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Abstract: Analytical-method development based on design of experiment has been applied for
optimizing the enantioseparation of amlodipine by chiral capillary electrokinetic chromatography
using maltodextrin as the chiral selector. The effect of different factors on the enantioresolution quality
was screened. Three separation factors, namely maltodextrin concentration, pH of the background
electrolyte and applied voltage were selected as independent variables. The number of experiments
was reduced while maximizing the information content using design of experiment. Based on a full-
quadratic design that included three variables on three levels, the total design space could be reduced
to fifteen factor combinations using a D-optimal algorithm. The aim of the experiment was to find the
optimal factor combinations with respect to resolution. The maltodextrin concentration (7.5–10% w/v)
demonstrated the strongest effect on the resolution followed by pH (2–4) of the background electrolyte
and the applied voltage (15–20 kV). An increase in the maltodextrin concentration was found to result
in a greater stereoselectivity, represented by the higher resolution values (Rs ≥ 1.5). The separation
conditions in the proposed method were feasible to be adjusted within the applied range with an
acceptable resolution.

Keywords: amlodipine; capillary electrophoresis; chiral capillary electrokinetic chromatography;
design of experiment; D-optimal design; enantioseparation; quality by design; maltodextrin

1. Introduction

Chiral separations using chiral stationary phases in liquid chromatography and buffer
additives in capillary electrophoresis (CE) are the techniques of choice for analytical pur-
poses. Chiral CE offers more simplicity in changing the employed chiral selector and
adjusting its concentration in the background electrolyte (BGE) [1,2]. Since the chiral selec-
tor in the BGE acts as pseudostationary phase and the separation follows chromatograpic
principles, the term chiral electrokinetic chromatography (cEKC) is used to describe chiral
CE [3,4].

Over the years, cyclodextrines have become the most common chiral selectors. Due to
its hydrophobic cavity, it shows chiral recognition toward various drug enantiomers [5–7].
Alternative chiral selectors are Maltodextrins (MDs). The hydrophobic properties of the
inner helical structure lead to similar characteristics as the cyclodextrins’ cavity [8]. Mal-
todextrins are oligosaccharides which can be characterized by a dextrose equivalent (DE)
value. The DE is defined by the extent of starch hydrolysis [8,9]. The sugar moeties con-
tribute to the chiral recognition by forming hydrogen bonds, dipole–dipole and CH-π
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interactions. These interactions sterically complement their helical structure, which is
expected to be the basis of the stereoselective behavior [8,10,11].

In previous studies, Tabani et al. reported that maltodextrin with low DE (4–7) has
a higher degree of stereoselectivity compared to DE (13–17) and DE (16.5–19.5) [10]. Its
high aqueous solubility and low absorbance in the UV region allow MD to be employed at
relatively high additive concentrations. It is interesting to further investigate the reliable
range of MD concentration in cEKC. However, the concentration of the chiral selector in
the BGE is not the only factor which has influence on the separation in cEKC. The sepa-
ration can be affected by other relevant factors such as the pH or the applied voltage [12].
Since a number of factors can influence the quality of an analytical measurement, many
experimental trials may be necessary in method development. Thus, this process can be
very laborious and time-consuming [1,13].

In order to reduce the number of experiments, systematic multivariate method op-
timization using design of experiment (DoE) is highly recommended [14]. The assessed
response can be modeled using a multivariate linear equation. Usually, low-degree polyno-
mials with interaction terms are used as model equations. Contour surface plots can be used
to visualize how the response is affected by factors and to find combinations of optimal
conditions. Optimal designs, such as D-optimal designs allows for the identification of
the critical factors and an interaction between variables with maximal information and a
minimum number of trials [15]. This approach reduces the analysis time and results in a
more efficient experiment.

Amlodipine (AML) is a calcium antagonist with a chiral center and marketed as a
racemic drug. However, the eutomer, (S)-(−)-amlodipine is currently commercially avail-
able in some countries in Asia (e.g., China, India, Korea, Philiphines, Nepal) and Europe
(e.g., Russia, Ukraine) [16]. A clinical study proved that the pharmacokinetic behavior of
AML racemate and its single enantiomer is comparable [17]. Later, the efficacy and safety of
racemic AML was studied on hypertensive patients [18]. Recently, Ermakov and Pashanova
published a comparative study, providing an efficacy assessment of racemic AML vs. the
(S)-(−)-enantiopure [19]. In addition, analytical studies on enantiopurity assays and impu-
rity tests of amlodipine in pharmaceutical formulations have been performed [20,21]. The
mentioned studies show that AML represents a chiral drug that is continuously monitored
and clinically evaluated when administered as a racemate and/or a single-enantiomer [16].
Since the quality, safety, and efficacy of drugs are of critical importance, analytical methods,
especially for drug enantiomers, are required.

Enantioseparation of AML using sulfonylbuthylether-β-cyclodextrin and polyethylene
glycol 20,000 as dual chiral additives was performed using HPLC [22]. In 2016, Kannappan
et al. identified the effect of factors on AML enantioresolution and analysis time using
a cellulose-based HPLC column by employing Box–Behnken design [20]. Chiral selector
screening on cyclodextrin derivatives and using an enantioseparation method optimization
of AML in CE with an orthogonal experimental design were reported [23]. However, as
an alternative potential chiral selector for AML [10,24], MD with DE (4–7) has not been
systematically optimized to identify factors affecting resolutions.

This study proposes a systematic cEKC method optimization to find the optimal factor
combinations for the resolution of AML enantiomers. The MD concentration, the BGE pH,
and applied voltage were selected as the independent variables and combined using a
D-optimal design. This approach provides efficient method optimization with a minimum
number of combinations instead of a one-factor-at-a-time experiment.

2. Results
2.1. Effect of Separation Factors on Resolution

The full factorial design with three separation factors on three levels was reduced to
15 combinations using a D-optimal algorithm. All investigated factor combinations and the
corresponding measurement results are listed in Table 1.
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Table 1. The effect of factor combinations on the resolution of AML enantiomers.

Factor
Combinations

Voltage MD
pH Rs SD

t2
SD

kV % w/v Min

1 20 10 2.0 1.73 0.03 12.15 0.47
2 15 8.75 2.0 1.80 0.02 16.42 0.39
3 15 10 4.0 1.61 0.05 11.37 0.55
4 15 10 2.0 2.10 0.06 17.83 0.64
5 15 10 3.0 1.96 0.08 16.06 0.58
6 17.5 10 2.0 1.93 0.02 14.73 0.32
7 17.5 7.5 3.0 1.40 0.03 10.46 0.37
8 15 7.5 2.0 1.59 0.04 15.58 0.80
9 20 7.5 2.0 1.31 0.02 10.28 0.36

10 20 10 4.0 1.47 0.03 7.80 0.42
11 20 8.75 3.0 1.50 0.02 10.19 0.02
12 17.5 8.75 4.0 1.49 0.08 8.88 0.77
13 20 8.75 2.0 1.46 0.01 10.27 0.17
14 15 7.5 4.0 1.19 0.04 8.62 0.37
15 20 7.5 4.0 1.07 0.04 6.04 0.31

Each Rs value is an average from 6 injections; t2: second eluted peak.

2.2. Enantioseparation Profiles

In the 15 combinations, the obtained resolution varied between Rs = 1.07 and Rs = 2.10,
with total analysis times from 7 to 20 min. The (S)-(−)-enantiomer of AML eluted as the first
peak followed by the (R)-(+)-enantiomer. Electropherograms correspond to the minimum
resolution at the shortest analysis time and the maximum resolution at the longest analysis
time, as depicted in Figure 1.
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Figure 1. Representative enantioseparation of AML at the shortest and longest analysis time.

The highest resolution, as depicted by the blue electropherogram, is Rs = 2.10. In
contrast the black electropherogram shows the lowest resolution, with Rs = 1.07. The red
electropherogram represents another resolution profile between the highest and the lowest
Rs values. The migration order of AML enantiomers was found to be the (S)-(−)-enantiomer
followed by the (R)-(+)-enantiomer. Based on the migration order, it can be deduced that
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(R)-(+)-amlodipine possesses stronger binding toward MD. The separation profiles show
that the resolution increases with an increasing MD concentration. Next to its effect on the
chemical equilibrium of the binding reaction, it is expected that higher concentrations of
MD might increase BGE viscosity. Consequently, the migration velocity slows down, which
elongates the analysis time. Similar effects on the analysis time can be expected when
lowering the pH. Since a low pH decreases the charge density on the inner capillary wall,
the EOF is reduced. Together with a low voltage, these two effects cumulatively prolong
the total analysis and thus increase the time of interaction. In summary, the measurements
show a general positive correlation of the MD concentration with both the analysis time and
the resolution. The other two experimental factors demonstrate the opposite correlation.
However, to find an optimum between a short analysis time and a favorable resolution, a
one-factor-at-a-time experiment is not the best option. Since all these effects might interact
with one another, a systematic investigation using DoE is recommended.

2.3. The Most Affecting Factors and Predicted Responses

Factor combinations and the obtained resolution were further evaluated according to
polynomial (quadratic) regression model, see Equation (1). All main effects (voltage (U),
MD concentration (MD), pH), single interaction between pH and U as well as quadratic
effects of U and pH (U2 and pH2) demonstrated significant effects on the resolution. The
same factors, aside from the quadratic term of the voltage, were found to be relevant for
the analysis time prediction. The predicted resolution (R̂S) or analysis time (t̂m) can be
calculated using the coefficients as listed in Table 2. All non-significant coefficients are
considered to be 0 for the prediction.

R̂S = β0 +
N

∑
i=1

βixi +
N

∑
i=1

βiixi
2 +

N−1

∑
i=1

N

∑
j=i+1

βijxixj (1)

Table 2. Regression coefficients of the predicted quadratic polynomial for the response variable.

Term
Resolution Analysis Time

Coefficient SE Sig. Coefficient SE Sig.

Constant 1.67 0.0338 3.07·10−11 12.2 0.256 3.88·10−12

Voltage (U) −0.115 0.0137 3.10·10−5 −2.22 0.131 3.85·10−8

Concentration (MD) 0.224 0.0142 2.65·10−7 1.18 0.135 1.08·10−5

pH −0.156 0.0137 3.26·10−6 −2.59 0.1303 9.57·10−9

pH × U 0.0499 0.0150 0.0104 0.654 0.143 0.00132
U2 −0.0720 0.0306 0.0464 — — —

pH2 −0.0954 0.0306 0.0143 −1.11 0.288 0.00390

Adj. R2 0.974 0.984
RMSE 0.0466 0.444

3. Discussion
3.1. Rationals of the Factor Selection and Definition of the Design Space

A systematic maltodextrin-based cEKC method optimization involving three factors
on three different levels was developed for AML enantiomer separation. MD DE (4–7) at
concentrations of 7.5–10% w/v was employed as the chiral selector, the BGE was adjusted to
pH values between 2.0 and 4.0 and the applied voltage ranged from 15 to 20 kV. Performing
cEKC for AML separation at a voltage lower than 15 kV (263 V/cm) for a 57 cm capillary
was not recommended due to a decrease in the resolution related to the CE efficiency [24].
Thus, a voltage range of 15–20 kV (330–440 V/cm) for a 45.5 cm capillary was employed in
this study.

Nojavan et al. reported a one-dimensional analysis of the MD concentration effect on
the resolution using 5–20% w/v MD. They demonstrated that baseline separation can be
achieved with MD concentrations of about 10% w/v [24]. However, since an increase in MD
concentration prolongs the analysis time, the feasibility of performing baseline separation
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wen utilizing a maximum of 10% w/v MD was investigated. To perform the separation in
a reasonable time of analysis, BGE pH in a range of 2.0–4.0 was selected as an additional
factor. In order to perform a quadratic regression, the selected range of each factor was
employed in its minimum, middle, and maximum levels.

3.2. Evaluation of the Factor Effects on the Resolution

An adjusted response graph and a Pareto chart were used to further evaluate of the
effects on the obtained resolution. Figure 2 summarizes the main effects depicted as an
adjusted response graph (Figure 2A) and as Pareto chart (Figure 2B). The adjusted response
graph shows the effect of a single factor, while the effects of the others is averaged out.
The MD concentration showed positive linear relationships with a shift of resolution from
about Rs = 1.3 (MD low) to Rs = 1.8 (MD high). In contrast, both pH and voltage showed
negatively curved relationships, which means that the model must be at least quadratic. A
resolution of about Rs = 1.7 (low pH), Rs = 1.6 (middle pH), and Rs = 1.3 (high pH) were
shown at the three investigated pH levels. A similar range of resolution was found for the
voltage levels between Rs = 1.7 (low U) and Rs = 1.4 (high U).
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Figure 2. The adjusted response graph of resolution (A) and Pareto chart of the effects of variables on
resolution (B). MD: maltodextrin concentration (% w/v); U: voltage (kV).

The Pareto chart indicates the strength of every term in a comparable bar chart. Positive
and negative bars indicate whether a term correlates positively or negatively with the
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predicted resolution. Since the variable domains were coded to be in the range from −1 to 1
the absolute height is a comparable measure of the term’s strength. The MD concentration
was found to be the variable with the strongest effect on the resolution, followed by pH,
applied voltage, the interaction between pH and voltage, and the quadratic effects (U2

and pH2). The MD concentration and the interaction between pH and the U are positively
correlated, represented by bars pointing upward. On the other hand, the pH, quadratic pH,
voltage, and quadratic voltage are negatively correlated. In summary this means, that the
highest resolution is expected using a combination of high MD concentration and both low
pH and voltage.

The magnitude of the factor interactions was evaluated using the regression coefficients
in Equation (1) (see Table 2) and visually by interaction graphs. The interactions graphs for
resolution are depicted in Figure 3.

Pharmaceuticals 2022, 15, x FOR PEER REVIEW 7 of 15 
 

 

 

Figure 3. Interaction graph for resolution at low, middle, and high levels. MD: maltodextrin con-

centration (% w/v); U: voltage (kV). 

The interaction graphs shown in Figure 3 consist of six panels, where every panel 

represents an interaction between two factors. Every interaction is displayed from two 

different perspectives. These plots are to be interpreted in the following way. Every panel 

shows the change of the predicted resolution for one factor on a continuous scale, while 

another is given on three different fixed levels. The line colors represent the levels of the 

fixed interaction partner. Here, the light blue stands for low, green for middle, and dark 

blue for high. For instance, the resolution rises linearly with an increasing MD concentra-

tion, as shown in the lower left panel. The three different curves represent the change of 

resolution when the voltage is 20 kV (dark blue line), 17.5 kV (385 V/cm) for a 45.5 cm 

capillary (green line) and 15 kV (light blue line). 

If there were to be an interaction between these two factors, then the level of U would 

affect the course of the resolution curves differently on different levels. In other words, 

the three curves would not be parallel. The typical non-parallel interaction graphs can be 

seen in the lower center and in the right center panels. Both panels depict the interaction 

between pH and U. Since the light blue line and the green line in these graphs are not 

parallel, the factors U and pH show an interaction. This finding is in accordance with the 

coefficient table in Table 2, where the interaction term between those two variables was 

found to be the only significant one. 

3.3. Prediction of Resolution and Optimal Experimental Conditions 

The predicted resolution shown as a response to contour plots of all three factors is 

depicted in Figure 4. Since only two of the three parameters can be shown in one graph 

simultaneously, the continuous variable space of two factors each is shown while the third 

factor is fixed on a defined level. Using information depicted in these following graphs, it 

is possible to find all factor combinations which lead the optimal or desired resolution.  

Figure 3. Interaction graph for resolution at low, middle, and high levels. MD: maltodextrin
concentration (% w/v); U: voltage (kV).

The interaction graphs shown in Figure 3 consist of six panels, where every panel
represents an interaction between two factors. Every interaction is displayed from two
different perspectives. These plots are to be interpreted in the following way. Every panel
shows the change of the predicted resolution for one factor on a continuous scale, while
another is given on three different fixed levels. The line colors represent the levels of the
fixed interaction partner. Here, the light blue stands for low, green for middle, and dark blue
for high. For instance, the resolution rises linearly with an increasing MD concentration, as
shown in the lower left panel. The three different curves represent the change of resolution
when the voltage is 20 kV (dark blue line), 17.5 kV (385 V/cm) for a 45.5 cm capillary (green
line) and 15 kV (light blue line).

If there were to be an interaction between these two factors, then the level of U would
affect the course of the resolution curves differently on different levels. In other words,
the three curves would not be parallel. The typical non-parallel interaction graphs can be
seen in the lower center and in the right center panels. Both panels depict the interaction
between pH and U. Since the light blue line and the green line in these graphs are not
parallel, the factors U and pH show an interaction. This finding is in accordance with the
coefficient table in Table 2, where the interaction term between those two variables was
found to be the only significant one.
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3.3. Prediction of Resolution and Optimal Experimental Conditions

The predicted resolution shown as a response to contour plots of all three factors is
depicted in Figure 4. Since only two of the three parameters can be shown in one graph
simultaneously, the continuous variable space of two factors each is shown while the third
factor is fixed on a defined level. Using information depicted in these following graphs, it
is possible to find all factor combinations which lead the optimal or desired resolution.
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Figure 4. Contour plot of the predicted Rs at the respective combinations.

The predicted resolution is indicated by the color code. The red curved line represents
the border to the obtained baseline resolution R̂S ≥ 1.5. When using any factor combination
below the curved red line, achieving the desired resolution can be expected. For instance, a
higher Rs than 1.5 can be expected if one of the non-blue factor combinations of the central
panel in Figure 4 is chosen when the voltage is 17.5 kV (385 V/cm)*b for a 45.5 cm capillary.
The lower right panel is a special case. The contour plot is presented without a curved red
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line, which means that every possible combination of U and pH lead to R̂S ≥ 1.5 when the
MD concentration is 10% w/v. In contrast, the lower left panel, where the MD concentration
is 7.5% w/v, shows just a narrow area of high-resolution factor combinations. Overall, this
underlines the high influence of the MD concentration. The depicted contour plots can be
used to identify critical or optimal factor combinations, which result in an analysis with the
desired resolution, especially in combination with the predicted total analysis time (data
not shown). This analysis can be very helpful to find the best compromise between analysis
time and resolution.

Baseline resolution of R̂S= 1.50 ± 0.17 and total analysis time (migration time of the
second peak) of t̂m= 8.16 ± 1.46 min were predicted with a confident interval 95% using
separation factors of MD 10% w/v (high), pH 4.0 (high), and voltage 20 kV (440 V/cm) for
a 45.5 cm capillary (high). At the respective factor combination, the mean of six injections
from the experimental measurement showed Rs = 1.47 ± 0.036 within an analysis time of
tm =7.8 ± 0.44 min. The experimental measurements were found to be in close agreement
with the predicted values.

3.4. Method Robustness

The proposed method was developed in 2018 and verified in 2022 using different
series of CE instruments with adjustments to ensure identical CE conditions. The method
robustness was evaluated by comparing the performance of amlodipine enantioseparation
in three CE instruments, as listed in Table 3.

Table 3. Robustness verification of the enantioseparation method.

Separation
Condition

Instrument
(Year)

Lt/Leff
(cm)

E
(V/cm)

U
(kV)

MD
(% w/v)

pH
Experiment * Predicted

Rs ± SD tm ± SD R̂S ± SD t̂m ± SD

I

Instrument A
(2018) 45.5/37 440 20 10 4 1.50 ± 0.03 7.802 ± 0.422

1.50 ± 0.17 8.159 ± 1.464Instrument B
(2022) 45.5/37 440 20 10 4 1.61 ± 0.11 9.213 ± 0.653

Instrument C
(2022) 47/37 440 20.7 10 4 1.22 ± 0.04 9.583 ± 0.329

II

Instrument A
(2018) 45.5/37 385 17.5 8.75 3 – ** – **

1.67 ± 0.17 12.236 ± 1.153Instrument B
(2022) 45.5/37 385 17.5 8.75 3 1.69 ± 0.07 12.763 ± 0.790

Instrument C
(2022) 47/37 385 18.1 8.75 3 1.39 ± 0.04 12.335 ± 0.150

III

Instrument A
(2018) 45.5/37 330 15 10 2 2.10 ± 0.06 17.829 ± 0.641

2.05 ± 0.14 17.783 ± 1.191Instrument B
(2022) 45.5/37 330 15 10 2 2.14 ± 0.07 20.606 ± 0.092

Instrument C
(2022) 47/37 330 15.5 10 2 1.94 ± 0.03 18.113 ± 0.085

Instrument A: PrinCE CEC-760 system (unit 1); Instrument B: PrinCE CEC-760 system (unit 2); Instrument C:
PrinceCE Next 800 series. I: MD 10% w/v (high), pH 4.0 (high), and voltage 20.7 kV (440 V/cm)*c ≈ 20 kV
(440 V/cm)*b (high). II: MD 8.75% w/v (mid), pH 3.0 (mid), and voltage 18.1 kV (385 V/cm)*c ≈ 17.5 kV
(385 V/cm)*b (mid). III: MD 10% w/v (high), pH 2.0 (low), and voltage 15.5 kV (330 V/cm)*c ≈ 15 kV (330 V/cm)*b

(low). * Experiment: each condition 6 injections. ** The mid (center point) experiment condition was not conducted
in 2018.

Separation factors of MD 10% w/v (high), pH 4.0 (high), and voltage 20.7 kV
(440 V/cm)*c ≈ 20 kV (440 V/cm)*b (high), resulted in Rs = 1.22–1.61 within analysis times
of tm = 7.802–9.583 min. Additional evaluation at the center point combination using
separation factors of MD 8.75% w/v (mid), pH 3.0 (mid), and voltage equal to 18.1 kV
(385 V/cm)*c ≈ 17.5 kV (385 V/cm)*b (mid) resulted in Rs = 1.39–1.69 within the analysis
times of tm = 12.335–12.763 min. The combination of separation factors MD 10% w/v (high),
pH 2.0 (low), and voltage 15.5 kV (330 V/cm)*c ≈ 15 kV (330 V/cm) for a 45.5 cm capillary
(low), resulted in Rs = 1.94–2.14 within analysis times of tm = 17.829–20.606 min.
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The Rs values, detected by instrument C (PrinceCE Next 800), at separation conditions
I and II, were less than R̂S. The small difference between experimental Rs and R̂S might
occur due to the fact that Cornerstone’s prediction was simulated using the initial data
performed using PrinCE CEC-760 system. Overall, baseline enantioseparations obtained by
all three CE instruments were close to the R̂S and t̂m at the respective separation conditions.
These results showed the method robustness using three different instruments.

3.5. Method Application

The selected enantioseparation method was applied to amlodipine identification and
determination in tablet matrices.

3.5.1. Enantiomers Identification

The migration order of amlodipine enantiomers was identified using (S)-amlodipine
as a single compound and standard addition of (S)-amlodipine into (RS)-amlodipine. The
stock solutions of (S)-amlodipine and (RS)-amlodipine were prepared in MeOH. (RS)-
amlodipine (240 µg/mL), (S)-amlodipine (120 µg/mL), and a mixture of (RS)-amlodipine
and (S)-amlodipine (2:1) in 100 mM phosphate buffer pH 2.0 were used as the injected
samples as depicted in Figure 5.
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Figure 5. Enantioseparation profiles of amlodipine at the experimental condition MD 10% w/v (high),
pH 2.0 (low), and voltage 15 kV (330 V/cm) for a 45.5 cm capillary (low). Peak identification shows
that the migration order of amlodipine is the (S)-enantiomer followed by the (R)-enantiomer.

3.5.2. Enantiomeric Ratio

The determination of the enantiomeric ratio was performed using standard samples
of (S)-amlodipine, (RS)-amlodipine, and a standard addition (a mixture of (RS)-amlodipine
and (S)-amlodipine (2:1)) as listed in Table 4. The standard samples were prepared as
described in Section 3.5.1.
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Table 4. Determination of enantiomeric ratio.

Analyte
Ratio (%)

S R

(S)-amlodipine 91.8 ± 0.9 8.2 ± 0.9 *
(RS)-amlodipine 50.1 ± 0.1 49.9 ± 0.1

Standard addition ** 65.2 ± 0.4 34.8 ± 0.4
Experiment in triplicate injections. * assign as enantiomeric impurity. ** mixture of (RS)-amlodipine and (S)-
amlodipine at a final concentration (2:1).

3.5.3. Enantiomers Determination

The selected separation method condition was evaluated based on several parameters
prior to sample analysis as listed in Table 5.

Table 5. Method evaluation.

Parameter S R

Range (µg/mL) 180–600 180–600
Linearity 0.9970 0.9842

LOD * (µg/mL) 30 69
LOQ ** (µg/mL) 91 209

Accuracy (%) 90–96 104–111
Precision *** (% RSD) 0.9 1.8

The values correspond to the analyte concentration in a racemate. * 3.3 RMSE/slope; ** 10 RMSE/slope; RMSE:
root mean square error. *** Precision of enantiomeric ratio with a standard addition (2:1) (n = 6).

Amlodipine determination in tablet matrices using two sample strengths of 5 mg/tablet
and 10 mg/tablet is listed in Table 6. The amlodipine content and recovery were calculated
based on the (S)-(−)-enantiomer which is pharmacologically the more active enantiomer
than its antipode. This approach was conducted as a preliminary study for the separation-
method application to amlodipine determination in tablet matrices. Thus, simplified sample
analysis in triplicate injections was performed instead of triplicate preparations in an ideal
pharmaceutical analysis. The enantioseparation profiles of amlodipine in tablet matrices
are depicted in Figure 6.
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Figure 6. Enantioseparation profile of amlodipine in tablet matrices at the experimental condition
MD 10% w/v (high), pH 2.0 (low), and voltage 15 kV (330 V/cm) for a 45.5 cm capillary (low).
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Table 6. Amlodipine determination in tablet matrices.

A B

Content (mg/tablet) * 5.32 ± 0.02 10.18 ± 0.13
Recovery (%) ** 106.4 ± 0.4 101.8 ± 1.3

The determination correspond to the first eluted peak. Experiment in triplicate injections; A: amlodipine
5 mg/tablet; B: amlodipine 10 mg/tablet. * Tablet weight (mg) (x ± SD, n = 10): 220.1 ± 1.7 (A) and 223.1 ± 1.7
(B). ** Based on amlodipine strength in the label claim (product specification).

4. Materials and Methods
4.1. Materials

Maltodextrin (DE 4–7), sodium dihydrogen phosphate (NaH2PO4), sodium hydroxide
(NaOH), ortho-phosphoric acid (H3PO4, 85%), (RS)-amlodipine (as amlodipine besylate
was acquired from Sigma-Aldrich Chemie GmbH (Steinheim, Germany), enantiopure
(S)-(−)-amlodipine from Biozol Diagnostica Vertrieb GmbH (Munich, Germany). Water
was purified using Arium® pro UF/VF-Sartopore 0.2 µm water purification system from
Sartorius Weighing Technology GmbH (Göttingen, Germany). The phosphate buffer was
prepared using 100 mM sodium dihydrogen phosphate to reach the final pH 2.0–4.0 of
1 L buffer solution. Solutions of 1 M NaOH, and 0.1 M NaOH were prepared in ultrapure
water. All the solutions were filtered using nylon membrane 0.22 µM pore size from
Rotilabo®-syringe filter, Carl Roth GmbH (Karlsruhe, Germany) prior the analysis.

The background electrolyte was prepared with the addition of MD at various concen-
trations (7.5–10% w/v) into 100 mM phosphate buffer (pH 2.0–4.0). A stock solution of
(RS)-amlodipine was prepared in MeOH at a concentration of 1 mg/mL. A certain volume
of the stock solution was dissolved in 100 mM phosphate buffer (pH 2.0–4.0) to the final
concentration of 300 µg/mL and used as the injected sample.

The enantiomers were determined using a calibration curve prepared from the stock
solution of (RS)-amlodipine and diluted in 100 mM phosphate buffer pH 2.0 to five final con-
centrations (180–600 µg/mL). Two commercially available amlodipine tablets (5 mg/tablet
and 10 mg/tablet) were selected as the samples. Tablets (10) from each strength were
weighed and ground into fine powder. Each sample, which was equal to the average
weight of one tablet, was dissolved in MeOH with 15 min ultrasonication at room temper-
ature. Samples were filtered using a 0.22 µm filter membrane and diluted in a 100 mM
phosphate buffer of pH 2.0 to certain concentrations (≈230–270 µg/mL amlodipine).

4.2. CE Instrumentation

The enantioseparation study was performed with a PrinCE CEC-760 system (Prince
Technologies, Emmen, The Netherlands) using a diode array UV-Vis detector (190–600 nm).
The DAx 3D software (version 9.0) was used for instrumental control, data acquisition,
and data analysis. The robustness of the method was verified using the second instrument
unit of a PrinCE CEC-760 system (DAx 3D software) and a PrinCE Next-800 series (Clarity
software) from Prince Technologies, Emmen, The Netherlands. Bare fused-silica capillaries
from were kindly provided by Polymicro Technologies (Phoenix, AZ, USA) with 50 µm
inner and 360 µm outer diameters, 45.5 cm total length and 37 cm effective length were
used throughout the study. The sample rack and capillary oven were set at 25 ◦C.

4.3. D-Optimal Design

The D-optimal design of three factors with three levels at maltodextrin concentration
(7.5% w/v, 8.75% w/v, 10% w/v), applied voltage (15 kV, 17.5 kV, 20 kV), and pH (2.0, 3.0,
4.0) was derived by DoE software Cornerstone 7.0, camLine Holding AG (Peterhausen,
Germany). The model considers the effect of the selected factors on the enantioseparation
that possesses restraint values for the design space, as listed in Table 7.
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Table 7. The experimental domains of the D-optimal design.

Factors Code
Levels

−1 (Low) 0 (Mid) +1 (High)

Voltage (kV) U 15 17.5 20
MD conc. (% w/v) MD 7.5 8.75 10

pH pH 2.0 3.0 4.0

The D-optimal design of a constant, three main effects, three quadratic effects, and
three single interactions, with five extra points for degrees of freedom (see Table 1).

4.4. Experimental and Statistical Data Evaluation

The enantiomeric resolution (Rs) was calculated according to the standard expres-
sion based on the peak full-width at half-maximum by DAx 3D software, as depicted in
Equation (2).

Rs = 1.18 × t2 − t1

(W1 + W2)
(2)

Here, the migration times of enantiomer one and enantiomer one are t1 and t2 along
with the full widths at the half-maximum of W1 and W2, respectively. The coefficients for
the prediction of the resolution were computed using partial least square regression of the
multivariate data to the model given in Equation (1). Regression coefficients were regarded
as significant when p < 0.1.

5. Conclusions

Systematic method optimization with a design of experiment was applied using D-
optimal design to investigate the combinations of separation factors in maltodextrin-based
cEKC. The separation factors at a high MD concentration, low pH value, and low applied
voltage provided the highest resolution of AML enantiomers of about Rs = 2.10 within
20 min. The baseline resolution of R̂S = 1.50 ± 0.17 in the shortest possible time was
predicted using the separation factor combination of high MD concentration, high pH,
and high applied voltage. The predicted total analysis time of the proposed experimental
setup was t̂m = 8.16 ± 1.46 min. Compared to other reported studies, this proposed cEKC
method offers the advantages of a better baseline resolution in a shorter migration time.
The separation factors of MD concentration showed the strongest effect on the resolution
followed by the pH of the BGE and the applied voltage. The most affecting factors were
defined to guarantee an excellent method robustness. The identification and determination
of amlodipine in tablet matrices with acceptable recoveries showed the applicability of the
optimized method at the selected separation factor combinations.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ph15030319/s1, Figure S1: Enantioseparation profiles of amlodipine
at the experimental condition MD 10% w/v 21 (high), pH 2.0 (low), and voltage 15 kV (330 V/cm)*b

(low); Figure S2: Enantioseparation profile of amlodipine in tablet matrices at the experimental
condi-62 tion MD 10% w/v (high), pH 2.0 (low), and voltage 15 kV (330 V/cm)*b (low), Table S1:
Method validation, Table S2: Amlodipine determination in tablet matrices, Table S3: Determination
of enantiomeric fraction.
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