analyzed for PI3K, Akt, mTOR, c-Met, and caspase-3. The results show
that the Z-VAD-FMK could inhibit the cleavage of caspase-3. While the downregulation
of the total forms of PI3K, Akt, and mTOR induced by artonin F could be prevented by
Z-VAD-FMK, the caspase inhibitor did not affect the c-Met reduction (Figure 2E,F). These
results suggest that the PI3K, Akt, and mTOR proteins were reduced via caspase-dependent
manner in artonin-F-treated cells.

To confirm the effect of artonin F in mediating c-Met depletion, we performed a
time-dependent analysis to determine the protein levels at 6, 12, and 24 h after treatment.
The treatement of the cells with 50 µM artonin could decrease c-Met level as early as 6 h
(Figure 3A). Aftonin F at 20–50 µM could reduced c-Met expression at 12 h after treatment.
To confirm, a Western blot analysis at the similar treatment conditions was performed
and the results show that only c-Met, but not the total forms of PI3K, Akt, and mTOR,
significantly decreased at 6–12 h (Figure 3B,C).
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Figure 3. Artonin F causes a dramatic decrease in c-Met in the time-dependent analysis in the lung
cancer cells. (A) Cells were stained with c-Met antibody (green fluorescence) and Hoechst 33342
(blue fluorescence). The expression of c-Met was determined by immunofluorescence. (B,C) The
protein expressions were detected by Western blot. Blots were reprobed with GAPDH to confirm the
equal loading of samples. The relative protein levels were calculated by densitometry. The relative
protein levels were calculated by densitometry. Data are shown as the mean ± SEM (n = 3). * p < 0.05,
** p < 0.01 versus the non-treated control.
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2.3. Artonin F Decreased the Levels of c-Met and p-PI3K

We further confirmed the results of previous experiments, that is, the underlying
mechanisms of artonin-F-induced apoptosis in lung cancer cells, and found that c-Met
downregulation contributed to artonin-F-induced cell death. Next, we investigated the ef-
fect of artonin F on c-Met and PI3K signaling by immunofluorescence staining. Figure 3A–F
shows that artonin F significantly decreased the levels of c-Met in lung cancer cells. Similar
results from the immunofluorescence analysis showed that artonin F significantly decreased
the levels of p-PI3K (Figure 4G–L). These results indicate that artonin F decreased the levels
of c-Met and p-PI3K, confirming the results of the previous experiment. These findings
suggest that artonin F has a c-Met downregulating effect, and the mechanism of action may
be linked to c-Met degradation.

Pharmaceuticals 2022, 15, x FOR PEER REVIEW 8 of 19 
 

 

 
Figure 4. Artonin F decreases the levels of c-Met and p-PI3K. (A–F) The cells were stained with 
c-Met (green fluorescence) and Hoechst 33342 (blue fluorescence). The expression of c-Met was 
determined by immunofluorescence. (G–L) The cells were stained with p-PI3K (red fluorescence) 
and Hoechst 33342 (blue fluorescence). The expression of p-PI3K was examined using immuno-
fluorescence. The fluorescence intensity was analyzed by ImageJ software. Data are shown as the 
mean ± SEM (n = 3). * p < 0.05, versus the non-treated control. 

2.4. Artonin F Decreases c-Met Levels through the Induction of c-Met Proteasomal Degradation 
Through its signaling transduction pathways, c-Met promotes cancer progression in 

a variety of tumors. A previous study revealed that protein turnover is influenced by 

Pharmaceuticals 2022, 15, x FOR PEER REVIEW 8 of 19 
 

 

 
Figure 4. Artonin F decreases the levels of c-Met and p-PI3K. (A–F) The cells were stained with 
c-Met (green fluorescence) and Hoechst 33342 (blue fluorescence). The expression of c-Met was 
determined by immunofluorescence. (G–L) The cells were stained with p-PI3K (red fluorescence) 
and Hoechst 33342 (blue fluorescence). The expression of p-PI3K was examined using immuno-
fluorescence. The fluorescence intensity was analyzed by ImageJ software. Data are shown as the 
mean ± SEM (n = 3). * p < 0.05, versus the non-treated control. 

2.4. Artonin F Decreases c-Met Levels through the Induction of c-Met Proteasomal Degradation 
Through its signaling transduction pathways, c-Met promotes cancer progression in 

a variety of tumors. A previous study revealed that protein turnover is influenced by 

Figure 4. Artonin F decreases the levels of c-Met and p-PI3K. (A–F) The cells were stained with c-Met
(green fluorescence) and Hoechst 33342 (blue fluorescence). The expression of c-Met was determined
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by immunofluorescence. (G–L) The cells were stained with p-PI3K (red fluorescence) and Hoechst
33342 (blue fluorescence). The expression of p-PI3K was examined using immunofluorescence. The
fluorescence intensity was analyzed by ImageJ software. Data are shown as the mean ± SEM (n = 3).
* p < 0.05, versus the non-treated control.

2.4. Artonin F Decreases c-Met Levels through the Induction of c-Met Proteasomal Degradation

Through its signaling transduction pathways, c-Met promotes cancer progression
in a variety of tumors. A previous study revealed that protein turnover is influenced by
ubiquitin-proteasome degradation and that c-Met is also degraded by proteasomes [27].
Therefore, targeting the c-Met degradation pathways can lead to effective therapeutic
strategies. Because an earlier study discovered that artonin F significantly reduces c-Met
levels, we investigated its c-Met regulation mechanism further. The proteasome inhibitor
MG132 was used to confirm that the destabilization of c-Met by artonin F occurred through
this degradation mechanism. Moreover, we used co-immunoprecipitation to examine the
premise of ubiquitin-mediated c-Met degradation and measured the level of the c-Met–
ubiquitin complex (poly Ub-c-Met) after treatment with 50 µM artonin F. The resulting
immune complexes were then analyzed for protein ubiquitination by Western blotting using
an anti-ubiquitin antibody. The results in Figure 5A–F show that the addition of MG132
(10 µM) to the artonin F treatment enhanced the formation of the c-Met–ubiquitin complex
(Ub-c-Met) compared to the non-treated controls, indicating that artonin F mediated c-Met
stability via ubiquitin-proteasome degradation.
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Figure 5. Artonin F induces ubiquitin-mediated c-Met proteasomal degradation. (A–F) Human
cancer cells were pretreated with MG132 10 mM for 30 min, followed by treatment with artonin F
50 µM for 5 h. The protein lysates were collected and incubated with a mixture of beads and c-Met
primary antibodies to pull out the protein of interest. Cell lysates are subjected to IP anti-c-Met and
the immunoprecipitation complexes were analyzed for ubiquitin levels by Western blotting. The
relative protein levels were calculated by densitometry. Data are shown as the mean ± SEM (n = 3).
* p < 0.05 versus the non-treated control.
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2.5. Computational Modeling Analysis of the Binding of Artonin F to c-Met

We aimed to create preliminary in silico models that can assess the molecular dock-
ing between c-Met (AlphaFold model, P08581) and artonin F to investigate the possible
mechanism of downregulation of c-Met by artonin F. Given the inexistence of the complete
structure of c-Met in the protein database, the c-Met model from AlphaFold [28], followed
by some energy minimization steps, was used. Figure 6A shows the Ramachandran plot of
minimized c-Met model. The model provided up to 96.1% residues in most favored and
additionally allowed regions. Thus, it can be reliably used for docking. The docking results
(Figure 6B,C) showed that artonin F does not interact with the Cys624 and Cys894 residues.
These residues were reported to be the most important sites of c-Met palmitoylation [12].
According to Coleman (2016), c-Met palmitoylation is important for its trafficking and
stability. Thus, blocking the palmitoylation site or inhibition of c-Met palmitoylation can be
one of the strategies to destabilize c-Met. In addition, artonin F, which does not interact
with Cys624 and Cys894 residues, exhibited an unfavorable donor–donor interaction with
Ser615, Leu614, and Glu 855. Unfavorable interactions reduce the interaction stability
of the ligand and protein. Thus, this interaction between artonin F and the observed
site emphasizes that the destabilization of c-Met by artonin F does not occur through
the direct blocking of the palmitoylation site. A docking study was conducted to further
target the palmitoylating enzyme. Human DHHC20 palmitoyltransferase (PDB ID: 6BML)
(Figure 6D,E) and acyl-protein thioesterase 1 (APT1, PDB ID: 6QGN) (Figure 6F,G) were
used to investigate the possible mechanism of c-Met palmitoylation inhibition of artonin
F. The docking studies of artonin F at the catalytic pocket of human DHHC20 palmitoyl-
transferase and APT1 showed that it binds several key residues in the catalytic process
of the enzymes. Table 1 presents the docking results of artonin F with palmitoylating
enzymes. According to the results, in binding the catalytic residues of palmitoylating
enzymes, artonin F may acts as a competitive inhibitor and may be able to reduce the
degree of palmitoylation in proteins, particularly c-Met. Based on the binding affinity,
artonin F is more likely to inhibit APT1 than DHHC20 palmitoyltransferase, and the affinity
of artonin F toward APT 1 is more negative than that toward DHHC20. In addition, artonin
F exhibited a hydrogen bond interaction with the Ser119 residue of APT1, which is one of
the catalytic triads of APT1, with a distance of 2.08 Å.

Table 1. AutoDock4 docking results of artonin F with palmitoylating enzyme.

Protein Affinity (kcal/mol) Estimated Ki (µM) Type of Interaction Interacting Residue(s)

hDHHC20 palmitoyl
transferase

−8.03 1.30

Hydrogen bond His155, Ile242

Pi Cation His154

Pi–Pi T-Shaped Phe245

Alkyl and Pi–Alkyl Pro157, Cys156, His154, Ile242

Van der Waals Trp158, Leu227, Tyr230, Thr241,
Ser244, Arg246, Met152, Phe171

Acyl-protein
thioesterase 1

−9.27 0.16

Hydrogen bond Leu30, Ser119

Pi–Sigma Phe118, Leu176, Leu30

Pi–Pi T-Shaped His208

Alkyl Ile75, Val177, Leu78, Trp145,
Leu176

Van der Waals Leu63, Asn64, Gly77, Gln120,
Gly29, Trp37, Asp32, Ser209

Note: Bold residues are part of catalytic site.
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Figure 6. Molecular docking between c-Met and artonin F. (A) Ramachandran plot of c-Met model.
(B) Interaction of c-Met and artonin F at near C624 residue. (C) Interaction of c-Met and artonin
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palmitoyltransferase (PDB ID 6BML). (F,G) The 2D and 3D map interaction of artonin F with APT1
(PDB ID 6QGN).

2.6. Computational Modeling Analysis of the Binding of Artonin F to USP8

Artonin F was also docked using AutoDock Vina [29] around the catalytic triad of
USP8 (PDB ID: 3N3K). After the structure was cleaned and before docking, the USP8 PDB
file was validated using the Ramachandran plot (Figure 7A). The plot indicated that 99% of
the residues were in the most favored and additionally allowed region. Thus, the USP8
structure from the PDB did not need further preparation. The docking result showed that
artonin F interacted with two of the three catalytic triads of USP8, which are represented
in Figure 7B,C, namely, Asp1084 through hydrogen bonding and Pi−anion interaction
and His1067 through the Pi−Pi stacked interaction. The data are provided in Table 2.
Possibly, artonin F may able to be inhibit the activity of USP8 by blocking its catalytic
sites (Cys786, His1067, and Asp1084) [30]. USP8 is one of the deubiquitinase enzymes
of c-Met. By inhibiting the activity of USP8, c-Met is not deubiquitinated, resulting in its
proteosomal degradation.

Table 2. Docking results of artonin F with USP8.

Binding Affinity (kcal/mol) Interacting Residues

−6.8 Conventional Hydrogen Bond: Asp1084 [bond length = 1.93 Å]
Pi interaction: Tyr1060, His1067, Asp1084, Asp1085
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2.7. Computational Modelling Analysis of the Artonin F Interaction with c-Met Compared to
Foretinib Interaction with c-Met

A preliminary analysis of the interaction between artonin F and c-Met at the ATP
binding site was compared to the interaction between foretinib and c-Met in following study.
The docking of artonin F at the ligand/ATP binding site of c-Met was carried out using the
X-ray crystallography data of c-Met (PDB ID: 6sd9). The PDB file missed some important
residues, therefore the missing residues were added and modelled prior to docking using
Modeller. The redocking of natural ligand (foretinib) was carried out to verify the docking
parameters. The redocking of foretinib returned the binding affinity of −11.3 kcal/mol and
RMSD value of 1.11 Å, which indicates that the parameter set was suitable for docking at
the specific site. The redocking result of foretinib also demonstrates the key interaction of
c-Met and foretinib as an ATP-competitive inhibitor, i.e., the π interaction with Tyr1230,
interaction with the hinge region (Met1160) and Asp1222, and the occupation of a lipophilic
pocket (Figure 8A–C).
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Figure 8. Molecular docking of artonin F interaction with c-Met compared with foretinib interaction
with c-Met at the ATP-binding site. (A) The 2D interaction map of foretinib and c-Met (PDB ID: 6SD9).
(B) The interaction of foretinib with the key residues in c-Met. (C) Lipophilic pocket occupation of
terminal fluoro-phenyl group of foretinib. (D) The 2D interaction map of artonin F and c-Met (PDB
ID: 6SD9). (E) The interaction of artonin F with the key residues in c-Met.

In the meantime, the docking of artonin F at the aforementioned site show slightly
different results. The docking study gave the binding affinity of artonin F at ATP-binding
site of c-Met approximately −8.0 kcal/mol, which is higher than the foretinib. The higher
the binding affinity means the weaker the interaction. Furthermore, there was a donor–
donor unfavorable interaction between artonin F and Met1160, which could weaken the
interaction (Figure 8D,E). Therefore, the docking results suggest that, in comparison to
foretinib, artonin F was unlikely to serve as a c-Met ATP-competitive inhibitor. However,
artonin F has enough binding affinity to interact with the c-Met receptor.

3. Discussion

Multidrug resistance and side effects make lung cancer treatment challenging [31].
Cancer cells can make mistakes in terms of the apoptotic pathway and oncoprotein al-
teration [32]. As a result, targeting the apoptotic pathway and oncoprotein may result
in effective therapeutic strategies. Natural product molecules are a promising treatment
option for lung cancer, with few side effects and a high treatment success rate [33]. Vari-
ous natural product molecules have been shown to be effective and useful in sensitizing
conventional agents. In this study, we found for the first time that artonin F, a natural
compound extracted from A. gomezianus, has anticancer activity and induces apoptotic cell
death in human NSCLC cells.

Apoptosis causes cell shrinkage and nuclear condensation. This is followed by bleb-
bing of the plasma membrane and nuclear fragmentation, resulting in apoptotic bodies
that can be stained with annexin-V/FITC [34]. The results in Figure 1 suggest that the
number of apoptotic cells increased in a concentration-dependent manner. The apoptosis
pathway is regularly regulated by anticancer drugs via alterations in pro-apoptotic and
anti-apoptotic proteins [35]. Many anticancer drug target caspase-3, which regulates cell
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death, and cleaved caspase-3 is associated with nucleosome fragmentation [36]. In addition,
anti-apoptotic proteins, such as Bcl-2 and Bcl-xl, are highly expressed in lung cancer tissues.
Therefore, we tracked the pro-apoptotic and anti-apoptotic markers and caspase. The
results revealed that cleaved caspase-3 was upregulated in response to artonin F treatment,
whereas Bcl-2 was downregulated in a concentration-dependent manner (Figure 2A,B).

Met is a proto-oncogene that encodes a RTK called c-Met for HGF [37]. When the HGF
ligand binds to the c-Met receptor, it causes dimerization and autophosphorylation, which
can then activate downstream target pathways, including PI3K, MAPK, and STAT [38].
c-Met is essential for cell proliferation, morphogenesis, and shielding from apoptosis. Aber-
rant Met expression and activation have been linked to cancer cell survival, proliferation,
and invasiveness in many cancers, most notably NSCLC [6]. In addition, a previous study
reported that phosphorylated c-Met inhibits apoptosis through the PI3K/Akt pathway [39].
In the present study, artonin F mediated apoptosis by the downregulation of c-Met and
decreasing PI3K/Akt/mTOR signaling for suppressing cell survival and increasing the
levels of pro-apoptotic proteins for the induction of the caspase cascade (Figure 2C,D). This
result is consistent with the findings of a previous study, which found that imidazopyridine
hydrazone derivatives significantly inhibited c-Met phosphorylation, inhibited cell growth
in three-dimensional spheroid cultures, and induced apoptosis in AsPc-1 cells [40]. Further-
more, targeting c-Met with salvianolic acid A through the Akt/mTOR signaling pathway
enhanced the sensitivity of lung cancer A549 cells to cisplatin [41]. Thus, c-Met and its re-
lated signaling pathways are important clinical targets. Furthermore, we concluded artonin
F mediated c-Met downregulation and PI3K downstream signal transduction (Figure 4).
In accordance with evidence supporting the use of c-Met targeted therapy, we observed
that the level of c-Met was significantly reduced. Furthermore, artonin F can induce c-Met
degradation via the ubiquitin-proteasomal pathway, and when the selective proteasome
inhibitor MG132 was used, the level of c-Met in the artonin F-treated cells was significantly
restored (Figure 5). The regulation and degradation of c-Met involve complex processes.
With a better understanding of its degradation mechanisms, more opportunities to target
these pathways therapeutically can be achieved.

Previous studies indicated that c-Met is palmitoylated, which facilitates its traffick-
ing and stability [12]. The inhibition of palmitoylation reduces c-Met expression post-
transcriptionally in several cancer cell lines. Therefore, we used preliminary in silico
models to predict the mechanism of action of artonin F, which downregulated c-Met. In
this study, we found that artonin F may act as a competitive inhibitor at the catalytic pocket
of palmitoylating enzymes. Artonin F inhibited APT1 more effectively than DHHC20
palmitoyltransferase, with a binding affinity of −9.27 kcal/mol, and exhibited a hydrogen
bond interaction with the Ser119 residue in the APT1 catalytic site (Figure 6). Therefore, the
instability of c-Met following artonin F treatment was not caused by the direct inhibition of
the palmitoylation site. The various mechanisms of c-Met degradation have led to thera-
peutics targeting these pathways. In addition, with the downregulation of deubiquitinating
enzymes with specific targets of therapeutic importance, USP8 deubiquitinates c-Met and
protects it from degradation [15]. The overexpression of USP8 in cancer cells is known to
promote cell growth. Consistent with these data, we investigated the molecular docking
between artonin F and USP8 and found that artonin F could inhibit the activity of USP8
by blocking its catalytic site (Figure 7). Therefore, c-Met is not deubiquitinated, resulting
in the promotion of proteosomal degradation of c-Met. In addition, targeting intracellu-
lar c-Met with c-Met kinase inhibitors represents another approach for the HGF–c-Met
signaling pathway deactivation. Foretinib is a multitargeted RTK inhibitor that targets
receptors for Met and VEGF [42]. The results from the in silico experiment showed that
artonin F was unlikely to act as a c-Met ATP-competitive inhibitor, compared to foretinib.
Altogether, these results from in silico models could support that artonin F can inhibit
palmitoyl transferase and USP8 that leads to the downregulation of c-Met activity and
support protein degradation.
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Artonin F exhibits the potential downregulation of c-Met by enhancing the ubiquitin-
proteasomal degradation of c-Met. Finally, the results of the in silico models reported in this
paper may be used to predict the mechanism of action of artonin F by inhibits USP8 catalysis
and acting as a competitive inhibitor at the catalytic residues of palmitoylating enzymes.
This compound may offer novel approaches for the improvement of c-Met-driven cancer.

4. Materials and Methods
4.1. Isolation of Artonin F

Dried and powdered root bark of Artocarpus gomezianus (5 kg) was macerated with
methanol at room temperature, giving a methanol extract (485 g). The methanol extract was
further triturated with ethyl acetate to yield ethyl acetate extract (96 g). This material was
fractionated by vacuum liquid chromatography on silica gel (acetone-hexane, gradient) to
give 5 fractions (A–E). Fraction B (2.6 g) was separated by column chromatography (silica
gel, acetone-hexane, and gradient) and then subjected to repeat column chromatography
(silica gel, acetone-dichloromethane, and gradient) to obtain artonin F (15 mg).

4.2. Cell Culture and Reagents

Human NSCLC cells, including H460, H292, and A549, were acquired from the
American Type Culture Collection (Manassas, VA, USA). A549 was cultivated DMEM
medium (Gibco, Grand Island, NY, USA), whereas H460 and H292 cells were cultured
in RPMI 1640 medium (Gibco, Grand Island, NY, USA). The medium for cells cultured
was supplemented with 10% fetal bovine serum (FBS) with 1% penicillin and strepto-
mycin and 2 mM L-glutamine (Gibco, MD, USA). The cells were maintained in a 5%
CO2 environment at 37 ◦C. Dimethyl sulfoxide (DMSO), propidium iodide (PI), Hoechst
33342, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT), bovine serum
albumin (BSA), Z-VAD-FMK, and antibody for ubiquitin (catalog no. u0508) were pur-
chased from Sigma Chemical, Inc. (St. Louis, MO, USA). Phosphate buffer saline (PBS)
and trypsin-EDTA were purchased from GIBCO (Grand Island, NY, USA). An apopto-
sis Kit (FITC) was purchased from ImmunoTools (Friesoythe, Germany). Antibody for
c-Met (#8198), p-PI3K (#4228), PI3K (#4292), p-Akt (#4060), Akt (#9272), mTOR (#2983),
p-mTOR (#2971), Bcl-2 (#4223), Bax (#5023), caspase3 (#9662), and GAPDH (#5174) as
well as peroxidase-conjugated secondary antibodies were obtained from Cell Signaling
Technology, Inc. (Danvers, MA, USA).

4.3. Cytotoxicity Assay

Cells were seeded at the density of 1.5 × 104 cells/well onto 96-well plates and
incubated overnight. After that, cells were treated with various concentrations (0–50 µM)
of artonin F for 24 h at 37 ◦C and analyzed for cell viability using MTT assay according to
the manufacturer’s protocol (Sigma Chemical, St. Louis, MO, USA). In calculating the cell
viability, the measured absorbance of treated cells was divided by the value of nontreated
cells and reported as a percentage. All analyses were performed in 3 independent replicate
cell cultures.

4.4. Nuclear Staining Assay

This method was applied to define apoptotic and necrotic cell death. H460, H292, and
A549 cells seeded at the density of 1.5 × 104 cells/well onto 96-well plates were incubated
overnight. The cells were treated with artonin F at various concentrations (0–50 µM) for
24 h. at 37 ◦C. Afterward, the cells were incubated with 10 µg/mL of Hoechst 33342
and 5 µg/mL of propidium iodide (PI) for 30 min at 37 ◦C in the dark. These cells were
visualized and imaged under a fluorescence microscope (Nikon ECLIPSE Ts2). The results
are reported as the percentage of apoptotic cells and necrotic cells death.
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4.5. Annexin V-FITC/PI Flow Cytometry

This method was applied to examine the stage of apoptosis and necrosis cells were
determined with Annexin V-FITC Apoptosis Kit (ImmunoTools, Germany) by using flow
cytometry. H460, H292, and A549 cells were seeded at a density of 1 × 105 cells/mL
in 24-well plates and incubated overnight. Then, cells were treated with artonin F at
various concentrations (0–50 µM) for 24 h at 37 ◦C. Then, cells were detached from the
well surface by using trypsin-EDTA (0.25%). Afterward, cells were suspended in 100 µL
of 1× binding buffer and incubated in 5 µL of Annexin V-FITC and 1 µL of PI for 15 min
at room temperature in the dark. Next, cells were analyzed by guava easyCyteTM flow
cytometry systems (GuavaSoft Software version 3.3).

4.6. Western Blot Analysis

To determine protein expression for regulation in apoptosis and survival pathway,
the treated cells were lysed into cellular lysates as previously described [43]. Equivalent
amounts of protein from each sample were separated by SDS-PAGE and transferred to
0.2 µm polyvinylidene difluoride membranes (Bio-Rad, Hercules, CA, USA). The separating
blots were blocked for 2 h with 5 % non-fat dry milk in TBST (Tris-buffer saline with 0.1%
Tween containing 25 mM Tris-HCl (pH 7.5), 125 mM NaCl and 0.1% Tween 20) and
incubated with specific primary antibodies against c-Met, p-PI3K, PI3K, p-Akt, Akt, mTOR,
p-mTOR, Bcl-2, Bax, caspase3, and GAPDH at 4 ◦C overnight. Then, the membranes were
washed in TBST and incubated with secondary antibodies for 2 h at room temperature.
Finally, the protein bands were detected by using an enhancement chemiluminescence
substrate (Supersignal West Pico; Pierce, Rockford, IL, USA) and exposed to the film.

4.7. Immunofluorescence

To determine the level of protein, c-Met, and p-PI3K, cells were seeded at the density
of 1.5 × 105 cells/well onto 96-well plates. After treatment cells with artonin F at 24 h.,
the cells were fixed with 4% (w/v) paraformaldehyde for 30 min. After that, cells were
permeabilized with 0.1% (v/v) Triton-X for 20 min. Next, the cells were incubated with 3%
(w/v) BSA for 30 min, washed with 1× PBS and incubated with an c-Met or p-PI3K antibody
overnight at 4 ◦C, washed with 1× PBS and incubated with Alexa Flour 488 (Invitrogen,
Waltham, MA, USA) conjugated goat anti-rabbit IgG (H + L) secondary antibody for 1 h
at room temperature in the dark. Therefore, the cells were washed with PBS, co-stained
with 10 µg/mL Hoechst 33342, and visualized and imaged using fluorescence microscopy
(Nikon ECLIPSE Ts2), and the analysis was assessed by Image J software.

4.8. Co-Immunoprecipitation (Co-IP)

Cancer cell lines were pretreated with 10 µM MG132 for 30 min followed by 50 µM
artonin F for 5 h; cells were washed with PBS and lysed with RIPA buffer, supplemented
with protease inhibitor mixture and phosphatase inhibitor mixture at 4 ◦C for 20 min. The
lysate was pre-cleared by incubating with beads at 4 ◦C for 1 h and then centrifuged at
12,000× g for 20 min at 4 ◦C. Cell supernatant was determined for protein content using
the Bradford method. Cell lysates (500 µg of protein) were incubated with c-Met antibody
at 4 ◦C overnight. After that, the lysate:immune complexes were incubated with protein
G-conjugated agarose beads for 4 h at 4 ◦C. The immune:protein:bead complexes were
washed five times with cold lysis buffer and suspended in 6× Laemmli sample buffer. The
immunopurified samples are loaded on 7.5% acrylamide gels in order to probe for the
presence of ubiquitinated c-Met by Western blot anti-Ub. The filters were incubated with
anti-Ub antibody diluted 1:1000 in TBS-T 5% BSA for 1 h at room temperature. The protein
complexes were analyzed for protein expression by immunoblotting assay.
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4.9. Computational Method

Artonin F, as ligand, was prepared by drawing in 2D and 3D using Chem3D 19.0
(PerkinElmer Informatics, Waltham, MA, USA). The structure geometry was optimized
in Gaussian 09W using Hartree-Fock 6-31G Basis Set. The target c-Met (UniProt P08581)
structure was retrieved from AlphaFold prediction [28], while the human DHHC20 (PDB
ID: 6BML) and acyl-protein transferase (APT1; PDB ID: 6QGN) was retrieved from rcsb.org.
The predicted structure of c-Met was minimized first using YASARA force field mini-
mization server [44]. The Ramachandran plot of the minimized c-Met was checked using
PROCHECK server [45] and modelled prior to docking using Modeller [46]. Crystal struc-
ture of wild-type c-Met bound by inhibitor, highlighting the key role that residues Tyr1230
play in the inhibitor binding mode [47].

Protein–ligand in silico docking study was performed using AutoDock Vina [29].
Ligand and protein were prepared for docking using AutoDock Tools. Water and hetero-
atoms from PDB file of proteins were deleted, polar hydrogen and Gasteiger charge of
both protein and ligand were added, and the file was saved in pdbqt format. The grid
box for docking was set at the centre_x1 = −30.95, centre_y1 = 15.02, centre_z1 = 4.24
and centre_x2 = −56.03, centre_y2 = −47.50, centre_z2 = 31.92 with dimension 20 × 20 ×
20 Å for c-Met, centre_x = 25.40, centre_y = −51.20, centre_z = −55.20 with dimension
23 × 23 × 23 Å for DHHC20, and centre_x = −22.60, centre_y = −9.60, centre_z = −21.70
with dimension 23 × 23 × 23 Å for APT1 and centre_x = 15.02, centre_y = −18.94,
centre_z = −4.63 with dimension 26 × 26 × 26 Å for USP8. The exhaustiveness was
set at 100 and 10 ligand poses was produced. The best pose, which was characterized
by having the lowest binding affinity, was analyzed further. Discovery Studio Visualizer
was used to visualize the 2D and 3D interactions of protein and ligand (Discovery Studio
Visualizer, version 2020).

4.10. Statistical Analysis

Data from three independent experiments are presented as mean ± standard error of
mean (SEM). Multiple comparisons for statistically significant differences between multiple
groups were performed using an analysis of variance (ANOVA), followed by Tukey’s post
hoc test. p-value < 0.05 was considered as statistically significant.

5. Conclusions

This study examined the c-Met downregulating effect of artonin F in lung cancer
cells. Artonin F induced a dramatic c-Met degradation through a ubiquitin-proteasomal
mechanism and inhibited PI3K/AKT/mTOR signals. For mechanism, we proposed that
artonin F interacted and inhibited deubiquitinating enzyme USP8, therefore enhancing the
degradation. In addition, it also interacted with palmitoylating enzymes and destabilized
c-Met (Figure 9). The promising anticancer activities of artonin F support its use in potential
new approaches to treat c-Met-driven cancer.
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