
����������
�������

Citation: Wu, X.; Abbas, K.; Yang, Y.;

Li, Z.; Tedesco, A.C.; Bi, H.

Photodynamic Anti-Bacteria by

Carbon Dots and Their

Nano-Composites. Pharmaceuticals

2022, 15, 487. https://doi.org/

10.3390/ph15040487

Academic Editor: Fu-Gen Wu

Received: 25 March 2022

Accepted: 11 April 2022

Published: 18 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

pharmaceuticals

Review

Photodynamic Anti-Bacteria by Carbon Dots and Their
Nano-Composites
Xiaoyan Wu 1, Khurram Abbas 1, Yuxiang Yang 1, Zijian Li 2, Antonio Claudio Tedesco 1,3 and Hong Bi 1,2,*

1 School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China;
wuxiaoyan1213@163.com (X.W.); abbaskhurram93@gmail.com (K.A.); yyx18715093366@163.com (Y.Y.);
atedesco@usp.br (A.C.T.)

2 School of Materials Science and Engineering, Anhui University, Hefei 230601, China; 22018@ahu.edu.cn
3 Department of Chemistry, Center of Nanotechnology and Tissue Engineering-Photobiology and

Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto,
University of São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil

* Correspondence: bihong@ahu.edu.cn; Tel.: +86-551-63861279

Abstract: The misuse of many types of broad-spectrum antibiotics leads to increased antimicrobial
resistance. As a result, the development of a novel antibacterial agent is essential. Photodynamic
antimicrobial chemotherapy (PACT) is becoming more popular due to its advantages in eliminating
drug-resistant strains and providing broad-spectrum antibacterial resistance. Carbon dots (CDs),
zero-dimensional nanomaterials with diameters smaller than 10 nm, offer a green and cost-effective
alternative to PACT photosensitizers. This article reviewed the synthesis methods of antibacterial
CDs as well as the recent progress of CDs and their nanocomposites in photodynamic sterilization,
focusing on maximizing the bactericidal impact of CDs photosensitizers. This review establishes the
base for future CDs development in the PACT field.
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1. Introduction

Infections caused by fungi, bacteria, parasites, or viruses cause many severe diseases.
Our healthcare systems face substantial problems, from treatment needs to prevention
in hospital settings and routine work dealing with many critical pathologies, food and
water environments and sources protection, and worldwide public health impact [1,2].
Antibiotics have historically been the primary weapon in the fight against infectious
diseases. However, due to the high cost and long pathways to new drugs discovery,
clinical testing, and scaling up the production process, approval of the development of
next-generation antibiotics takes longer [3]. Additionally, bacteria have several ways of
rapidly acquiring resistance, which can endanger the health of patients and delay wound
recovery after treatment [4]. As a result of multidrug resistance (MDR), many of these
diseases will become more challenging to treat and result in higher medical costs and
mortality rates [5–7]. Since the appearance of multidrug resistance in pathogenic bacteria,
traditional antibiotics/antimicrobials cannot meet the expectations of today’s society and
the urgent needs to efficiently prevent and treat a considerable spectrum of bacterial
infections [8]. It is imperative to find and develop alternative antibacterial techniques to
combat MDR effectively and to prevent and treat diseases and their undesirable side effects.
In environmental contamination, the consequences and expenses to eliminate the impact
could be worse and could take a year and in some cases decades [9].

Photodynamic inactivation of bacteria mediated by photoactive compounds, more
precisely photosensitizer molecules (PSs), is one of the most promising techniques in the
fight against MDR pathogens [10], such that as used and developed in remote ancient
Egypt approximately 4000 years ago, when a skin disease such as vitiligo was treated
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by a combination of plants orally administered and exposure of the patients to sunlight.
The successes of the treatment were a result of photodynamic reactions mediated by a
natural product present in the extract of Ammimajus, a furanocoumarin and a psoralen.
Photodynamic antimicrobial chemotherapy (PACT) is a fast, intense and challenging field
that has been developed to address the growing antibiotic resistance among harmful
bacteria [11]. It was developed in response to the need for better treatment and prevention
of bacterial infectious diseases.

Several issues are involved in PACT, including the design and choice of the nanos-
tructured photoactive molecules and their isolation or synthetic route to make it feasible
to penetrate the cellular cytoplasm or induce specific damage to the cellular organelles in
the target tissue [12]. Fungi are eukaryotic microorganisms, similar to mammalian cells,
and the development of new antifungal drugs remains challenging due to a number of
reasons, such as the presence of the nucleus and the structure of the cell wall. Bacteria
are prokaryote microorganisms that can be easily distinguished from mammalian cells.
Conversely, fungal diseases are usually caused by pathogens (fungi), and these fungal
diseases feature a variety of symptoms that are commonly related to the attack of the skin
and respiratory systems. Fungi and bacteria can form biofilms versus staying in their
planktonic forms, increasing their drug resistance [13].

Carbon dots (CDs) have been proposed as a potential fluorescent nanomaterial for
identifying and inactivating different types of bacterial species among a wide variety of
PSs, already used in the past [14,15]. CDs are carbon-based nanomaterials that are quasi-
spherical in shape and have a typical size of less than 10 nm. They have good photoelectric
properties, high water solubility, and chemical durability. CDs also present low toxicity
and have good biocompatibility, making them ideal for bioimaging [16–20], drug deliv-
ery [21], gene delivery [22], biosensors [21] and fluorescent-labeling applications [23,24].
CDs are well known to undergo optical absorption via π-plasmon transitions [9]. In con-
trast, fluorescence emission occurs in the visible to the near-infrared spectral range due
to photogenerated holes and electrons trapped at different surface sites and associated
radiative recombination [25]. CDs exhibit powerful photodynamic effects due to their
optical properties [26], which have been exploited to kill bacterial and cancer cells under
visible light irradiation [27].

In this review, we summarize the most common synthetic methods for producing CDs
and CDs nanocomposites, their application in photodynamic antimicrobial applications in
recent years, and the factors and improvements affecting the antimicrobial effectiveness
of CDs.

2. Synthesis Techniques of Carbon Dots Employed for Antimicrobials

The properties of CDs are closely related to their preparation methods [28]. Top-down
and bottom-up approaches are two commonly used approaches for preparing CDs [29,30].
Carbon quantum dots’ final physicochemical and functional properties, including their
photophysical behaviors, biocompatibility and antibacterial activity, are influenced by the
method employed and the carbon source used during the synthetic process [31].

Using a top-down technique, large-sized carbon materials, such as carbon nanotubes
and graphite ash, are decomposed into small CDs, from the macro to the nanoscale. Differ-
ent carbon sources are exposed to laser ablation, arc discharge, plasma treatment, chemical
oxidation, electrochemical oxidation, and others [32–36]. Using different types of acid
treatment, the concentration of the oxygen-containing groups attached to the CDs structure
can be easily changed. However, doping additional materials onto CDs is tricky and is
a powerful option to potentialize the CDs’ nanomaterial. Furthermore, the strong acid
may cause CDs to lose their conjugated structure, changing their photophysical properties,
resulting in lower absorption and emission wavelengths [37].

Chemical processes such as hydrothermal, pyrolysis, combustion, ultrasonic, mi-
crowave irradiation, thermal, and biogenic procedures, conversely, are used in the bottom-
up approach [38,39]. CDs can also be prepared using non-graphite carbon sources such
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as tiny polymers and monomers as carbon precursors [40,41]. Using this method, a wide
range of elements, including N, P, S, B, and even metal ions, can be doped into the CDs’
structure [42]. The addition of heteroatoms to the CDs structure improves the fluorescent
properties of these nanomaterials by changing the absorption and emission peak posi-
tions and boosting the fluorescent quantum yield. Wu et al. found a link between CDs’
photo-oxidation activity, phosphorescent quantum yield, and N content, underlining the im-
portance of N-doping in boosting CDs’ photosensitization performance [43]. Marković et al.
found that the photodynamic antibacterial properties directly impact the ROS production
by the CDs doping process with F and Cl compared with undoped nanoparticles [44]. It
is essential to optimize the photodynamic antibacterial effect of CDs by choosing suitable
precursors and the proper selection of doping elements. However, doping sites and better
concentrations are still challenging to manage and archive.

Unfortunately, many of the current methods require toxic chemicals and solvents,
high temperatures, long reaction times and complex processing steps. Therefore, the de-
velopment of green chemistry concepts to manufacturing fluorescent CDs through simple,
economical and sustainable pathways represents a meaningful topic [45]. More recently,
efforts have been devoted to utilization of green carbon sources and the development of
green synthesis processes. For the former, biomass, which is renewable organic material
that comes from plants and animals, represents a typical green carbon source. The use of
biomass for CDs synthesis, especially in large-scale production, is attracting increasing
attention among researchers. For the green synthesis process, toxic chemicals that are
harmful to people’s health and the environment should be avoided. In addition, the prepa-
ration procedure, reaction time and conditions should be optimized to increase economic
efficiency. Currently, the main green synthesis processes for producing CDs include ultra-
sonication, microwave irradiation, hydrothermal carbonization, self-exothermic synthesis,
and ozone/hydrogen peroxide oxidation [46].

3. Carbon Dots in Antimicrobial Photodynamic Therapy

The currently known antibacterial mechanism of CDs is shown in Figure 1. CDs
with positively charged surfaces interact electrostatically with negatively charged bacteria,
facilitating CDs internalization and killing bacteria [47,48] This CDs behavior is critical for
the success of the PACT. As observed in the past, bacteria and biofilm frameworks present
a tremendous challenge in the treatment protocol design, considering the difficulty of the
photoactive compounds penetrating through the exopolysaccharide matrix [49]. Neutral or
negatively charged photoactive compounds have been proposed to treat Gram-negative
bacteria without success. The low permeability of the Gram-negative outer membrane
avoids effective incorporation of molecules, reducing the light activation effect. Previous
examples of treatment of the tissue with biological or chemical agents, such as CaCl2 or
Tris-EDTA, which are expected to increase the release of the molecules by up to 50% of the
outer membrane lipopolysaccharide present as desired, but they showed undesirable side
effects in a clinical trial [50,51].

Bacteria can also be killed by disintegrating bacterial cell walls, resulting in cytoplasmic
material leaking [52], which could induce secondary side effects. Furthermore, the higher
temperature caused by the photothermal therapy (PTT) effect or the release of ROS [53] by
the PACT effect can directly damage the bacterial DNA and proteins, leading to a bluster
effect. CDs are also valued for their capacity to produce highly active ROS. CDs’ present a
visible and near-infrared spectrum of light absorbance, destroying bacteria through classical
mechanisms’ photoinduced production of ROS.
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calation in the bacterial membrane, and irreversible disruption with a leak of cytoplasmatic mate-
rial. (c) CDs-promoted bacterial photodynamic inactivation with ROS production and DNA dam-
age. Reproduced with permission from Ref. [10]. Copyright © 2021 Nanomaterials MDPI. 
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(Type I, Type II, and Type III (Figure 2)) found today [57–59]. Photoactive compounds 
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Figure 1. General bactericidal mechanisms of action of CDs. (a) Schematic representation of the
initial electrostatic interaction between CDs and the bacterial cell wall. (b) CDs internalization,
intercalation in the bacterial membrane, and irreversible disruption with a leak of cytoplasmatic
material. (c) CDs-promoted bacterial photodynamic inactivation with ROS production and DNA
damage. Reproduced with permission from Ref. [10]. Copyright © 2021 Nanomaterials MDPI.

3.1. Photosensitization Mechanisms

PDT was discovered in the 20th century, has received much attention, and has estab-
lished a background in cancer treatment worldwide because of its advantages, such as
fewer side effects, less invasive surgery, and repeatable treatment [54–56]. It has also been
used as adjunctive therapy and works synergistically with the classical approaches for can-
cer. The classical photophysical and photochemical steps involved in PDT are summarized
by Jablonski Diagram. Basically, the PSs in the ground non-excited state (S0) can absorb
visible light (photons), moving to the first electronically excited singlet state (S1), and then
by intersystem crossing (ISC), produce, by spin inversion, the first excited triplet state (T1).
The excited triplet state (T1) has a long lifetime (around milliseconds)—enough to move
forward by energy and electron transfer processes. The deactivation of the first excited
state was sometimes a fast and helpful process, defined by a fluorescence emission used in
many cases for diagnostic. The excited triplet state (T1) deactivation is a phosphorescence
process with long-time light emission. It can also be deactivated by a thermal decay that
can also be used to disperse the energy of the excited PS. Three classical photoreductions
govern their photoreaction on PDT and photon energy transfer mechanisms (Type I, Type
II, and Type III (Figure 2)) found today [57–59]. Photoactive compounds acting by the
Type I mechanism are primarily based on hydrogen atoms or electrons that transfer from
the excited photosensitizer molecules *(T1) states, react with oxygen, and produce ROS
products such as HO•, O2

•−, and H2O2 [60–63].
Photosensitization mechanism Type I-Redox reactions (1–4) with biomolecules [64].

0S → 1S → 3S (1)

3S+Sub→ Sub+•+Sub−• (electron transfer), (2)

S−• + 3O2 → Sub + O•−2 → HO• + HO• (3)

S = photosensitizer molecule and Sub = organic substrate. (4)

Conversely, photoactive compounds operating by Type II are propelled by electron
spin exchange between the photosensitizer *(T1) and triplet oxygen (3O2), which results in
the T1–T1 annihilation process and the formation of non-radical but highly reactive singlet
oxygen (1O2).

Mechanism photosensitizing Type II-mediated production 1O2, such as lipid peroxida-
tion, is based on the above reaction (1) [64] and then follows reactions (5–6).

3S + 3O2 → 0S + 1O2 (energy transfer), (5)

1O2+Sub → Sub-OOH(peroxides, etc.), (6)
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The reactive oxygen species produced by the photosensitization Type I mechanism
are constantly made in the living organisms at a low level [65–67]. Since these species are
highly reactive, the microorganisms need protective systems to neutralize the action of
these radicals. This protective system includes enzymes such as superoxide dismutase
(SOD) that have its activity over the superoxide anion radical, as well as the catalase and
the peroxidase, which control the harmful effects of hydrogen peroxide:

O•−2 +O•−2 +2H+ SOD−−−→H2O2 (7)

2H2O2 catalase−−−−−→H2O + O2 (8)

H2O2+2H+ peroxidase
−−−−−−−→

2H2O (9)

In the Type II mechanism, energy is transferred directly to the molecular oxygen. The
PSs return to the ground state after an absorption cycle and active oxygen generation. The
photodynamic effect is directly affected by the single-linear oxygen yield in the Type II
mechanism [68–71].

PSs should also be selectively targeted biomolecules such as nucleic acids, proteins, and
other macromolecules by a Type III mechanism. When paired with Type III photosensitizers,
the PSs can directly and effectively destroy the exciting biological target molecule [59].

Few PSs can be employed in Type III PDT due to the stringent requirements for
photosensitizers. CDs have not yet been proven to work by Type III PDT but remain an
open challenge. Type II PDT may be the most studied of the three mechanisms, and 1O2
QY is a valuable metric of photophysical properties for assessing photodynamic perfor-
mance [72,73]. The better the photodynamic effect, the higher the 1O2 QY. Several methods
for detecting 1O2 include electron spin resonance (ESR), fluorescence, UV–visible absorp-
tion indirect method (classical Donors–Acceptor quenching process) and by time-resolved
methods such as flash photolysis and near-infrared (NIR) 1O2 detection. Fluorescence and
UV–visible absorption can be used to calculate the QY of 1O2 [74,75].
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3.2. Photodynamic Anti-Bacteria by Carbon Dots

PACT can damage DNA, oxidize amino acids, inactivate enzymes, and kill bacteria
by releasing ROS. Because of its features of low cumulative toxicity, high spatial targeting
processes, and drug resistance independence, PACT is considered a practical approach for
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antibacterial applications. Under visible and NIR light irradiation, exposed CDs produce
ROS by electrons or by an energy transfer process, leading to ROS, employed as a new
photosensitive nano-agent in PACT against microorganisms [76–79].

Some CDs, such as graphene [76] and mushroom CDs [78], have intrinsic photo-
dynamic characteristics that do not require extra surface changes or doping processes.
Trajkovic et al. used an electrochemical approach to make graphene quantum dots that
can produce reactive oxygen species under photoexcitation (470 nm, 1 W) and kill Gram-
negative bacteria such as Escherichia coli and methicillin-resistant Staphylococcus aureus
(MRSA) [76]. As shown in Figure 3a, Yoon et al. used mushrooms as a raw material to
make carbon dots (MCDs) with high blue fluorescence, with the most significant emission
at 456 nm under the excitation of 360 nm UV light. Under LED, visible light illumination
(2.70 mW cm−2), MCDs can produce ROS such as hydroxyl radicals and superoxide radi-
cals, which can directly adhere to the surface of Escherichia coli (E. coli) cells and induce cell
membrane damage [78]. Conversely, CDs have an effective photodynamic action with the
advantages of photostability, non-toxicity, and high quantum yield of fluorescence, and
use citric acid as the sole carbon source in the production of CDs. The entire process is
considered a green and inexpensive environmental safety process and material production
with many medical applications [78]. Bagnato et al. used citric acid as a raw material to
prepare CDs that displayed an antibacterial photodynamic effect. It emits its maximum
light at 530 nm when excited by light at 450 nm. CDs-mediated PACT removes Staphylococ-
cus aureus (S. aureus) suspensions and biofilms, as shown in Figure 3b, and is an effective,
affordable, and simple PACT reagent that may be utilized in both in vitro and in vivo
studies [80].

However, UV–vis light can induce side effects and damage to the human body and
has a low penetrability to tissue. Still, near-infrared light (NIR, 780–1700 nm) has an
advantage in PACT because of its longer wavelength, less scattering, tissue absorption,
and more importantly, higher penetration efficiency of biological tissue [81,82]. Pu et al.
obtained graphene oxide (GO) sheets. As shown in Figure 3c, they prepared two-photon
GQDs capable of producing ROS through ultrasonic shearing, with high two-photon
absorption, a large two-photon excitation absolute cross-section (TPE), and two-photon
solid luminescence of the NIR. It is possible to perform two-photon bioimaging and two-
photon photodynamic therapy on both Gram-negative and Gram-positive bacterial [83].

Although some organic photosensitizers have a high singlet oxygen yield (i.e., rose
benga (RB, 75%), methylene blue (MB, 52%), indocyanine green (ICG, 0.80%)) [55,84–86],
CDs have outstanding advantages such as biocompatibility, water solubility, targeting
specificity, NIR absorption, fast and reliable synthetic processes and many others fea-
tures. Hence, CDs photosensitizers continue to have promising antibacterial uses. Some
organic PSs, such as curcumin and riboflavin, have been under evaluation for decades
and present remarkable photostability but poor water solubility, reducing their photody-
namic effect [87,88]. Su et al. used a hydrothermal approach to create curcumin carbon
dots (Cur-NRCDs) with imaging and antibacterial properties. They used curcumin (Cur),
neutral red (NR), and citrate (CA) as raw materials. Under 405 nm excitation, Cur-NRCDs
fluoresced brightly red. Cur-NRCDs had better photosensitivity than Cur. Cur-NRCDs
have outstanding antibacterial activity, cytocompatibility, photostability, and ROS efficiency.
Under xenon lamp irradiation, Cur-NRCDs can inactivate 100% E. coli and S. aureus at 15
and 10 mM concentrations, respectively [88].

Several investigations have been conducted in recent years to improve the antibacterial
efficacy of CDs photosensitizers [9]. As previously stated, increasing the nitrogen concen-
tration in CDs helps to strengthen the PACT effect. Kuo et al. prepared graphene oxide
sheets using a modified Hummers process and produced N-GQDs using an ultrasonic
shear reaction method. N-GQDs have a bright PL emission spectrum in the near-infrared
region, at 728 nm. Their superior luminescence properties and photostability make them
a viable contrast agent for bacteria tracking in bioimaging techniques. Under 670 nm
(0.10 W cm−2) laser irradiation, a considerable amount of 1O2 and O2

•− may be created
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simultaneously, and the effect of killing E. coli can approach 100% efficacy in only three
minutes of light exposure. They also discovered that components with higher nitrogen
content in graphene quantum dots could perform photodynamic therapy more effectively
after the same treatment than components with lower nitrogen bonding content, indicating
that future clinical applications, particularly for multidrug-resistant bacteria, are possi-
ble [89]. Probably, the mechanism of action works by synergic production of ROS and RNO
(reactive nitrogen species).
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Optimizing the photophysical characteristics of CDs molecules has been an essential
strategy to improve the efficiency of PACT, as seen by increased fluorescence and phospho-
rescence quantum yields. Wu et al. used citric acid and ethylenediamine as raw ingredients
to make a variety of nitrogen-doped carbon dots (CDs). The phosphorescent quantum yield
was positively associated with the CDs’ photosensitization ability. From the standpoint of
material design, a better photosensitizer can be obtained from the cross between systems
from an excited singlet state to an excited triplet state (Figure 4). When the designed CDs
were applied to photodynamic antibiotics, the inhibition rates of Salmonella and E. coli (92%
and 86%) were much higher than the growth inhibition rates of phloxine B (40% and 55%),
demonstrating the excellent photodynamic antibacterial effect of these CDs [43].
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emission spectrum of the four types of CDs in a CD3CN−D2O mixed solvent (v/v = 15/1). (c) TMB
photo-oxidation efficiencies of the four CDs. Reproduced with permission from Ref. [43]. Copyright
© 2022 ACS Applied Materials & Interfaces, American Chemical Society.

In addition, using the “heavy atom effect” can also be demonstrated to improve
the advantages of intersystem crossing (ISC), leading to a phosphorescent deactivation
process, energy and electron transfer and more effectively antibacterial PSs [90]. The
work of Knoblauch et al. showed that the intersystem crossing could be optimized by
doping bromine on the CDs produced [91]. The “heavy atom effect,” which involves
incorporating elements such as bromine into tiny molecules, has long been an approach
for obtaining better phosphorescence from fluorophores [92]. ROS generation benefits
from the triplet interaction between the triplet-excited state and molecular oxygen at the
ground state. It has been demonstrated that adding bromine to CDs can result in excellent
spin-orbit coupling and subsequent phosphorescence detection. Under UV-A irradiation,
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the prepared brominated carbon dots (BrCDs) produced HO• (Type I) and 1O2 (Type II)
and displayed considerable antibacterial activity. The potential of hydrogen-departing
reactive nitrogen species was discovered in the synthesized CDs, which impeded colony
formation even without photodynamic processes [91].

The surface charge of CDs has a significant impact on their PACT effect. Yang et al.
performed three studies in which they prepared CDs and then surface functionalized them
with 2,2-(ethylenedioxy)bis(ethylamine) (EDA) and 3-ethoxypropylamine (EPA) to produce
EDA-CDs and EPA-CDs, respectively [93]. EDA is protonated and becomes positively
charged at the neutral potential of hydrogen, but EPA is not. The researchers discovered that
EDA-CDs have considerably stronger antibacterial activity than EPA-CDs, implying that
the positive charge on EDA-CDs can aid CDs to electrostatically attach a negatively charged
bacterial film, improving the PACT effect. According to the authors, a high fluorescence
quantum yield is also favorable to the PACT effect. Furthermore, the antibacterial activity
of CDs is enhanced by a thin polymer passivation layer.

It is also required to prepare CDs with targeting ability to optimize the photodynamic
effect of CDs. Galan et al. found that green fluorescent FCDs made by microwave us-
ing glucosamine hydrochloride and m-phenylenediamine as precursors can label E. coli,
Klebsiella pneumoniae, Pseudomonas aeruginosa, and Gram-positive (S. aureus) pathogens in
less than 10 min. FCDs paired with LED irradiation successfully kill Gram-negative and
Gram-positive bacteria in the visible range [94].

4. Carbon Dots-Based Nanocomposites in PACT

While basic research into the mechanism and optimization of CDs as photosensitizers is
still ongoing, researchers have begun to investigate how these particles might be integrated
into hybrid systems to improve antimicrobial efficiency. In other cases, the CDs’ intrinsic
antibacterial capabilities have been exploited to increase the overall system’s efficiency.

4.1. Antibiotic-Modified Carbon Dots

CDs not only have high antibacterial and antimicrobial membrane activity, but they
also include a variety of hydrophilic groups on the surface, including -NH2, -OH, and
-COOH, and their unique nanostructure allows them to be used in many drug delivery
applications. The higher cellular internalization of these CDs is used to boost drug ab-
sorption. At the same time, it can bring active molecules attached to the main structure by
functionalization groups. This property has been discovered to be directly employed in
the administration of antibiotic molecules such as vancomycin [95], ampicillin [96], peni-
cillin [97], ciprofloxacin [98,99], and antiparasitic creams [97] to destroy microorganisms in
bacterial cells. Bacteria can be killed more effectively by a synergistic combination of the
PACT action with CDs antibiotics.

Boukherrub et al. used a hydrothermal approach to prepare amine-functionalized
carbon dots (CDs-NH2) using citric acid and ethylenediamine as primary materials. To
make CDs-AMP nanostructures, the main amine groups on the surface of CDs-NH2 were
employed to be covalently connected to ampicillin (AMP), a classical β-lactam antibiotic.
The lowest dose of CDs-AMP conjugate(14 g mL−1)-inhibited E. coli cells was higher
than free AMP (25 g mL−1), confirming the superiority of the CDs-AMP conjugate. As
shown in Figure 5a, the authors also confirmed that exposing CDs-AMP to visible light
irradiation increased its bactericidal action. When compared to free AMP, the results of
this investigation demonstrated that AMP placed on CDs had improved stability and
antibacterial activity when exposed to visible light [96].

Mandal et al. used a solvothermal approach to make 1,5-dihydroxyanthraquinone-
based CDs that emit green fluorescence. BSA was coated on the surface of the CDs via
an amidation reaction to boost ROS activity. As given in Figure 5b, Ciprofloxacin reacted
non-covalently with BSA-CDs conjugates to generate drug nanocomplexes. At the same
time, PACT functioned synergistically with antibiotic drug release to kill 95% of E. coli and
S. aureus at concentrations as low as 1.47 g mL−1 in their complexes [100].
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Using CDs conjugated with antibiotics can improve their antimicrobial activity in many
cases. Combining photodynamic sterilization with antibiotic sterilization can maximize
bacteria-killing because CDs improve the internalization efficiency and targeting of the
material and have a photodynamic effect [96].
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Figure 5. (a) Photodynamic efficiency of CDs-NH2 for the inactivation of E. coli K12-MG 1655 upon
irradiation at 0.30 W for 10 and 20 min and influence of the CDs-NH2 and CDs-AMP concentration
on the treatment efficiency of E. coli without (solid lines) and with (dash lines) visible light illumi-
nation (20 min, 0.30 W). Reproduced with permission from Ref. [96]. Copyright © 2018 Colloids and
Surfaces B: Biointerfaces, Elsevier B.V. (b) Scheme for Synthesis of CDs, conjugation of the CDs to BSA,
and subsequent creation of BSA-CDs nanoparticles for visible-light-induced ROS generation and
simultaneous release of ciprofloxacin for antibacterial activity. Reproduced with permission from
Ref. [100]. Copyright © 2022 ACS Applied Materials & Interfaces, American Chemical Society.

4.2. Carbon Dots as Nanocarriers for Photosensitizers

PSs such as MB and curcumin can also be effectively bound to CDs through covalent
coupling or supramolecular interactions [101] (including π–π stacking, electrostatic interac-
tions, etc.) using the same rational approaches to the development of CDs-attached antibiotics.

CDs’ intrinsic antibacterial properties can sometimes boost antimicrobial efficacy. In
recent years, mixing CDs with photosensitizers molecules has been discovered to boost
overall antimicrobial activity. Dong et al. for example increased the antibacterial action of
CDs by combining them with the photosensitizers MB and toluidine blue (TB). According
to the scientists, CDs (5 g mL−1) alone had no antibacterial effect, and MB (1 g mL−1) had
little antimicrobial activity, but mixing CDs (5 g mL−1) with MB (1 g mL−1) considerably
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increased their antimicrobial effect and almost entirely inhibited bacterial growth, according
to the scientists. In E. coli cells, the combination of CDs and TB showed a similar synergistic
impact. The authors speculate that this is due to (1) increased cellular penetration by small-
molecule photosensitizers, (2) improved solubility of their small-molecule counterparts by
CDs and thus improved uptake/localization and target delivery, or (3) increased overall
intracellular ROS by the combination of both photosensitizers, for example through a
fluorescence resonance energy transfer (FRET) mechanism [25].

Similarly, Kholikov et al. synthesized biocompatible and photostable GQDs that
produced more monoclinic oxygen when mixed with MB. The population of excited triplet-
state photosensitizers created by the inter-systemic crossover (ISC) of excited singlet-state
photosensitizers is related to the oxygen generation efficiency of singlet photosensitizers. As
a result, GQDs may lengthen the duration of the MB triplet state, boosting (ISC) efficiency
from the singlet excited state to the triplet excited state of MB. Within 5 min of irradiation
with visible light at the appropriate wavelength, Gram-positive and Gram-negative bacteria
treated with the MB-GQD were inactivated (Figure 6a). The lower doses of MB provided
higher antimicrobial activity when sulfur-doped GQDs were combined with MB [102].
Yameen et al. synthesized a compound (cur-GQDs) by loading curcumin onto GQDs
to increase the solubility and biocompatibility of curcumin. It was shown that loading
curcumin onto GQDs solved the problem of curcumin’s poor water solubility and increased
its ROS production by three-fold, effectively being an inhibitory effect on Pseudomonas
aeruginosa, MRSA, E. coli and Candida albicans. The results were observed when the samples
were exposed to 405 nm blue light at 30 J cm−2. As shown in Figure 6b, Pseudomonas
aeruginosa, MRSA, E. coli and Candida albicans were significantly inhibited [103].

Other types of CDs have excellent photothermal properties but are not directly asso-
ciated with photodynamic properties. This material class could be under near-infrared
light, transforming light energy into heat, and inducing desaturation of enzymes on bacte-
ria’s surfaces by raising their temperature and destroying the cell membrane and biofilms
framework. Based on this foundation, a nanocomposite system with synergistic PDT and
PTT therapy can be built. The antimicrobial effect can be considerably increased by mixing
CDs with photosensitizers molecules via FRET. Su et al. developed a carbon dot compos-
ite system CDs/Cur that uses CDs as a carrier for curcumin, which improves curcumin
biocompatibility and ROS yield and has an excellent photothermal impact. CDs/Cur may
create both heat and generate ROS under dual-wavelength irradiation at 405 and 808 nm,
enhancing the antibacterial efficacy by combining PDT/PTT (Figure 6c). The killing effect
on E. coli was up to 100% of the final concentration of 1 M CDs/Cur concentration. In
contrast, the lethal effect on S. aureus was even stronger, with a mortality rate of 100% at
the lowest concentration of 0.10 nM [104].

CDs have excellent fluorescence properties, including broad-spectrum absorption,
tunable photothermal effects, upconversion luminescence, and visible light absorption,
allowing them to be used as FRET donors in various applications. Traditional photosensi-
tizers such as PpIX have low solubility and are prone to aggregation-induced bursts. Das
et al. developed the CD-DNA-PpIX hybrid hydrogel using protoporphyrin as the acceptor.
DNA functions as a linker to join CDs and PpIX, combining the preceding advantages
of CDs. As shown in Figure 6d, CDs serve two purposes: a cross-linker to disseminate
PpIX and a FRET donor to stimulate PpIX. The photodynamic effect of PpIX in visible
light and CDs to produce FRET can work together to generate additional ROS, which can
considerably improve the photodynamic outcome. The length of the DNA’s sequence
impacts the distance between the CDs and PpIX, as well as the efficiency of FRET, which
can minimize PpIX’s self-burst and ensure its delayed release. The hydrogel was entirely
over at 10–11 days in the experiment, while PpIX produced ROS slowly and consistently,
killing Gram-positive bacteria (S. aureus) continually [105].
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Figure 6. (a) (left) E. coli (5 min irradiation) and (right) M. Luteus colonies (2 min irradiation) in PBS be-
fore and after irradiation and their percentage irradiation of MBGQD with 660 nm light. Reproduced
with permission from Ref. [102]. Copyright 2018 Photodiagnosis and Photodynamic Therapy, Elsevier
B.V. (b) Effects of optimized blue light and optimized cur-GQD concentration on NIH/3t3 cells,
indicating nontoxic effect of light dose at 30 J cm−2 with cur-GQD. Reproduced with permission from
Ref. [103]. Copyright © 1999–2022 Photochemistry and Photobiology, John Wiley & Sons. (c) Synthesis
of the CDs/Cur nanocomposite photosensitizer, and bactericidal activities of CDs/Cur upon dual-
wavelength (405 + 808 nm) illumination. Reproduced with permission from Ref. [104]. Copyright
2022 ACS Applied Bio Materials, American Chemical Society. (d) Scheme for conjugation of cytosine,
rich single-stranded DNA to CDs and PpIX for hydrogel formation. The blue and red color-coded
DNA sequence is the same. Reproduced with permission from Ref. [105]. Copyright © 2019 Journal of
Colloid and Interface Science, Elsevier Inc.

4.3. Carbon Dots/Metal Oxide Nanocomposites

CDs/metal oxide nanocomposites, such as ZnO/GQDs [106], CDs/Na2W4O13/WO3 [107],
CDs/TiO2 [108] and CDs/Cu2O [109], are also under evaluation for its antimicrobial
activity. When these materials are exposed to UV–visible light, these nanocomposites
release ROS, which kill microorganisms by some previous mechanisms presented. For
example, Chen et al. used a hydrothermal technique to make ZnO/GQDs nanocomposites
that could form reactive oxygen species to kill E. coli when exposed to UV light. Their
bactericidal activity was much higher than ZnO and GQDs [106].

4.4. Other Hybrid Carbon Dots

Many experiments have been conducted to improve the antibacterial photodynamic
properties of CDs. The embedding of light-responsive CDs into soft hyaluronic acid
hydrogels is frequently used as a photoactive antibacterial technique. Infectious bacteria in
the target tissue can dissolve hydrogels structure and liberate CDs because of the action of
hyaluronidase present on infectious bacteria naturally. Park et al. created a light-responsive
carbon dot-embedding soft hyaluronic acid hydrogel (CDgel) to be used as a photodynamic
antibacterial agent in vivo and in vitro by embedding CDs into a hyaluronic acid cross-
linked hydrogel. As previously stated, the hyaluronic acid backbone of CDgel is broken
by the bacterial hyaluronidase enzyme when applied to the bacterial site. CDgel degrades
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at this moment, transitioning from a gel to a liquid state, and CDs are released as a result.
CDs release vast levels of 1O2 when exposed to white LED light, which can kill up to 99%
of E. coli and 97% of S. aureus (Figure 7a) [110].

In addition, the development of a synergistic antibacterial platform can also greatly
enhance the antibacterial performance. As shown in Figure 7b, Shen et al. developed
silicon-based near-infrared CDs (QPCuRC@MSiO2) and a bicarbonate (BC) nanoplatform
(BC/QPCuRC@MSiO2@PDA). It has triple synergistic antibacterial properties such as
PDT, PTT and quaternary ammonium compounds (QACs). In vitro and in vivo exper-
iments showed that BC/QPCuRC@MSiO2@PDA had excellent antibacterial properties,
and the antibacterial rates against S. aureus and E. coli could reach 99.99% and 99.60%,
respectively [111].
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The application of carbon dots-based nanocomposites in PACT is summarized in this
section. To boost the effect of PACT, CDs can be employed as an antibiotic carrier, mixed with
a photosensitizer, combined with a metal oxide, or formed into various hybrid materials.

In Table 1, we have listed some representative CDs structure presenting high potential
activity on PACT, based on the material discussed in Sections 3 and 4.
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Table 1. Representative CDs for killing microorganisms; from Sections 3 and 4.

CDs Label a The Precursor of
CDs

Excitation
Wavelength

Emission
Wavelength QY Light

Wavelength Light Power
ROS

Sensitization
Yields

Microorganism Reduction of Bacteria Ref.

GQD graphite rods 328 nm 494 nm – blue light
(470 nm) 1 W – S. aureus and

E. coli
80% E. coli and 90–95% S. aureu were

eliminated after 15 min * [76]

MCDs edible mushroom 360 nm 456 nm 25% visible LED light 2.70 mW cm−2 – E. coli >90% elimination of E. coli in 12 h [78]

CDs citric acid 370 nm 450 nm – blue light
(450 nm) 40 J cm−2 – S. aureus

total elimination of S. aureus suspension
was achieved (CDs: 6.90 mg/mL) and total

elimination of the biofilm cultures was
achieved (CDs: 13.80 mg/mL)

[80]

GQD graphite 480/740 nm 618–647 nm 18.50% 800 nm 2.64 mW QY = 0.51 (1O2) E. coli and MRSA all E. coli and MRSA to be dead after the 15 s
laser photoexcitation [83]

Cur-NRCDs curcumin, neutral
red and citric acid 540 nm 635 nm – xenon light

(400–450 nm) – – S. aureus and
E. coli

after 10 min of xenon irradiation, 10 mM
and 15 mM of Cur-NRCDs can kill 100% of

S. aureus and E. coli, respectively
[88]

N-GQD
(5.1%) graphite 365 nm 624 nm 25.90% 670 nm laser 0.10 W cm−2 QY = 0.64 (1O2) E. coli 100% was eliminated by N-GQDs (5.1%)

after a 3-min exposure [89]

CDs citric acid and
ethylenediamine 350 nm * 450 nm 20% LED light

(365 nm) 3 V/3 W. QY = 0.82 (1O2)
E. coli and
Salmonella

bacteria growth inhibition efficiencies of
92% and 86% were obtained for E. coli and
Salmonella in the presence of 5 µM CDs with

light in 1 h, respectively

[43]

BrCDs natural gas, HBr 302 nm >355 nm – Ultraviolet lamp
(365 nm) 3 mW –

Listeria
monocytogenes,
S. aureus and

E. coli.

with 10 min of UV exposure the growth of
each bacterium is further decreased,

achieving minimal to no colony formation
visible for each

[91]

EDA-CDs/
EPA-CDs

carbon
nano-powders – – 20% 400–800 nm

light bulb 36 W, 12 V – Bacillus subtilis
1 h of EDA-CDs and EPA-CDs treatment
resulted in a reduction of approximately

5.80 log and 0.84 log, respectively
[93]

FCDs

glucosamine
hydrochloride and

m-
phenylenediamine

– – – blue-LED strip
lights (460 nm) 24 W, 12 V –

Klebsiella
pneumoniae,

Pseudomonas
aeruginosa, E. coli

and S. aureus

complete killing of each bacterium was
reproducibly observed after treatment with

200 µg/mL FCDs with 4 h of irradiation,
and significant killing (>95%) could be

observed after only 90 min LED irradiation

[94]

Antibiotic-Modified CDs

CDs-AMP citric acid and
ethylenediamine 350 nm 450 nm 19% visible light 0.30 W – E. coli >4 log10 inhibition of E. coli by CDs-AMP

after 20 min of irradiation * [96]

BSA-CDs
NP

1,5-
dihydroxyanthraquinone 395 nm 525 nm 75%

(CDs)
Tungsten bulb
(300–900 nm) 100 W – S. aureus and

E. coli
99.97% and 99.53% elimination of E. coli

and S. aureus in 1h [100]
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Table 1. Cont.

CDs Label a The Precursor of
CDs

Excitation
Wavelength

Emission
Wavelength QY Light

Wavelength Light Power
ROS

Sensitization
Yields

Microorganism Reduction of Bacteria Ref.

CDs as nanocarriers for photosensitizers

CDs/MB or CDs/TB carbon
nanopowders 400 nm – 12%

(CDs)
white light

bulb 36 W – E. coli

5 µg/mL CDs combined with
1 µg/mL MB completely inhibited

bacteria growth, resulting in 6.20 log
viable cell number reduction

[25]

GQDs
sulfur and nickel
(II) oxide powder

and benzene
310 nm 420 nm – 660 nm red

light 12 W –
E. coli and

Micrococcus
luteus

106 CFU/mL E. coli and Micrococcus
luteus can be eradicated entirely in
10 min with MB-GQD irradiation

[102]

cur-GQDs coal and curcumin 407 nm 525–550 nm * – 405 nm LEDs 30 J cm−2. –

Pseudomonas
aeruginosa,

MRSA, E. coli
and Candida

albicans.

for S. aureus Pseudomonas aeruginosa,
MRSA, E. coli and Candida albicans,
cur-GQDs caused 5.68 log10, 5.02

log10, 5.44 log10, 2.26 log10 and 3.82
log10 CFU reduction, respectively

[103]

CDs/Cur citric acid and
thiourea 420 nm 550–575 nm* – 405 + 808 nm

light

808 nm
(500 mW cm−2),

405 nm
(200 mW cm−2)

– E. coli and
S. aureus

death rate of E. coli and S. aureus
increased to 100% for 1 µM and

0.1 nM
CD/Cur, respectively

[104]

CD-DNA-PpIX hybrid
hydrogel

citric acid and
Branched

Polyethylenimine
350 nm 625–650 nm * – UV lamp

(302 nm) – – S. aureus
UV irradiation for 2.50 min followed by
incubation for 24 h affected > 4.50 log
(>99.99%) reduction of S. aureus cells

[105]

CDs/metal oxide nanocomposites

ZnO/GQDs citric acid 365 nm 460 nm – UV light
(365nm)

100 W,
1000–1500

lumen
– E. coli 100% was eliminated by ZnO/GQDs

after 5 min of UV exposure [106]

Other hybrid CDs

CDgel
ammonium citrate

and
polyethylenimine

390 nm 400–500 nm – white light
irradiation 5 mW cm−2 – S. aureus and

E. coli

CDgel under light giving
approximately 99% and 97%

mortality for S. aureus and E. coli,
respectively

[110]

BC/
QPCuRC@MSiO2@PDA

Citric, urea and
CuCl2·2H2O 360 nm 722 nm – 808 nm 2 W cm−2 – S. aureus and

E. coli

antibacterial rate up to 99.60% and
99.99% to E. coli and

S. aureus, respectively
[111]

a Labels indicate either additional details regarding the nature of the reported carbon dots or indicate the abbreviation/common label used within the cited study to describe the particle.
* Denotes values extrapolated from relevant in-text details from the specified reference.
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5. Toxicology and Safety Profile of Carbon Dots

CDs generally have good cytotoxicity and biocompatibility, which is beneficial for
biomedical applications. However, the influence of CDs on host cells must be carefully
evaluated before CDs can be widely used in PACT applications, and its possible medical
complications and detailed toxicology need to be further studied. The toxicity of CDs is
particularly important because of the unavoidable contact between mammalian cells or
tissues and photosensitizers during PACT application. Additionally, photosensitizers are
prone to transfer from the surface to the biological system, resulting in potential safety risks.

Thus far, much work has been performed on the cytotoxicity of CDs on mammalian
cells, and it has been reported that they are non-toxic at proper concentrations both in vitro
and in vivo [112–114]. However, the cytotoxicity of the CDs should not be overlooked
because the properties of CDs vary greatly between different precursors and synthetic
strategies. Although CDs prepared from “bio-safe” precursors such as common glucose
are commonly believed to be nontoxic, sometimes they maintain low cytotoxicity only
in dark conditions, while cytotoxic substances could be produced upon light irradiation.
Therefore, extensive studies must be carried out to fully explore the possible toxic effects of
CDs on humans. The used concentration of CDs is also an important factor affecting its
toxicity. A high concentration of CDs will exert toxic effects on the central nervous system.
Toxicology reports of GQDs indicate that although most existing studies support the safe
use of GQDs, their toxicity may vary depending on the concentration and test method used
in the synthesis technology. Studies have found that small-sized CDs are more toxic than
large-sized CDs [115], and CDs with negative charged are more cytotoxic to mammalian
cells [116,117]. ROS production plays an important role in the sterilization process of CDs,
but ROS may also cause cell death. In order to solve the above problems, it is necessary to
promote safe and controllable CDs synthesis strategies and application methods, and the
safe application of CDs in the treatment of infectious diseases requires in-depth research on
its possible toxic side effects and complications.

6. Conclusions

As presented, CDs have received much attention in chemical sensing, biological
imaging, photocatalysis, phototherapy, and drug administration. The CDs’ structure work
as a photosensitizer in PACT is discussed in many aspects and applications in this paper.
The synthetic process for CDs preparation was evaluated first to propose classical and
new routes for synthesizing CDs with high photodynamic antibacterial effects. Then, the
key elements that could be impacting the antibacterial effect of CDs were also discussed.
Furthermore, more effective antibacterial materials can be created by mixing CDs with
other photosensitizers molecules and antibiotics or by creating hybrid materials based on
CDs. CDs have been shown to be one of the most promising carbon classes of material to
work properly as an antibacterial material because of their excellent physical and chemical
properties, optical qualities, and photophysical and photochemical behavior associated
with exceptional water solubility.

Conversely, CDs face some problems, limiting their practical application. The exact
process of photoluminescence is unknown, and CDs with extended excitation and emission
wavelengths are still uncommon, leading to complex tissue and biofilm penetration. Sec-
ond, relatively few CDs have intrinsic microbe targeting ability, resulting in a significantly
reduced antibacterial effect that is essential in developing antibacterial CDs. Finally, CDs’
water solubility and biocompatibility influence their microbial therapy usage. To summa-
rize, the creation of high-efficiency antibacterial CDs faces numerous hurdles. As these
issues are resolved, CDs may have more good results in microbial therapeutics.
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