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Abstract: The major cause of bacterial resistance to β-lactams is the production of hydrolytic β-
lactamase enzymes. Nowadays, the combination of β-lactam antibiotics with β-lactamase inhibitors
(BLIs) is the main strategy for overcoming such issues. Nevertheless, particularly challenging β-
lactamases, such as OXA-48, pose the need for novel and effective treatments. Herein, we describe the
screening of a proprietary compound collection against Klebsiella pneumoniae OXA-48, leading to the
identification of several chemotypes, like the 4-ideneamino-4H-1,2,4-triazole (SC_2) and pyrazolo[3,4-
b]pyridine (SC_7) cores as potential inhibitors. Importantly, the most potent representative of the
latter series (ID2, AC50 = 0.99 µM) inhibited OXA-48 via a reversible and competitive mechanism
of action, as demonstrated by biochemical and X-ray studies; furthermore, it slightly improved
imipenem’s activity in Escherichia coli ATCC BAA-2523 β-lactam resistant strain. Also, ID2 showed
good solubility and no sign of toxicity up to the highest tested concentration, resulting in a promising
starting point for further optimization programs toward novel and effective non-β-lactam BLIs.

Keywords: OXA-48; β-lactamase inhibitor; bacterial resistance; HTS

1. Introduction

β-lactams such as penicillins, cephalosporins, carbapenems, and monobactams are
the most effective and extensively used class of antibacterial agents, representing approx-
imately 65% of the prescribed antibiotics worldwide [1]. Unfortunately, the widespread
use of these medicaments has culminated in the outbreak and dissemination of resistance
mechanisms to β-lactams. Prevalently, drug-resistant bacteria produce β-lactamase en-
zymes that hydrolyze and inactivate the β-lactam ring [2–5], thus preventing the covalent
inhibition of essential cell-wall biosynthesis proteins, named penicillin-binding proteins
(PBPs) [6–10], which result in the loss of drug’s antibacterial effectiveness.

Today, a high number of β-lactamase variants are known (>7000 to date) [11], and
organized in A, B, C, and D classes (Ambler classification) on the basis of their amino
acid sequence homology [12,13]. β-lactamases are also distinguished as serine-dependent
(Ambler classes A, C, and D) or metallo (Ambler class B) enzymes, according to the
mechanism driving the β-lactam hydrolysis [12,13].

Nowadays, the combination of susceptible β-lactams with β-lactamase inhibitors
(BLIs), which protect them from degradation and restore their antibacterial activity, serves
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as the major strategy for overcoming the antibiotic resistance [6]. In this respect, clavulanic
acid, sulbactam, and tazobactam (compounds I–III in Figure 1, respectively) were the first
BLIs available to the healthcare community. All the compounds act as suicide substrates
through the formation of irreversible adducts with β-lactamases. Clavulanic acid and
tazobactam are mainly active against class A enzymes with limited clinical utility towards
contemporary isolates [6,14,15], whereas sulbactam displaying less activity against class A
β-lactamases is more effective against class C β-lactamases [14]. Over the last years, three
new BLI combination products with greater spectra of inhibition were approved: avibactam
with ceftazidime [16], vaborbactam with meropenem [17], and relebactam with imipenem
(IMP)-cilastatin [18,19] (compounds IV–VI in Figure 1). These novel drugs operate via a
covalent mechanism of action (MoA). However, differently from the first-generation BLIs,
they do not share the same labile 2-azetidone-based structure of β-lactam antibiotics, thus
avoiding a critical factor in the rapid evolution of resistance [15,20,21].

Figure 1. Structure of clinically available BLIs: clavulanic acid (I), sulbactam (II), tazobactam (III),
avibactam (IV), vaborbactam (V), relebactam (VI).

Interestingly, avibactam is also the only clinically available BLI with significant efficacy
against OXA-48 enzyme [22]. OXA-48 belongs to the carbapenem-hydrolyzing class D β-
lactamases (CHDLs) and together with its variants represents one of the most severe threat
of resistance, compromising efficacious anti-infective treatments. Isolated for the first time
in 2001 from a patient in Turkey [23], the OXA-48 enzyme is now widespread across the
world and is commonly identified in Escherichia coli and Klebsiella pneumoniae. Unfortunately,
resistance to ceftazidime-avibactam for class A and D β-lactamases have been recently
reported [24–28]. Hence, novel OXA-48 inhibitors with reduced susceptibility to bacterial
resistance mechanisms are foreseen to come. Accordingly, following the development of
non-β-lactam BLIs, new research efforts led to non-covalent BLIs as alternatives [6,29–31].
The development of new OXA-48 inhibitors with a different enzyme-inhibition profile
compared to existing inhibitors is of importance since new mechanisms for BLI inactivation
would be likely required [32].

On these premises, we embraced a drug discovery campaign towards novel OXA-48
inhibitors structurally different from previously identified BLIs. Herein, we report the
high-throughput screening (HTS) of an internal compound collection, against the OXA-48
enzyme, and thoroughly describe the analyses leading to the identification of several scaf-
fold families as potential inhibitors. Particularly, the 4-ideneamino-4H-1,2,4-triazole and
pyrazolo[3,4-b]pyridine chemical series were further investigated in terms of preliminary
structure activity relationship (SAR) analysis, mechanism of action (MoA) determination
by means of biochemical and X-ray studies, whole-cell activity in combination with rep-
resentative β-lactams against different bacterial strains. Importantly, one representative
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(ID2) of the pyrazolo[3,4-b]pyridine family resulted effective in restoring β-lactam activity
in resistant-bacteria via a reversible MoA and showed favorable drug-like properties.

2. Results and Discussion
2.1. Compound Collection

A fundamental requirement for the success of any HTS is the availability of a sizeable
and properly organized chemical library. Here, a well-organized and diversified chemical
collection was built from a pool of commercially available compounds. The chemical
library was compiled by employing the scaffold concept to aid preliminary SAR expansion
after HTS data analysis, besides ensuring chemical variability of the dataset. Starting from
the compound catalogs of several vendors, millions of molecules were filtered out due
to physicochemical properties out of conventional drug-like ranges [33] and structural
alerts as reactive groups [34], REOS [35], and PAINS [36,37]. The remaining compounds
were submitted to framework decomposition based on the Bemis-Murcko definition [38],
providing ~8600 decorated scaffolds consisting of a central core and appended groups
(unsubstituted rings and chains). Each scaffold included an average of 20 compounds
up to a maximum number of 54 representatives. Also, molecules were annotated using
the InChyKey [39] of the corresponding scaffold family to facilitate database storage and
searching. Overall, ~190,000 molecules were collected. We reasoned that this number
of compounds was a good compromise to contain molecular redundancy but guarantee
enough cluster representativeness to efficiently identify latent hit series, rapidly define
preliminary SAR, and avoid singleton clusters [40,41].

The compound library was assembled in a modular fashion, consisting of two non-
redundant sets: (i) full set composed of 156918 compounds, and (ii) subset containing
34423 representatives. Each scaffold was described from one to four molecules in the subset
and up to 50 molecules in the full set.

The rationale behind this library assembling was the opportunity of: (i) screening the
subset only in the first step of a HTS, thus minimizing the number of tested compounds
while maintaining high chemical diversity; (ii) running a fast follow-up for SAR analysis
and expansion of hits at minimum time and cost, by simply selecting classes of active
analogs from the full set.

The scaffold distribution along the two datasets can be illustrated by the cyclic system
retrieval (CSR) curves (Figure 2) [42–44], where the cumulative fraction of compounds
(Y-axis) per dataset is plotted as a function of the corresponding fraction of scaffolds
(X-axis).

Figure 2. Cyclic system retrieval (CSR) curves of the subset and full set. Related AUC and F50 values
are also reported.
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The maximum diversity arises when a dataset is composed of one chemotype per
molecule. In this case, the CSR curve corresponds to a diagonal. As the scaffold diversity
decreases, the curve moves away from the diagonal, becoming a vertical line if all the
compounds have the same chemotype. As depicted in Figure 2, the curve of the Subset
(violet line) is close to the diagonal indicating a good diversity, while the curved green line
of the full set highlights that it contains more densely represented scaffolds. Starting from
the CSR curves, related metrics, such as the area under the curve (AUC) and the fraction of
scaffolds to retrieve 50% of the dataset (F50), can be also used to quantitatively compare the
two datasets [45,46]. Low AUC values mean high scaffold diversity, while the opposite is
true for F50 values. Consistent with the shape of the curves, F50 and AUC values of the
subset are 0.50 and 0.51, respectively. Conversely, the Full Set shows the largest AUC value
of 0.70 and F50 is equal to 0.22. Overall, these data indicate that the subset encompasses a
high chemical diversity and support the rationale for testing this dataset as representative
of the full set in the first stage of an HTS campaign.

2.2. High-Throughput Screening

During the last decade, HTS has evolved to become an innovative multidisciplinary
branch in biological chemistry combining aspects of medicinal chemistry, biology, and
laboratory automation. A typical HTS campaign can be divided into four main phases,
regardless of the assay type and readout: (i) primary screening, (ii) hit confirmation (HC),
(iii) hit expansion (HE), and (iv) activity determination [47]. In the next paragraphs, we
discuss the results of a HTS campaign against K. pneumoniae OXA-48 enzyme starting from
the propriety library described above (Figure 3).

Figure 3. HTS workflow.

2.2.1. Primary Screening

After an initial pilot run (three plates, consisting of 960 randomly selected compounds),
the primary screening of the subset plates was carried out at 20 µM in single point against
OXA-48 enzyme in a nitrocefin-based assay, using the fluorescence-quenching readout.
This enzymatic assay employs the cephalosporin nitrocefin as OXA-48 substrate and takes
advantage of the fluorescent properties of white microtiter plates. Chromogenic nitrocefin
is hydrolyzed by β-lactamases to yield a product with increased absorbance properties
(~495 nm) that quenches the plate fluorescence by absorbing the plate’s emission light [48].
In this assay, test compounds that inhibit OXA-48 catalytic activity are predicted to reduce
nitrocefin quenching of plate fluorescence, resulting in a quantitative increase in well
fluorescence (ON-system for inhibitors). The nitrocefin-based epi-absorbance readout
system has been successfully applied in HTS campaigns on other β-lactamases, such
as IMP-1 and VIM-2, with the identification of inhibitors belonging to novel scaffolds
displaying a favourable degree of selectivity and sub-micromolar potency [49,50].
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The screening results were expressed as activity percent. Considering that the activity
of the neutral control was set at 0%, enzyme inhibitors and stimulators showed negative
and positive values, respectively. Consistently, compounds causing a complete inhibition of
the target signal resulted in an activity percent equivalent to −100%. Overall, the primary
assay robustness was good [51], with Robust Z Prime factor (RZ′) equal to 0.86.

Figure 4 displays the distribution of tested compounds as function of the activity
percent, showing a Gaussian-like curve. Around the mean value of −0.13%, the negative
X-axis is differently populated in respect to the right part of the graph with a gentle decrease
of frequency moving down to −100% activity (long and thin tail in Figure 4), thus leading
to an asymmetric distribution. Interestingly, such left-skewed curve highlights the presence
of a certain number of compounds that potentially induce a complete inhibition of the
target (zoomed bar chart in Figure 4).

Figure 4. Bar chart showing the compound distribution across the activity percent as outcome of the
primary screening. A zoom of the distribution of the negative values are also reported. The activity
binning was performed considering half-closed intervals in which the largest endpoint was included.
The dashed line indicates the activity threshold.

In this study, we set the activity threshold for hit selection at −12.60% (dashed line in
Figure 4), which corresponds to the average value plus two times the standard deviation.
Accordingly, we identified 375 putative hits out of 34423 tested compounds (1.1% hit rate),
which were distributed to different extent across 295 InChyKey scaffolds.

2.2.2. Hit Confirmation

The 375 putative hits and the corresponding inactive analogs selected from the same
clusters in the Subset plates (752 compounds) were pursued to HC and tested at 20 µM
with interplate triplicates. Overall, we identified 299 OXA-48 inhibitors (activity below
−12.60%) out of 1127 retested compounds.

Specifically, 264 hits confirmed the primary screening results (dots in the left bottom
panel in Figure 5), with a confirmation rate of 70.4%. The remaining 35 actives were recov-
ered from the compound set that showed no efficacy in the primary assay (diamonds in
the right bottom panel in Figure 5). Overall, HC data brought out the good reproducibility
of the applied screening test. Indeed, the highly potent primary hits were also active in
HC, whereas compounds close to the activity threshold could be differently classified as
actives or inactives in the two screening steps.
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Figure 5. Scatter plot of primary screening versus HC in terms of activity percent. The dots are shaped
by outcome of the primary screening: circles and diamonds correspond to actives and inactives,
respectively. The dots are colored by outcome of the HC: green, yellow, and grey correspond to active,
interfering, and inactive compounds, respectively.

The 299 confirmed hits were then checked for potential interfering behavior with
the assay readout, to possibly identify and discard false positives. Specifically, the tested
compounds were added (20 µM, triplicate) to the assay well after the fluorescence reaction
between OXA-48 enzyme and the chromogenic nitrocefin substrate was completed to check
on potential autofluorescence effects. Compounds were tagged as assay interferents if the
difference in the enzymatic activity before and after their administration was below −15%
(this cut-off was computed as the average of values plus three times the standard deviation).
Overall, 161 out of 299 compounds resulted true hits, with a confirmation rate of 53.9%.
(Figure 5). Interestingly, all compounds with activity percent below −100% resulted false
positives, whereas the true hits were mostly distributed near the −12.60% HC threshold
(Figure 5).

For SAR purpose, the 161 true hits were grouped by visual inspection based on
common cores, intended as the initial InChyKey scaffolds stripped of the appended groups.
This analysis allowed to find 31 different cores, defined as SC_1–SC_31. To possibly identify
critical interfering behavior across these 31 scaffolds, the distribution of both true and false
positives within each chemotype was analyzed (Figure 6).

Figure 6. Stacked bar chart showing percentage of true hits (green) and interfering compounds
(yellow) within each chemical class (SC_1–SC_31).
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Interestingly, the interfering behavior was found to be highly associated to some
classes, such as SC_1 and SC_3 with a rather low percentage of true hits (below 25%).
On the other hand, regardless of the number of actives, SC_4, SC_5, SC_7, SC_11–SC_14,
SC_20, SC_21, SC_23, and SC_28 merely encompassed true positives with no interfering
molecules. Other classes showed a higher number of true positives compared to interfering
compounds. For instance, SC_2 was characterized by 15 true hits versus only 2 false
positives, and SC_15 grouped 12 true hits out of 13 compounds. On the basis of such
analysis, we reasoned that the number of true positives per class could be used as a
criterion for prioritizing promising chemotypes for OXA-48 inhibition. Therefore, seven
classes with more than 50% of false positives (SC_1, SC_3, SC_8, SC_10, SC_25, SC_27, and
SC_29), including 36 active compounds, were evaluated of low interest, and discarded
from the HTS triage. Thus, the pool of true hits turned into 125 molecules, which were then
investigated in terms of activity distribution across the corresponding 24 scaffold families.
As shown in the box plot of Figure 7, the actives within each class were basically condensed
in the top part of the chart, between −30% and the fixed activity cut-off of −12.60%.

Figure 7. Distribution of activity percent within the scaffolds. In the box plot, a white line within
the boxes marks the median value. Dots below the whiskers indicate outliers. For each scaffold, the
numbers of hits, median, minimum, and maximum activity percent values are reported in the table.

In some cases, a higher spread distribution was observed with some representatives
showing lower activity percent compared to the majority of the related class members.
For instance, SC_2, SC_18, and SC_21 were characterized by active outliers below −80%
and median activity between −33 and −23%. Notably, SC_20 and SC_22 showed median
activity around −50%. However, the former contained only two molecules with a very
different activity profile (−90.16 to −15.70 %), whereas the latter, with equal number of
actives, showed a more balanced activity distribution (−65.19 to −31.76 %). We also identi-
fied classes with one active compound only, such as SC_5, SC_7, and SC_14. Interestingly,
these singleton actives were found to carry specific functional groups not common to other
members of the same scaffold, but present on the most potent hits of other classes. These
findings suggest that the introduction of punctual chemical features on some chemotypes
could potentially improve OXA-48 inhibition.

2.2.3. Hit Expansion

Starting from the 125 confirmed hits, we independently run an InChyKey-based
approach and a substructure search on the cores of the 24 classes to identify analogs from
the Full Set, thus enriching the numbers of hits and reinforcing the singleton clusters. These
two strategies led to the selection of 2003 molecules, which were tested against OXA-48
enzyme at 20 µM in triplicate.
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Considering that a precise selection of actives’ analogs was screened at this stage, we
applied a more stringent threshold of activity percent (−20%) for hit nomination obtaining
131 additional hits, not interfering in the counter-screening assay.

Interestingly, when comparing the actives derived from the HC and HE stages in terms
of activity percent values (Figure 8), we observed that the number of potent compounds
(<−30%) was increased, while poorly active molecules were reduced in the latter stage.
Overall, this result highlights the benefit of using the Full Set for a fast and focused search
of active compounds driven by the Subset outcomes.

Figure 8. Donut chart showing the number of compounds in i-iv ranges of activity percent: (i) −100
to −80%, (ii) −80 to −50%, (iii) −50 to −30%, (iv) −30 to −12.60% (HC) or −30 to −20% (HE). Each
range was considered as half-closed interval of activity percent in which the largest endpoint was
included. The innermost and external rings refer to the HC and HE outcomes, respectively.

The activity percent distribution of HC and HE hits per chemical class was also
analyzed (Figure 9).

Figure 9. Stacked bar chart showing the hit distribution per scaffold within i–iv ranges of activity
percent: (i) −100% to −80%, (ii) −80% to −50%, (iii) −50% to −30%, (iv) −30% to −12.60% (HC)
or −30% to −20% (HE), as obtained from the HC and HE stages. Each range was considered as
half-closed interval of activity percent in which the largest endpoint was included. On the top of the
bars, the total hits and the total tested compounds in brackets are reported. For the sake of simplicity,
scaffolds without active representatives in the HE are not reported in the plot.
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In HE some scaffold families did not confirm activity (SC_6, SC_14, SC_21, SC_24,
SC_26, and SC_28), while other ones like SC_2 and SC_15 were conspicuously enriched
of actives that populated the most promising range of activity (<−80%) with three and
one new hits, respectively. A higher distribution toward more negative activity percent
values in HE compared to HC was also observed for SC_9, SC_17, SC_22, and SC_23,
resulting suitable chemotypes for OXA-48 inhibition. Similarly, SC_7 was made up of
three active representatives in total, one of which recovered in HE and showing excellent
activity (<−80%). This derivative turned out one of the most active compounds tested in
the screening cascade (see Table 1), thus proving HE as an excellent strategy for hit finding
in the HTS triage.

Table 1. Analysis of the hit rate and AC50 distribution across scaffolds.

Scaffold Confirmed
Hit

Tot
Tested Cmpd a Hit Rate b

AC50 (µM) c

Most
Active ≤5 5–10 10–30 30–60 >60

SC_2 38 287 13.2% 0.72 4 15 11 8

SC_4 5 76 6.6% 45.80 1 4

SC_5 2 136 1.5% 69.40 2

SC_7 2 37 5.4% 0.99 1 1

SC_9 8 206 3.9% 31.90 4 4

SC_11 6 174 3.4% 35.10 1 5

SC_12 11 24 45.8% 37.10 5 6

SC_15 22 133 16.5% 29.30 1 11 10

SC_16 3 41 7.3% 62.40 3

SC_17 24 77 31.2% 13.40 6 5 13

SC_18 10 45 22.2% 9.15 3 3 1 3

SC_19 4 76 5.3% 26.60 1 1 2

SC_20 4 14 28.6% 4.14 1 1 1 1

SC_21 2 156 1.3% 3.21 1 1

SC_22 3 401 0.7% 1.81 2 1

SC_23 18 233 7.7% 20.60 2 4 12

SC_24 1 13 7.7% 373.85 1

SC_26 1 33 3.0% 651.84 1

SC_30 8 105 7.6% 79.50 8

SC_31 4 42 9.5% 21.40 1 3
a This number refers to all compounds tested in the primary screening, HC, HE and activity determination steps. b The hit rate was
calculated as ratio between the confirmed hits and the total number of tested compounds per chemical class. c Five AC50 ranges were
considered, each range was considered as half-closed interval of activity percent in which the largest endpoint was included.

2.2.4. Activity Determination

In total, 256 active molecules (125 from the subset and 131 from the full set) were
then assayed in dose–response at eight concentrations from 60 to 0.002 µM with interplate
triplicate data points. Overall, 176 compounds showed measurable enzymatic inhibition
against OXA-48 (Supplementary Figure S1a), with a final hit rate of 5.6% with respect to
the total compounds tested in the HC and HE stages (3130 compounds). Notably, while
88 compounds displayed AC50 higher than 60 µM, 13 molecules resulted active in the
single digit micromolar range (bar chart in the Supplementary Figure S1a). Interestingly,
compounds that did not confirm OXA-48 inhibitory potency in dose–response also showed
poor activity in the single point screening, with activity percent higher than −50%.
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As for scaffold distribution, the 176 active molecules were found in 20 chemotypes (SC_6,
SC_13, SC_14, and SC_28 included inactive compounds only, Supplementary Figure S1b).
Overall, the confirmed inhibitors maintained a repartition per chemical class similar to the
previous stages. For instance, SC_2, SC_15, SC_17, and SC_23 confirmed to be composed of
many active compounds (Table 1).

To proceed with the most promising compounds towards hit optimization, the 20
identified chemical scaffolds were also examined based on the related hit rate with respect
to the whole HTS campaign and AC50 activity values (Table 1). Interestingly, among the
classes with higher hit rate, SC_2 was worthy of investigation. In fact, not only did we
identify SC_2 as the most populated group of confirmed hits, but also it contained the
largest number of inhibitors with AC50 values < 5 µM and no less important the most
potent representative of the HTS cascade (AC50 = 0.72 µM).

Analyzing the other potent chemotypes, SC_7 and SC_22, with hit rate of 5.4% (2 hits
out of 37 tested compounds) and 0.7% (3 hits out of 401 tested compounds) respectively,
included the next most active hits with AC50 values around 1 µM.

Finally, due to the common tendency of HTS campaigns to detect hit compounds with
inflated physicochemical features, such as high molecular weight and lipophilicity, the
176 actives were analyzed in terms of ligand efficiency (LE) metrics. This widely applied
approach enables to assess and prioritize HTS hits with the most favorable combinations
of physicochemical and pharmacological properties for the forthcoming optimization
phase, ultimately offering more chances of success to the drug discovery program [52]. In
Figure 10, pAC50 data were plotted as function of the corresponding heavy atom count
(HAC), and diagonal lines were reported to depict LE areas. Interestingly, this analysis re-
vealed that SC_2 occupied mainly the region of the plot characterized by the most favorable
LE values (LE > 0.25), indicating an efficient ligand-target binding for this chemical series.
In contrast, representatives of the other classes were scattered with prevalence towards
lower LE values.

Figure 10. Scatter plot of pAC50 versus HAC of the confirmed OXA-48 inhibitors colored by chemical
classes. The size of the dots is related to the LE value series of compounds. Diagonal lines represent
areas of LE values defined by the equation LE = (1.37/HAC) × pAC50.

Overall, the active chemical scaffolds identified during the HTS campaign were evalu-
ated considering different aspects. Although several classes showed favorable properties,
we initially focused on the most active hits belonging to SC_2 and SC_7 families. Beyond
showing a reasonable hit rate, good activity on the target and excellent LE values, SC_2
with the common 4-ideneamino-4H-1,2,4-triazole core, was known to be active against
metallo β-lactamase enzymes [53–56]. However, this class provided enough confidence in
terms of intellectual property (IP) rights and chemical accessibility for further exploration.

SC_7, defined by the pyrazolo[3,4-b]pyridine core, was mainly selected because of
the good biological activity against OXA-48 enzyme, promising LE metrics, significant
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chemical novelty and IP accessibility in the antibacterial therapeutic area, as well as good
chemical feasibility. Despite the low hit rate of this scaffold, SAR analysis on the screening
collection (see below) suggested space for further investigation around this chemical class.

In the next sections, representatives of the two selected scaffold families are analyzed
and discussed in terms of MoA investigation, preliminary SAR evaluation, as well as
structural exploration of ligand-target binding supported by crystallographic studies.
The most promising hits were evaluated for in vitro efficacy in a minimum inhibitory
concentration (MIC) assay in combination with ad hoc selected β-lactam antibiotics and
cytotoxicity and solubility assessment.

2.3. Mechanism of Action

The HTS triage includes the need for careful follow-up MoA studies around selected
hits. To assess the reversibility of OXA-48 inhibition, the MoA of two representatives of
SC_2 and SC_7, namely ID1 and ID2 (Table 2) with AC50 of 1.14 and 0.99 µM respectively
(data from activity determination in HTS), was first evaluated by time-dependent inhibition
assays. For irreversible inhibitors, slow inhibition kinetics govern the binding process and
commonly used efficacy parameters, such as IC50, depend on the enzyme-drug incubation
period. Conversely, IC50 values of reversible inhibitors do not significantly vary according
to preincubation time, due to the rapid equilibrium of binding between the enzyme and
the inhibitory drug.

Table 2. Dilution after preincubation with ID1, ID2, and tazobactam.

Compound Structure Time [Min] a

OXA-48 AC50 (µM)

Standard
Preincubation b

High Dose
Preincubation c

ID1
0 1.73 0.63

60 1.93 1.09

ID2
0 2.31 1.01

60 2.44 1.45

tazobactam
0 0.82 0.79
90 0.26 0.097

a Dose–response curves of the selected compounds were preincubated with OXA-48 enzyme for 0 and 60 min. b A control experiment was
assembled in the standard concentration condition. c The experiment was conducted using 10X-concentrated doses of the compounds
and 20X concentrated OXA-48 in the preincubation step. At the end of the preincubation time, the samples were diluted 1:5 to restore the
standard assay conditions and the reactions were started by adding the nitrocefin substrate.

On this basis, compounds ID1 and ID2 as well as the irreversible reference inhibitor
tazobactam were tested in dose–response against OXA-48 lactamase, by pre-incubating
the compounds with the enzyme at different time points (0, 15, 30, 60, 90, 120, 180, 240
min) before starting the reaction upon addition of the nitrocefin substrate. Interestingly,
AC50 values of compounds ID1 and ID2 were independent on the preincubation time with
OXA-48, suggesting a reversible inhibition of the enzyme (grey and blue lines respectively
in Figure 11). On the other hand, preincubation of tazobactam with OXA-48 caused an
inversely proportional time-dependent inhibition of the carbapenemase activity (yellow
line in Figure 11), confirming that a tight enzyme-ligand adduct was formed in a time-
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dependent fashion. Indeed, the AC50 value of tazobactam reached a plateau after 90 min of
preincubation and was almost six-fold lower than the corresponding AC50 value obtained
without preincubation.

Figure 11. Time dependent inhibition with ID1, ID2, and tazobactam.

To confirm the reversibility of OXA-48 inhibition by compounds ID1 and ID2, dilution-
after-preincubation tests were also performed. Specifically, the experiments were conducted
by preincubating (0 and 60 min) five-fold concentrated test compounds and OXA-48 en-
zyme, next diluting (1:5) the assay well to the standard reaction conditions and adding the
nitrocefin substrate. In parallel, a control experiment with compounds ID1 and ID2 tested
under the standard protocol was also run. Based on the assay design, reversible inhibitors
are expected to regain enzyme activity after dilution of the enzyme-inhibitor (EI) complex
and show no significant difference between AC50 values from samples preincubated under
high-concentration and standard conditions. Conversely, irreversible inhibitors are envis-
aged not to recover any enzyme activity following dilution of the tight EI complex, which
will translate in a substantial decrease in OXA-48 AC50 of high-concentration preincubated
samples. As shown in Table 2, the dilution-after-preincubation experiment highlighted
that the AC50 values of compounds ID1 and ID2 were not modulated by the preincubation
with OXA-48 at high concentration compared to the standard conditions, thus supporting a
reversible MoA. On the contrary, the effect of dilution on enzyme inhibition was observed
for the irreversible compound tazobactam (Table 2). The AC50 value obtained using con-
centrated reagent solutions at the preincubation step (90 min as from the time-dependent
inhibition study) was almost three-fold lower than the AC50 value obtained under standard
assay protocol.

To further elucidate the type of reversible inhibition of compounds ID1 and ID2,
double substrate (nitrocefin) and inhibitor titrations were run. Figure 12 shows that the
experimental results fit well to a competitive inhibition model in the Lineweaver–Burk
plots, with a Ki of 0.32 and 0.33 and an α value 5.50 and 5.44 for compounds ID1 and ID2
respectively, indicating that the inhibitors preferentially bind to the free enzyme.

Figure 12. Lineweaver–Burk plots showing competitive inhibition of OXA-48 with respect to nitro-
cefin using ID1 and ID2. Inhibitor concentrations were 0 (blue), 0.126 (orange), 0.632 (grey), and
3.160 µM (yellow).
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In both cases the nitrocefin Km value was directly proportional to the inhibitor concen-
tration, while the Vmax value was independent (Table 3), suggesting a substrate competitive
OXA-48 inhibition.

Table 3. Derived Km and Vmax Average Values +/− Standard Error (SE) of nitrocefin and OXA-48
Enzyme respectively Varying the Concentration of OXA-48 Inhibitors ID1 and ID2.

Conc (µM)
ID1 ID2

Vmax ± SE a Km ± SE a Vmax ± SE a Km ± SE a

0 116.8 ± 4.62 9.6 ± 1.06 116.8 ± 4.62 9.6 ± 1.06

0.126 113.4 ± 8.72 12.7 ± 2.51 110.8 ± 7.80 10.7 ± 2.04

0.632 104.0 ± 7.50 17.3 ± 2.91 106.5 ± 7.88 15.0 ± 2.70

3.16 71.9 ± 12.50 29.2 ± 10.00 84.3 ± 10.91 29.2 ± 7.44
a Vmax and Km values were calculated as median of triplicate and the standard error (SE) is reported.

2.4. SC_2: SAR from HTS

A set of 287 4-ideneamino-4H-1,2,4-triazole derivatives, including compounds with
multiple substitutions around the central core, as well as constraint analogs, was screened
in the HTS campaign (see Supplementary Materials). Overall, 38 compounds showed
measurable OXA-48 AC50 values (Supplementary Table S1) and four derivatives (ID1, ID3,
ID4, and ID5) resulted active in the sub- and single-digit micromolar range.

Herein, the SAR around the most active 4-[(3-sulfanyl-4H-1,2,4-triazol-4-yl)imino]methyl
benzoic acids ID1 and ID3-ID5 is discussed, considering both positive and negative results
from the whole screening collection (Table 4).

Table 4. SAR Exploration at R1 and R2 positions of the 4-Ideneamino 4H-1,2,4-triazole-3-thiol Core.

Compound R1 R2
OXA-48

Activity%± SE a
OXA-48 AC50

(µM) b Lower 95% CL Upper 95% CL

ID1 −92.19 ± 3.86 1.14 1.03 1.27

ID3 −94.10 ± 0.48 0.72 0.65 0.80

ID4 −85.80 ± 0.09 3.17 2.86 3.51
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Table 4. Cont.

Compound R1 R2
OXA-48

Activity%± SE a
OXA-48 AC50

(µM) b Lower 95% CL Upper 95% CL

ID5 −88.29 ± 2.58 2.88 2.57 3.24

ID6 −61.30 ± 0.08 15.70 14.01 17.60

ID7 −1.24 ± 0.05 N.A. c

ID8 −1.78 ± 0.268 N.A. c

ID9 −23.84 ± 1.45 35.60 32.03 39.64

ID10 −6.64 ± 1.05 N.A. c

ID11 −58.40 ± 0.96 12.00 9.82 14.60

ID12 −1.33 ± 1.30 N.A. c

ID13 0.02 ± 1.18 N.A. c

ID14 −9.43 ±1.35 N.A. c

ID15 9.13 ± 5.58 N.A. c
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Table 4. Cont.

Compound R1 R2
OXA-48

Activity%± SE a
OXA-48 AC50

(µM) b Lower 95% CL Upper 95% CL

ID16 −0.68 ± 2.27 N.A. c

ID17 −6.76 ± 0.02 N.A. c

ID18 −5.55 ± 0.73 N.A. c

ID19 −18.85 ± 1.53 N.A. c

ID20 −15.40 ± 1.77 N.A. c

ID21 −6.90 ± 0.43 N.A. c

ID22 −5.12 ± 0.84 N.A. c

ID23 −29.46 ± 3.40 24.80 22.26 27.57

ID24 −2.71 ± 0.78 N.A. c

ID25 1.40 ± 1.52 N.A. c

ID26 −9.29 ± 1.75 N.A. c

ID27 1.32 ± 1.03 N.A. c
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Table 4. Cont.

Compound R1 R2
OXA-48

Activity%± SE a
OXA-48 AC50

(µM) b Lower 95% CL Upper 95% CL

ID28 1.10 ± 1.56 N.A.c

ID29 0.08 ± 0.16 N.A. c

tazobactam 0.84 0.78 0.91
a Activity percent values at 20 µM were calculated as median of triplicate wells and the standard error (SE) is reported. b AC50 values were
calculated from data points obtained as a median of triplicate wells. c N.A. = data not available.

Compound ID3 resulted the most potent derivative of the series, with OXA−48
activity percent at 20 µM = −94.1% and OXA−48 AC50 of 0.72 µM. Interestingly, despite
the competitive MoA anticipated for this chemical class, compound ID3 was as potent
as the covalent reference compound tazobactam (AC50 = 0.84µM). Replacement of the
4-chlorophenyl ring of ID3 with different hydrophobic aryl or cycloalkyl groups, such as
phenyl (ID1), 2,4-dichlorophenyl (ID4), and cyclohexyl (ID5) moieties retained activity in
the same range (AC50 = 1.14–3.17 µM) of the parent compound. Conversely, removal of the
3-substituent on the triazolo ring (ID6) led to more than 20-fold loss in potency, suggesting
that a bulky moiety at this position is beneficial for activity. Additionally, it seems that
differently substituted phenyl rings as well as heterocycles—such as p-pyridine, o-furan,
and pyrazole—might be tolerated at this site (Supplementary Table S1).

Several close analogs of hits ID1 and ID3-ID5, sharing the same chemical structure but
the p-benzoic acid moiety, were also found in the screening collection. These compounds
allowed to specifically evaluate the role of this acidic functional group in OXA-48 binding.
Indeed, all derivatives, such as ID7-29 in Table 4, showed reduced activity compared to
the parent compounds.

Specifically, when moving the carboxylic acid from the p- to the o-position of the
phenyl ring of ID5, a poor OXA−48 activity percent at 20 µM = −1.24% (ID7) was ob-
served in comparison to the corresponding hit (−88.29%). Additionally, replacement of
the p-COOH with functional groups (namely -H, -COOCH3, -CN, -F, -Cl, -Br, -NO2, -CH3,
-SCH3, -OH) having different electronic (inductive and mesomeric), lipophilic, and steric
properties to suitably cover the Craig plot [57], was generally detrimental for activity.
Indeed, compounds ID9-19, showed activity percent at 20 µM ranging from −58.40%
to 0.02. Also, o- and m-substituted phenyl moieties did not result in any improvement
in activity (see Supplementary Materials). Only the p-COOCH3 (ID9) and p-CN (ID11)
derivatives showed measurable AC50 values of 35.60 and 12.00 µM, respectively, suggest-
ing that substituents having -σ and + π effects, similarly to the COOH group, might be
better tolerated.

Finally, replacement of the p-benzoic acid moiety with different heterocycles, like
furan (ID20–22), pyridine (ID24–26), and ethenylfuran (ID27–29) was also unfavorable,
leading to activity percent at 20 µM higher than −15.4%. Several inactive derivatives
carrying methyl-substituted heterocycles were also contained in the whole dataset (see
Supplementary Materials). Only the thiophen derivative ID23 showed OXA-48 activity
percent at 20 µM = −29.46% and OXA−48 AC50 of 24.80 µM.

Overall, the SARs observed along the screening collection revealed the paramount
role of p-benzoic acid moiety for activity. Indeed, all compounds in the dataset containing
this functional group showed activity percent at 20 µM higher than −61.30% and AC50
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values ranging from 0.72 to 15.70 µM. Importantly, the structural role of this moiety was
also confirmed by X-ray studies.

A crystal structure study was carried out to elucidate the binding mode of ID3 as
representative of SC_2 in complex with OXA-48 (see Experimental Section for details). We
obtained a 1.65 Å resolution data set including two monomers in the asymmetric unit (PDB
code 7AW5). The electron density of the ligand showed an unambiguous binding mode
and equivalent interaction pattern in the two monomers.

The inhibitor occupied the entrance of the catalytic pocket (Figure 13a) where Lys73
was observed in the carboxylated form, an important functionalized residue for the β-
lactam inactivation mechanism [58]. Typically, the so called ‘oxyanion hole’ delimited by
the catalytic Ser70 and Tyr211 residues is filled with a catalytic conserved water molecule in-
volved in the deacetylation process [59] and accommodates β-lactam group liable to the hy-
drolysis. In the solved crystal structure, we observed such solvation network (Figure 13a).

Figure 13. X-ray cocrystal structure of ID3 in complex with OXA-48 enzyme (PDB code: 7AW5), reported as cyan and
yellow representations, respectively. (a) OXA-48 catalytic pocket occupied by ID3 (cyan surface). Carboxylated Lys73
(KCX73), catalytic Ser70 and Tyr211 (oxyanion hole), and the catalytic water molecule (red circle) are reported. (b) ID3 and
the most relevant residues of the binding pocket. Hydrogen bonds, electrostatic and π–π interactions are represented as
yellow, purple, and grey dashed lines. For the sake of clarity, some portions of the protein have been omitted.

An ionic interaction between the thiolate of the ligand and the basic network iden-
tified by Arg250 and Lys208 was observed (Figure 13b and Supplementary Figure S2a).
Interestingly, the positively charged cavity consisting of Arg250 and Lys208, and Thr209
at the entrance of the binding pocket recurs to engage the carboxylate group of carbapen-
ems like IMP, meropenem ertapenem and doripenem [60]. Similarly, the sulfate group of
avibactam is found to contact the guanidinium group of Arg250 [61]. This common feature
validated the role of ID3′s thiolate group and brought out its significant contribution to
the affinity for OXA-48 enzyme in the SC_2 series. Another interaction of such negatively
charged group consisted of a hydrogen bond with Ser118, whereas the triazole nitrogen
engaged Thr209 via a water molecule and Arg250. Moving to the R1 group (Supplementary
Figure S2b), hydrogen bonds and another ionic interaction were established between the
benzoic acid and Arg214. The carboxylic group was also involved in water mediated
contact with Thr213 and Tyr211, and a π–π stacking was observed between Trp105 and
the phenyl ring of the benzoic acid. Lastly, the p-chlorophenyl moiety of the ligand was
surrounded by the hydrophobic Leu247 and Ile102. Figure 13b and Supplementary Figure
S2 highlight the discussed interaction pattern of ID3 in complex with OXA-48.
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Overall, this crystal structure showed the two negatively charged groups of ID3
properly oriented to reach Arg214 and Arg250 via electrostatic interactions, in addition to
other contacts with the neighboring residues. Notably, the observed binding pose supports
that ID3 binds in the active site of OXA-48 in a reversible manner, in agreement with the
experimental MoA discussed for the close analog ID1.

2.5. SC_7: SAR from HTS

A small dataset of 37 pyrazolo[3,4-b]pyridine derivatives was screened in the HTS
campaign (Supplementary Table S2).

The tested set allowed to explore several decorations at different positions of the
central scaffold, which generally resulted unsuccessful in modulating OXA-48 functionality.
Compound ID2 came out as the only active molecule of the series (singleton active) with
an activity percent at 20 µM = −93.92% and AC50 of 0.99 µM (Table 5)

Table 5. SAR exploration at R1 and R2 positions of the pyrazolo[3,4-b]pyridine core.

Compound R1 R2
OXA-48

Activity%± SE a
OXA-48 AC50

(µM) b Lower 95% CL Upper 95% CL

ID2 −93.92 ± 0.54 0.99 0.80 1.22

ID30 −13.17 ± 1.07 248.59 176.58 349.95

ID31 −25.86 ± 0.57 N.C. c

1 −93.15 ± 0.46 0.92 0.86 0.99

2 −86.38 ± 0.35 1.48 1.35 1.62

3 −49.91 ± 1.58 16.79 15.41 18.29

4 −87.36 ± 0.60 4.78 4.46 5.13
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Table 5. Cont.

Compound R1 R2
OXA-48

Activity%± SE a
OXA-48 AC50

(µM) b Lower 95% CL Upper 95% CL

5 −55.90 ± 0.64 16.21 14.64 17.95

6 −46.92 ± 1.73 24.38 21.88 27.15

7 −28.26 ± 0.31 51.21 45.08 58.17

8 −64.34 ± 1.55 13.69 12.23 15.33

9 −14.72 ± 2.19 63.77 58.40 69.63

10 −10.57 ± 1.45 >100

11 −12.66 ± 0.87 >100

12 −4.62 ± 1.13 >100

13 −9.28 ± 1.06 >100

14 −0.74 ± 0.97 N.C. c

tazobactam 0.84 0.78 0.91
a Activity percent values at 20 µM were calculated as median of triplicate wells and the standard error (SE) is reported. b AC50 values were
calculated from data points obtained as a median of triplicate wells. c N.C. = not calculated.

Interestingly, SAR analysis showed that hit ID2 was the only derivative carrying a
p-benzoic acid at position 6 of the pyrazolo[3,4-b]pyridine core, suggesting the key role
of this functional group for the inhibitory activity. Indeed, the close analogs ID30 and
ID31, sharing the same chemical structure of ID2 but the 6- p-benzoic acid moiety, resulted
inactive (Table 5). These findings corroborated the idea that carboxylic acid functions are
relevant for OXA-48 binding, as observed for other chemical classes tackling this enzyme.
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In this respect, we reasoned that the identified key p-benzoic acid was underrepresented in
the tested library, thus possibly limiting the relevance of the SAR generated around SC_7
toward the target of interest. Therefore, we envisaged that the observed negative SAR of
the near neighbors could have not covered all appropriate changes in the hit compound
and further understanding of what was offered from singleton ID2 was worth the effort
for additional investigation.

On this basis, a small set of compound ID2′s analogs (1–14 in Table 5) was designed
and synthesized to better elucidate the role and evaluate possible substituents of carboxylic
acid groups at position 4 and 6 of the pyrazolo[3,4-b]pyridine core [62].

2.6. Chemistry

A survey of 6-benzoic acid replacements on the 1H-pyrazolo[3,4-b]pyridine-4-carboxylic
acid core was undertaken (Scheme 1). For this purpose, the 3-(4-ethylphenyl)-1H-pyrazol-5-
amine intermediate 15, prepared by treatment of 3-(4-ethylphenyl)-3-oxopropanenitrile with
hydrazine, was coupled to ethyl pyruvate and the desired aryl aldehyde in a microwave-
assisted multi-component cyclization reaction, leading to compounds 16–24. Subsequent ester
hydrolysis with LiOH provided the target compounds 1–9.

Scheme 1. (a) H4, MeSO3H, EtOH, 80 ◦C, 100 min, 72%; (b) ethyl pyruvate, aryl aldehyde, HCl,
EtOH, MW 150 ◦C, 10–30 min, 8–29%; (c) LiOH, MeOH-THF-water (1:1:1), 40–45 ◦C, 20–72 h, 27–94%.

In parallel to this approach, compounds 10–14 were prepared to explore alternative
substituents to the carboxylic acid group at 4-position of the 1H-pyrazolo[3,4-b]pyridine
core (Schemes 2–4). Derivatives 10–12 were synthesized by treating the desired 4-substitued
2,6-dichloropyridine with LDA, followed by nucleophilic addition of 4-ethylbenzaldehyde
to provide alcohols 25–27. The di-hydroxy intermediate 27 was selectively protected at the
primary alcohol functionality using tert-butyldimethylsilyl chloride to afford derivative
28. Upon oxidation of alcohols 25, 26, and 28 with Dess-Martin periodinane to the corre-
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sponding diaryl-ketones 29–31, the pyrazolo[3,4-b]pyridine core was formed via reaction
with hydrazine in EtOH and THF. With reactants 32–34 in place, Suzuki reactions were per-
formed in a microwave reactor in the presence of (4-(tert-butoxycarbonyl)phenyl)boronic
acid and Pd(dppf)Cl2.CH2Cl2 as a catalyst, affording intermediates 35–37. Deprotection
of the TBDMSO group of 37 under standard conditions, followed by hydrolysis of tert-
butyl esters 35, 36, and 38 with TFA in DCM or HCl in dioxane led to compounds 10–12
(Scheme 2).

Scheme 2. (a) 4-ethylbenzaldehyde, LDA, THF, −78 ◦C, 15 min, 23–95%; (b) TBDMS-Cl, DIMAP,
imidazole, DCM, rt, 16 h, 91%; (c) Dess-Martin periodinane, DCM, rt, 15–30 min, 80–99%; (d) N2H4,
DIPEA, EtOH-THF (4:1), 80 ◦C, 1.5–16 h, 43–83%; (e) (4-(tert-butoxycarbonyl)phenyl)boronic acid,
K2CO3, Pd(dppf)Cl2.CH2Cl2, dioxane-water (4:1), MW 120–140 ◦C, 1–3h, 49–54%; (f) TBAF, THF,
rt, 16 h, 52%; (g) TFA, DCM, rt, 16 h, 34–43% (for 10 and 11); (h) 4M HCl in dioxane, rt, 40 h, 65%
(for 12).

Scheme 3. (a) MnO2, DCM, 95 ◦C, 16 h, 74%; (b) MePPh3Br, KOtBu, Et2O, rt, 16 h, 78%; (c) H2, Pd/C,
AcOH, EtOH, 5 bar, rt, 5 h, 91%; (d) 4M HCl in dioxane, rt, 40 h, 31%.
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Scheme 4. (a) 2oxopropanoic acid, methyl-4-formylbenzoate, HCl, EtOH, MW 150 ◦C, 15 min, 18%;
(b) HATU, NH4Cl, DIPEA, DMF, rt, 64 h, 74%; (c) LiOH, MeOH-THF-water (1:1:1), rt, 4 h, 23%.

The 4-ethyl-1H-pyrazolo[3,4-b]pyridine analog 13 was prepared starting from inter-
mediate 38 as depicted in Scheme 3. Upon MnO2-catalysed oxidation of alcohol 38 to
aldehyde 39, the ethenyl intermediate 40 was prepared via Wittig reaction of 39 with
methyltriphenylphosphonium bromide. Subsequent hydrogenation of the double bond
followed by acid removal of the tert-butoxy protecting group of 41 provided the target
compound 13.

Amide 14 was prepared according to the three-step synthesis showed in Scheme 4. The
3-(4-ethylphenyl)-1H-pyrazol-5-amine 15 was coupled to 2-oxopropanoic acid and methyl-
4-formylbenzoate in a multi-component reaction to afford 1H-pyrazolo[3,4-b]pyridine-4-
carboxylic acid intermediate 42. Coupling of the carboxylic acid with ammonium chloride
provided amide 43 and subsequent based-catalyzed methtyl ester hydrolysis led the com-
pound of interest.

2.7. SC_7: Explorative SAR

Starting from hit compound ID2, the effect of introducing electron withdrawing
groups like fluorine at position 2 and 3 of the benzoic acid moiety was evaluated. Both
modifications were well tolerated, as shown by compounds 1 and 2 that retained the same
activity of the parent compound.

The carboxylic acid group was also moved from position 4 to position 3 of the 6-phenyl
ring (3) resulting in 17-fold loss in activity, whereas substitution of the benzoic with the
phenethyl acid provided derivative 4, which was active in the single digit micromolar
range (AC50 = 4.78 µM).

Replacement of the benzoic acid group of ID2 with di-substituted phenols (5–9) was
also explored. This modification was meant to investigate the effect of functional groups
such as the hydroxyl moiety, which should mimic the main pharmacophoric features of car-
boxylic acids and serve as both hydrogen-bond donor (HBD) and hydrogen-bond acceptor
(HBA) as well as negative ionizable group. Overall, phenols 5–9 resulted active in the dou-
ble digit micromolar range (AC50 = 13.69–63.77 µM) and were from 14- to 64-fold less active
than the parent compound. The observed drop in activity might be ascribed to several
reasons: i) reduced acidity of phenols (calculated pKa = 6.72–7.59) with respect to ID2′s
benzoic acid (calculated pKa = 3.62), resulting in diminished negative ionization potential;
ii) removal of the oxo-group of the carboxyl moiety, thus losing a HBA functional group;
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iii) different length and three-dimensional orientation of the -OH and -COOH functional
groups. Along the phenol set, 2,5-di-F-phenol 5 (AC50 = 16.21 µM) was almost as active
as 2,6-di-F-phenol 6 (AC50 = 24.38 µM) and 3-fold more potent than the corresponding
2,3-di-F-phenol 7 (AC50 = 51.21 µM). 2-Cl-6-OCH3-phenol 8 (AC50 = 13.69 µM) showed
enzymatic potency comparable to 5 and was 4.6-fold more active than 2-Cl-6-F-phenol 9
(AC50 = 63.77 µM). These findings highlight that different substituents on the phenol ring
can also impact on OXA−48 enzymatic activity, possibly due to steric hindrance, electronic
or solvation effects that might ultimately influence the entropic and enthalpic contributions
to the binding affinity.

Considering that acidic functionalities resulted relevant for the OXA-48 interaction, we
also investigated the effect of the carboxylic acid at position 4 of the pyrazolo[3,4-b]pyridine
core on the carbapenemase activity. Interestingly, replacement of this carboxyl moiety with
H (10), -CF3 (11), and -CH2CH3 (13) group was detrimental for the enzymatic potency.
Also, substitution of the 4-COOH group of ID2 with -CH2OH (12) or -CONH2 (14) resulted
in complete loss of activity, suggesting that this acidic feature also dramatically contributes
to the inhibitory activity.

The observed SARs were further corroborated and rationalized by the high-resolution
(2.05 Å) X-ray crystal structure of OXA−48 enzyme in complex with ID2 (PDB code: 7AUX),
which was solved to elucidate the binding mode of pyrazolo[3,4-b]pyridine derivatives
(Figure 14).

Figure 14. X-ray cocrystal structure of ID2 in complex with OXA-48 enzyme (PDB code 7AUX).
The ligand and the most relevant residues of the binding pocket are reported in green and yellow,
respectively. Hydrogen bonds, electrostatic and π–π interactions are represented as yellow, purple,
and grey dashed lines. For the sake of clarity, some portions of the protein have been omitted.

The asymmetric unit consists of two OXA−48 molecules, consistent with each other
(see Experimental Section). The overall density was unambiguous and both chains included
the carboxylated form of Lys73 residue. The interaction pattern of the inhibitor in the
binding pocket of the two monomers was comparable as well as solvation of the cavity in
proximity of Ser70, Tyr211, Thr213, and Arg214. A salt bridge and hydrogen bonds between
the positively charged Arg250 and the benzoic acid moiety were observed (Supplementary
Figure S3a). The carboxylate group was also oriented in such a way that also Lys208
participated in an ionic bond. Additionally, the distances between the carboxylic oxygen
and the hydroxyl group of Thr209 and Ser118 below 3.0 Å were consistent with the
formation of hydrogen bonds. Interestingly, the described binding mode resembled the
interaction network of the sulfate group of avibactam [61], and the thiolate of SC_2.
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Moving on the upper part of the binding pocket (Supplementary Figure S3b), Arg214
established a salt bridge and hydrogen bonds with the 4-COOH group, as well as a cation–
π interaction with the phenylethyl moiety of the ligand. The carboxylate group on the
pyrazolo[3,4-b]pyridine core was also involved in a water bridge hydrogen bond with
Thr213 and Tyr211. Moreover, the central bicyclic aromatic system of the ligand established
a π–π interaction with Trp105. Figure 14 and Supplementary Figure S3 highlight the
discussed interactions.

Overall, an unambiguous binding mode was obtained consistent with that seen for
reversible compound ID3, where dianionic moieties clearly engage the positively charged
Arg214 and Arg250. The obtained crystal structure therefore proved compound ID2 to
occupy OXA-48 binding pocket with a reversible MoA in line with the aforementioned
experimental results.

2.8. Determination of MIC, Cytotoxicity and Solubility

To evaluate the capability of restoring β-lactam susceptibility, the two most promising
representatives of SC_2 (ID3) and SC_7 (ID2) were screened alone and in combination
with ampicillin (AMP) and IMP against sensitive and resistant Gram-negative bacteria.
Avibactam [63] and tazobactam were also included in the MIC characterization as BLI
reference compounds. Specifically, we used E. coli ATCC25922 as antibiotic-sensitive strain,
while E. coli ATCC BAA-2523 and K. pneumoniae ATCC BAA-2524 as β-lactam-resistant
bacteria, producing OXA-48 carbapenemase.

Test compounds and tazobactam were tested at 32 µg/mL, while avibactam was
applied at 4 µg/mL. AMP, a member of the penicillin class, was used at increasing concen-
trations from 1 to 512 µg/mL, while IMP, a carbapenem drug, was applied at 0.03–8 µg/mL.
Both antibiotics were selected for the combination study as they can be hydrolyzed by the
target OXA-48 enzyme [64].

MIC values were determined by the broth dilution method and interpreted using pub-
lished guidelines described by Clinical and Laboratory Standards Institute (CLSI) [65,66].
As expected, AMP and IMP showed antibacterial activity against E. coli ATCC25922 (IMP
was 5-fold more potent than AMP). Both antibiotics displayed reduced potency in β-lactam-
resistant strains. Indeed, AMP was completely inactive against E. coli ATCC BAA-2523 and
K. pneumoniae ATCC BAA-2524 (MIC > 512 µg/mL), whereas IMP showed MIC of 2 and
4 µg/mL, respectively, suggesting that AMP is more susceptible to β-lactamase hydrolysis.

Similarly, to reference BLIs, ID2 and ID3 showed no antibacterial effect of their own
against the Gram-negative pathogens (Table 6). When co-administrated with AMP, ID2
and ID3 did not improve the antibiotic activity in resistant bacteria. Tazobactam was
also not very effective, while avibactam showed MIC of 16 and 128 µg/mL against E. coli
and K. pneumoniae resistant strains, respectively. On the other hand, tazobactam and
avibactam remarkably improved IMP’s activity (from two to more than six-fold) in target
resistant bacteria. Notably, even ID2 decreased the drug’s MIC of two-fold (from 2 to
0.5 µg/mL) in E. coli ATCC BAA-2523 but not in K. pneumoniae ATCC BAA-2524, whereas
ID3 did not show any significant effects (IMP’s MIC was reduced one-fold only in both
resistant strains).

The poor activity of inhibitors ID2 and ID3 against β-lactam-resistant bacteria might
be ascribed to several factors, such as suboptimal potency against OXA-48 enzyme or poor
permeability into the bacterial periplasm. Indeed, despite the reversible inhibitors ID2 and
ID3 show OXA-48 AC50 values comparable to the covalent reference tazobactam, their
different MoA and diverse activity in β-lactam-resistant bacteria possibly suggest that
stronger OXA-48 inhibition is required for reversible inhibitors to be effective in a whole
cell assay.
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Table 6. Antibacterial activity of AMP and IMP in combination with ID2 and ID3.

Bacterial
Strain

Strain
Code

β-lactam
MIC

β-lactam
(µg/mL)

MIC (µg/mL) (β-lactam + BLI)

Avibactam
(4 µg/mL)

Tazobactam
(32 µg/mL)

ID2
(32 µg/mL)

ID3
(32 µg/mL)

E.coli ATCC25922
AMP 4 2 4 4 8
IMP 0.12 0.06 0.12 0.12 0.12
no - - - >32 >32

E.coli
ATCC

BAA-2523

AMP >512 16 256 >512 >512
IMP 2 ≤0.03 0.12 0.5 1
no - - >32 >32 >32

K.pneumoniae ATCC
BAA-2524

AMP >512 128 >512 >512 >512
IMP 4 0.5 1 2 2
no - - >32 >32 >32

Also, it is well known that the low permeability barrier of Gram-negative bacte-
ria is a major obstacle in the discovery and development of antibiotics effective against
such pathogens. Indeed, compounds with activity against Gram negative organisms must
overcome further barriers other than the inner membrane and the peptidoglycan layer
to function, namely, the penetration of the outer lipid membrane and evasion of efflux
pumps [67]. At present no rules exist to predict the permeation of compounds across
the cell walls of Gram-negative pathogens; however, understanding the physicochemical
property space required for antibacterially active compounds plays a crucial role. In this
respect, compounds active against Gram negative bacteria are generally characterized by
high polarity, which is reflected in low clogD7.4 and high total polar surface area (TPSA)
values [68]. When comparing the clogD7.4 and TPSA values of ID2 (clogD7.4 = 0.19 and
TPSA = 116) and ID3 (clogD7.4 = 0.31 and TPSA = 119) with avibactam (clogD7.4 = −6.77
and TPSA = 139) and tazobactam (clogD7.4 = −5.15 and TPSA = 131) it is evident that our
new hits are more lipophilic than the two reference drugs. Also, ID2 and ID3 look more
lipophilic than most of the compounds active Gram-negative bacteria evaluated by O’Shea
and Moser in their analysis of the physicochemical properties of antibacterial agents, where
the average clogD7.4 and TPSA values for antibacterials with Gram-negative activity are
−2.8 and 165, respectively [68]. Overall, the physicochemical profile of ID2 and ID3 might
account for their reduced permeability and poor whole cell activity.

Nevertheless, the hit scaffold SC_7 might represent a promising starting point for the
development of novel BLIs with whole cell activity. ID2 could be amenable to structural
changes guided by structure-based drug design informed on the available X-ray structures
and fine-tuning of physicochemical properties to allow for optimization of the potency and
permeability of later-stage lead compounds.

Based on the promising BLI profile of compound ID2, a preliminary in vitro ADMET
assessment in terms of kinetic solubility and cytotoxicity was carried out. Interestingly,
compound ID2 showed good solubility (179.4 µM) in a buffered aqueous solution at pH
7.4. Also, it was tested for cell viability in dose response against HepG2 cells, following
48 h incubation time [69]. Notably, no sign of toxicity was observed up to the highest tested
concentration (100 µM), suggesting a potential safety margin for the BLI activity.

3. Materials and Methods
3.1. Cheminformatics

All cheminformatics activities were performed using Pipeline Pilot (version 9.5).
Chemical group standardization checks in terms of protective group consistency, as well
as abbreviations corresponding to chemical structures, tautomer fixing, salt removal, and
charge neutralization were carried out to prepare the compound collections. Physicochemi-
cal properties were calculated with Chemistry Component collection [70], whereas we used
a customized component to monitor structural alerts as reactive groups, REOS and PAINS.
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The Generated Fragments Pipeline Pilot component was applied for framework
decomposition based on the Bemis-Murcko definition, followed by the InchiKey calculation
of the resulting scaffold families to annotate the compounds.

The scaffold distribution of Subset and Full Set collections was analyzed by the
CSR curves and quantified with AUC and F50 metrics. To generate the CSR curves, the
scaffolds were ordered by their frequency of occurrence (most to least common). Then,
the cumulative fraction of scaffold is plotted on the X-axis and the cumulative fraction of
compounds containing those chemotypes on the Y-axis.

Data analysis and visualization were carried out with Tibco Spotfire (version 7.11.1).
The pKa values of the benzoic acid and phenol group of ID2 and compounds 5–9,

respectively, were calculated using Jaguar software [71] as supplied with the Schrödinger
2019-4 suite. Neutral forms of the ligands were prepared with Ligprep tool [72]. Before
pKa calculation, a maximum of five conformers were generated with MacroModel [73]
as implemented in the Jaguar tool. The lowest energy conformations were used for pKa
prediction maintaining default setting.

3.2. Chemistry
3.2.1. General Information

A fresh batch of compounds ID1, ID2, and ID3 were purchased from MolPort (Riga,
Latvia) for MoA, MIC, X-ray, cytotoxicity, and solubility studies.

Reagents and starting materials were purchased from commercial sources and used
as received.

Microwave-assisted reactions were carried out in a Biotage® (Uppsala, Sweden) Initia-
tor + microwave synthesizer. Reaction progress was monitored by thin layer chromatogra-
phy (TLC, Merck GF254 plates) or LCMS chromatography (Waters X-Select C18, Agilent
LCMS system).

Final compounds were purified by flash chromatography on pre-packed silica
(230–400 mesh, 40–63 µm) or reverse phase C-18 cartridges using the Combiflash
Companion system, when appropriate.

Compound purity and molecular mass were determined by high-pressure liquid
chromatography (HPLC) and high-resolution mass spectrometry (UPLC-QTOF). HPLC
analysis was carried out through a pump/autosampler (Waters Alliance 2695), a UV photo
diode array detector (Waters 2996), and a Waters system data management (Empower 2),
using Suplex pkb-100 (250 × 4.6 mm, 5 µm) column. For UPLC-QTOF, an Acquity BEH
C18 (2.1 × 50 mm, 1.7 µm) column was used and a positive ion mode in the “VOptics”
configuration was employed. Leucine-enkephalin (200 pg/µL) was used as the lock mass
in order to provide authenticated exact mass measurement in MS and MS/MS modes
within 5 ppm RMS mass accuracy. NMR were obtained using Bruker Avance systems (300,
400, and 500 MHz). All resonance bands were referenced to tetramethylsilane (internal
standard). For 1H NMR spectroscopy: (s) = singlet; (d) = doublet; (t) = triplet; (q) = quartet;
(quin) = quintet; (dd) = double doublet; (dt) = double triplet; (ddd) = double double
doublet; (dtd) = double triple doublet; (m) = multiplet; (br) = broad; J = coupling constant
(Hz); and δ = chemical shift (ppm). All compounds tested possessed a purity of ≥95%.

3.2.2. General Procedures
General Procedure A—Synthesis of Compounds 16–24, 42

To a solution of 3-(4-ethylphenyl)-1H-pyrazol-5-amine (1 eq.) in EtOH (0.5 M), ethyl-
pyruvate or 2-oxopropanoic acid (1 eq.), the proper aldehyde (1 eq.) and conc. HCl (one
drop) were added. After heating under MW irradiation at 150 ◦C for 10–30 min, the
reaction mixture was either concentrated under reduced pressure or, in case a precipitated
was formed, the solid was filtered off and washed with ice-cold EtOH. Finally, the crude
product was purified by the appropriate technique to provide the title compounds.
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General Procedure B—Synthesis of Compounds 25–27

To a stirred solution of the proper 2,6-dichloropyridine (1 eq.) in THF (0.2 M) at−78 ◦C,
LDA (2 M solution in THF/n-heptane/ethylbenzene, 1.1–3 eq.) was added dropwise. After
stirring at -78 ◦C for 30 min, 4-ethylbenzaldehyde (1.1–2.5 eq.) was added dropwise and
the resulting mixture was stirred at −78 ◦C for a further 15 min. The reaction mixture was
quenched with an aqueous saturated NH4Cl solution, diluted with water, and extracted
with EtOAc. The combined organic layers were dried over MgSO4, filtered, and evaporated
under reduced pressure. The crude was then purified by flash chromatography to provide
the title compounds.

General Procedure C—Synthesis of Compounds 29–31

To a stirred solution of intermediates 25, 26, or 28 (1 eq.) in DCM (0.2 M), Dess-Martin
periodinane (1.2 eq.) was added at 0 ◦C. The resulting mixture was stirred at rt for 15 min.
The solids were removed by filtration, then the filtrate was washed with aqueous 1 M
NaOH solution and brine, dried over MgSO4, filtered and evaporated under reduced
pressure. The crude material was then purified by flash chromatography to provide the
title compounds.

General Procedure D—Synthesis of Compounds 32–34

To a stirred solution of intermediates 29–31 (1 eq.) in EtOH/THF (4:1) (0.5 M), DIPEA
(1.05 eq.) was added. The mixture was then cooled to 0 ◦C and hydrazine (1 M solution
in THF, 1.2 eq.) was added dropwise. The resulting solution was stirred at 0 ◦C for 5 min,
then heated at 80 ◦C for 1.5–16 h. The solvent was evaporated under reduced pressure and
the crude product was purified by flash chromatography to provide the title compounds.

General Procedure E—Synthesis of Compounds 35–37

A solution of compounds 32–34 (1 eq.), (4-(tert-butoxycarbonyl)phenyl)boronic acid
(1–1.5 eq.), and K2CO3 (1.5–2.5 eq.) in dioxane/water (4:1) (0.15 M) was evacuated and
purged three times with N2. Pd(dppf)Cl2·CH2Cl2 (0.1 eq.) was added and the tube was
evacuated and purged three additional times with N2. The resulting mixture was heated
at 120–140 ◦C for 1–3 h under MW irradiation then cooled to rt, diluted with EtOAc and
water (1:1) and filtered through celite. The phases were separated, and the aqueous layer
extracted with EtOAc. The combined organics were washed with water and brine, dried
over MgSO4, filtered and concentrated under reduced pressure to afford the crude product.
The crude was then purified by flash chromatography to provide the title compounds.

General Procedure F—Synthesis of Compounds 1–9

To a solution of the intermediates 16–24 (1 eq.) in THF/water/MeOH (1:1:1, 0.01–0.05 M),
LiOH (1–30 eq.) was added and the resulting mixture was stirred at 40–45 ◦C for 20–72 h. The
reaction mixture was then diluted with water and made acidic to pH~2 by addition of aqueous
1 M HCl solution. The aqueous phase was either directly evaporated under reduced pressure,
or first extracted with EtOAc and then dried under vacuum. Alternatively, when precipitation
was observed upon acidification, the resulting solid was filtered and washed with water. Both
methodologies were applied to afford a residue further purified by the opportune technique to
provide the title compounds.

General Procedure G—Synthesis of Compounds 10 and 11

Intermediate 35 or 36 were dissolved in TFA/DCM (1:1, 0.15 M) and the resulting
solution was stirred at rt for 16 h. Solvents were removed under vacuum and the residue
was purified flash chromatography to provide the title compounds.



Pharmaceuticals 2021, 14, 612 28 of 45

3.2.3. Synthesis of Intermediates and Final Compounds
3-(4-Ethylphenyl)-1H-pyrazol-5-amine (15)

To a solution of 3-(4-ethylphenyl)-3-oxopropanenitrile (1.43 g, 8.26 mmol) in EtOH
(50 mL) hydrazine hydrate (0.97 mL, 9.9 mmol) was added, followed by methanesulfonic
acid (0.11 mL, 1.7 mmol). After heating at reflux for 100 min, the reaction mixture was
cooled to rt and concentrated under reduced pressure to give a pale-yellow solid. The
crude product was purified by flash chromatography on silica gel eluting with 0–10%
MeOH/DCM gradient to provide 1.17 g (72% yield) of the title product as a white solid.
LCMS m/z: 188 [M + H] +; 1H NMR (400 MHz, CDCl3): δ 7.41–7.35 (m, 2H), 7.18–7.13 (m,
2H), 5.82 (s, 1H), 4.87 (s, 3H), 2.65–2.55 (m, 2H), 1.18 (t, J = 7.6 Hz, 3H).

Ethyl-3-(4-ethylphenyl)-6-(3-fluoro-4-(methoxycarbonyl)phenyl)-1H-pyrazolo[3,4-
b]pyridine-4-carboxylate (16)

The title compound was obtained according to general procedure A, using 3-(4-
ethylphenyl)-1H-pyrazol-5-amine 15 (200 mg, 1.07 mmol), methyl-2-fluoro-4-formylbenzoate
(195 mg, 1.07 mmol) and ethyl-pyruvate (0.12 mL, 1.07 mmol). The crude was recrystallised
from water/EtOH to provide 67 mg (14% yield) of the title product. LCMS m/z: 448
[M − H]+. 1H-NMR (400 MHz, DMSO-d6): δ 14.31 (s, 1H), 8.26–8.14 (m, 3H), 8.08 (t,
J = 8.0 Hz, 1H), 7.44 (d, J = 8.2 Hz, 2H), 7.36 (d, J = 8.1 Hz, 2H), 4.01–3.88 (m, 5H), 2.70 (q,
J = 7.6 Hz, 2H), 1.24 (t, J = 7.6 Hz, 3H), 0.77 (t, J = 7.1 Hz, 3H).

Ethyl-3-(4-ethylphenyl)-6-(2-fluoro-4-(methoxycarbonyl)phenyl)-1H-pyrazolo[3,4-
b]pyridine-4-carboxylate (17)

The title compound was obtained according to general procedure A, using 3-(4-
ethylphenyl)-1H-pyrazol-5-amine 15 (200 mg, 1.07 mmol), methyl-3-fluoro-4-formylbenzoate
(195 mg, 1.07 mmol) and ethyl-pyruvate (0.12 mL, 1.07 mmol). The crude was purified by
flash chromatography on silica gel, eluting with 0-50% EtOAc/i-Hex gradient to provide
76 mg (16% yield) of the title product. LCMS m/z: 448 [M − H]+. 1H-NMR (400 MHz,
DMSO-d6): δ 14.36 (s, 1H), 8.19 (t, J = 7.9 Hz, 1H), 7.99 (dd, J = 8.1, 1.6 Hz, 1H), 7.93–7.86
(m, 2H), 7.47–7.41 (m, 2H), 7.38–7.33 (m, 2H), 3.99–3.90 (m, 5H), 2.70 (q, J = 7.6 Hz, 2H),
1.24 (t, J = 7.6 Hz, 3H), 0.74 (t, J = 7.1 Hz, 3H).

Ethyl-3-(4-ethylphenyl)-6-(3-(methoxycarbonyl)phenyl)-1H-pyrazolo[3,4-b]pyridine-4-
carboxylate (18)

The title compound was obtained according to general procedure A using 3-(4-
ethylphenyl)-1H-pyrazol-5-amine 15 (200 mg, 1.07 mmol), methyl-3-formylbenzoate (175 mg,
1.07 mmol) and ethyl-pyruvate (0.12 mL, 1.07 mmol). The crude was purified by flash
chromatography on silica gel, eluting with 0-50% EtOAc/i-Hex gradient to provide 125 mg
(29% yield) of the title product. LCMS m/z: 430 [M−H]+. 1H-NMR (400 MHz, DMSO-d6):
δ 14.26 (s, 1H), 8.85 (app. t, J = 1.8 Hz, 1H), 8.52 (ddd, J = 7.9, 1.9, 1.1 Hz, 1H), 8.11 (ddd,
J = 7.7, 1.7, 1.1 Hz, 1H), 8.10 (s, 1H), 7.73 (app. t, J = 7.9 Hz, 1H), 7.46–7.40 (m, 2H), 7.39–7.32
(m, 2H), 3.96 (q, J = 7.1 Hz, 2H), 3.94 (s, 3H), 2.70 (q, J = 7.6 Hz, 2H), 1.24 (t, J = 7.6 Hz, 3H),
0.76 (t, J = 7.1 Hz, 3H).

Ethyl-3-(4-ethylphenyl)-6-(4-(2-methoxy-2-oxoethyl)phenyl)-1H-pyrazolo[3,4-b]pyridine-
4-carboxylate (19)

The title compound was obtained according to general procedure A using 3-(4-
ethylphenyl)-1H-pyrazol-5-amine 15 (200 mg, 1.07 mmol), methyl-2-(4-formylphenyl)acetate
(190 mg, 1.07 mmol) and ethyl-pyruvate (0.12 mL, 1.07 mmol). The crude was recrystal-
lized from EtOAc/i-Hex to give 94 mg (20% yield) of the title product. LCMS m/z: 444
[M − H]+.
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Ethyl-6-(2,5-difluoro-4-hydroxyphenyl)-3-(4-ethylphenyl)-1H-pyrazolo[3,4-b]pyridine-4-
carboxylate (20)

The title compound was obtained according to general procedure A 3-(4-ethylphenyl)-
1H-pyrazol-5-amine 15 (200 mg, 1.07 mmol), 2,5-difluoro-4- hydroxybenzaldehyde (169 mg,
1.07 mmol) and ethyl-pyruvate (0.12 mL, 1.07 mmol). The crude was purified by flash
chromatography on silica gel, eluting with 0-50% EtOAc/i-Hex gradient to provide 36 mg
(8% yield) of the title product. LCMS m/z: 424 [M − H]+. 1H-NMR (400 MHz, DMSO-d6):
δ 14.21 (s, 1H), 11.01 (s, 1H), 7.85 (dd, J = 12.0, 7.4 Hz, 1H), 7.81 (d, J = 1.4 Hz, 1H), 7.44–7.39
(m, 2H), 7.37–7.32 (m, 2H), 6.95 (dd, J = 12.5, 7.3 Hz, 1H), 3.92 (q, J = 7.1 Hz, 2H), 2.69 (q,
J = 7.6 Hz, 2H), 1.24 (t, J = 7.6 Hz, 3H), 0.71 (t, J = 7.1 Hz, 3H).

Ethyl-6-(3,5-difluoro-4-hydroxyphenyl)-3-(4-ethylphenyl)-1H-pyrazolo[3,4-b]pyridine-4-
carboxylate (21)

The title compound was obtained according to general procedure A using 3-(4-
ethylphenyl)-1H-pyrazol-5-amine 15 (300 mg, 1.60 mmol), 3,5-difluoro-4-hydroxybenzaldehyde
(253 mg, 1.60 mmol) and ethyl-pyruvate (0.18 mL, 1.60 mmol). The crude was purified by
reverse phase chromatography (C-18) eluting with 15-80%, 1% formic acid in water/1%
formic acid in AcN to give 202 mg (29% yield) of the title product. LCMS m/z: 424
[M − H]+. 1H-NMR (400 MHz, DMSO-d6): δ 14.13 (s, 1H), 10.84 (s, 1H), 8.03 (s, 1H),
8.01–7.91 (m, 2H), 7.45–7.38 (m, 2H), 7.37–7.32 (m, 2H), 3.94 (q, J = 7.1 Hz, 2H), 2.69 (q,
J = 7.6 Hz, 2H), 1.24 (t, J = 7.6 Hz, 3H), 0.76 (t, J = 7.1 Hz, 3H).

Ethyl-6-(2,3-difluoro-4-hydroxyphenyl)-3-(4-ethylphenyl)-1H-pyrazolo[3,4-b]pyridine-4-
carboxylate (22)

The title compound was obtained according to general procedure A using 3-(4-
ethylphenyl)-1H-pyrazol-5-amine 15 (200 mg, 1.07 mmol), 2,3-difluoro-4-hydroxybenzaldehyde
(169 mg, 1.07 mmol) and ethyl-pyruvate (0.12 mL, 1.07 mmol). The crude was purified
by flash chromatography on silica gel, eluting with 0-50% EtOAc/i-Hex gradient to give
88 mg (18% yield) of the title product. LCMS m/z: 424 [M − H]+. 1H-NMR (400 MHz,
DMSO-d6): δ 14.22 (s, 1H), 10.97 (s, 1H), 7.78 (d, J = 1.7 Hz, 1H), 7.70 (td, J = 8.7, 2.2 Hz,
1H), 7.45–7.40 (m, 2H), 7.37–7.32 (m, 2H), 7.02–6.95 (m, 1H), 3.93 (q, J = 7.1 Hz, 2H), 2.69 (q,
J = 7.6 Hz, 2H), 1.24 (t, J = 7.6 Hz, 3H), 0.72 (t, J = 7.1 Hz, 3H).

Ethyl-6-(3-chloro-4-hydroxy-5-methoxyphenyl)-3-(4-ethylphenyl)-1H-pyrazolo[3,4-
b]pyridine-4-carboxylate (23)

The title compound was obtained according to general procedure A using 3-
(4-ethylphenyl)-1H-pyrazol-5-amine 15 (200 mg, 1.07 mmol), 3-chloro-4-hydroxy-5-
methoxybenzaldehyde (199 mg, 1.07 mmol) and ethyl-pyruvate (0.12 mL, 1.07 mmol). The
crude was purified by flash chromatography on silica gel, eluting with 0–50% EtOAc/i-Hex
and by a further recrystallization from DCM with i-Hex to give 55.5 mg (11% yield) of the
title product. LCMS m/z: 452/454 [M − H]+. 1H-NMR (400 MHz, DMSO-d6): δ 14.08 (s,
1H), 9.96 (s, 1H), 8.05 (s, 1H), 7.89 (d, J = 2.1 Hz, 1H), 7.78 (d, J = 2.1 Hz, 1H), 7.44–7.40 (m,
2H), 7.37–7.32 (m, 2H), 3.98 (s, 3H), 3.94 (q, J = 7.1 Hz, 2H), 2.69 (q, J = 7.6 Hz, 2H), 1.24 (t, J
= 7.6 Hz, 3H), 0.76 (t, J = 7.1 Hz, 3H).

Ethyl-6-(3-chloro-5-fluoro-4-hydroxyphenyl)-3-(4-ethylphenyl)-1H-pyrazolo[3,4-
b]pyridine-4-carboxylate (24)

The title compound was obtained according to general procedure A using 3-
(4-ethylphenyl)-1H-pyrazol-5-amine 15 (200 mg, 1.07 mmol), 3-chloro-5-fluoro-4-
hydroxybenzaldehyde (186 mg, 1.07 mmol) and ethyl-pyruvate (0.12 mL, 1.07 mmol). The
crude was purified by flash chromatography on silica gel, eluting with 0–50% EtOAc/i-Hex
and then recrystallized from EtOH/water to give 104 mg (22% yield) of the title product.
LCMS m/z: 440/442 [M − H]+.
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(2,6-Dichloropyridin-3-yl)(4-ethylphenyl)methanol (25)

The title compound was obtained according to general procedure B using 2,6-
dichloropyridine (1.02 g, 6.91 mmol), LDA (3.80 mL, 7.60 mmol) and 4-ethylbenzaldehyde
(1.04 mL, 7.60 mmol). The crude was purified by flash chromatography on silica gel,
eluting with 0–20% i-Hex-EtOAc gradient to provide 1.68 g (82% yield) of the title
product. LCMS m/z: 282/284 [M − H]+.

(2,6-Dichloro-4-(trifluoromethyl)pyridin-3-yl)(4-ethylphenyl)methanol (26)

The title compound was obtained according to general procedure B using 2,6-
dichloro-4-(trifluoromethyl)pyridine (500 mg, 2.32 mmol), LDA (1.45 mL, 2.89 mmol)
and 4-ethylbenzaldehyde (0.41 mL, 3.01 mmol). The crude was purified by flash
chromatography on silica gel, eluting with 0–20% i-Hex-EtOAc gradient to provide
772 mg (95% yield) of the title product. LCMS m/z: 350/352 [M − H]+.

(2,6-Dichloro-4-(hydroxymethyl)pyridin-3-yl)(4-ethylphenyl)methanol (27)

The title compound was obtained according to general procedure B using (2,6-
dichloropyridin-4-yl)methanol (956 mg, 5.37 mmol), LDA (8.06 mL, 16.1 mmol) and
4-ethylbenzaldehyde (1.84 mL, 13.4 mmol). The crude was purified by flash chromatog-
raphy on silica gel, eluting with 0–40% i-Hex-EtOAc to provide 411 mg (23% yield) of
the title product. HPLC-MS (ESI) m/z: no ionization.

(4-(((Tert-butyldimethylsilyl)oxy)methyl)-2,6-dichloropyridin-3-yl)(4-
ethylphenyl)methanol (28)

To a stirred solution of (2,6-dichloro-4-(hydroxymethyl)pyridin-3-yl)(4-ethylphenyl)methanol
27 (394 mg, 1.26 mmol), imidazole (103 mg, 1.51 mmol) and 4-dimethylaminopyridine (15.4 mg,
0.126 mmol) in DCM (20 mL) was added TBDMS-Cl (228 mg, 1.51 mmol) and the resulting
solution was stirred at rt for 16 h. The reaction mixture was diluted with DCM (20 mL) and
washed with water (3× 15 mL) and brine (10 mL). The collected organic phases were dried over
MgSO4, filtered and evaporated under reduced pressure. The crude material was purified by
chromatography by flash chromatography on silica gel, eluting with 0–20% i-Hex-diethyl ether
to provide 489 mg (91% yield) of the title compound as a white solid. LCMS m/z: 426/428
[M−H]+.

(2,6-Dichloropyridin-3-yl)(4-ethylphenyl)methanone (29)

The title compound was obtained according to general procedure C, using (2,6-
dichloropyridin-3-yl)(4-ethylphenyl)methanol 25 (1.58 g, 5.61 mmol) and Dess-Martin
periodinane (2.86 g, 6.72 mmol). The crude was purified by flash chromatography on silica
gel, eluting with 0–20% i-Hex-EtOAc) to provide 1.29 g (80% yield) of the title product.
HPLC-MS m/z: 280/282 [M − H]+.

2,6-Dichloro-4-(trifluoromethyl)pyridin-3-yl)(4-ethylphenyl)methanone (30)

The title compound was obtained according to general procedure C 1 using (2,6-
dichloro-4-(trifluoromethyl)pyridin-3-yl)(4-ethylphenyl)methanol 26 (772 mg, 2.21 mmol)
and Dess-Martin periodinane (1.12 g, 2.65 mmol). The crude was purified by flash chro-
matography on silica gel, eluting with 0–20% i-Hex-EtOAc to provide748 mg (99% yield)
of the title product. HPLC-MS m/z: 348/350 [M − H]+.

(4-(((Tert-butyldimethylsilyl)oxy)methyl)-2,6-dichloropyridin-3-yl)(4-
ethylphenyl)methanone (31)

The title compound was obtained according to general C using (4-(((tert-
butyldimethylsilyl)oxy)methyl)-2,6-dichloropyridin-3-yl)(4-ethylphenyl)methanol
28 (488 mg, 1.14 mmol) and Dess-Martin periodinane (582 mg, 1.37 mmol). The
crude was purified by flash chromatography on silica gel, eluting with 0–20% i-Hex-
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diethyl-ether to provide 470 mg (96% yield) of the title product. HPLC-MS m/z:
424/426 [M − H]+.

6-Chloro-3-(4-ethylphenyl)-1H-pyrazolo[3,4-b]pyridine (32)
The title compound was obtained according to general procedure D, using (2,6-

dichloropyridin-3-yl)(4-ethylphenyl)methanone 29 (1.28 g, 4.58 mmol), DIPEA (0.84 mL,
4.8 mmol) and hydrazine (5.5 mL, 5.5 mmol). The crude was purified by flash chromatog-
raphy on silica gel, eluting with 0–60% i-Hex-EtOAc to provide 995 mg (83% yield) of the
title product. HPLC-MS m/z: 258/260 [M − H]+.

6-Chloro-3-(4-ethylphenyl)-4-(trifluoromethyl)-1H-pyrazolo[3,4-b]pyridine (33)

The title compound was obtained according to general procedure D, using (2,6-
dichloro-4-(trifluoromethyl)pyridin-3-yl)(4-ethylphenyl)methanone 30 (603 mg, 1.73 mmol),
DIPEA (0.32 mL, 1.82 mmol) and hydrazine (2.08 mL, 2.08 mmol). The crude was purified
by flash chromatography on silica gel, eluting with 0–60% i-Hex-EtOAc to provide 250 mg
(43% yield) of the title product. HPLC-MS m/z: 326/328 [M − H]+.

4-(((Tert-butyldimethylsilyl)oxy)methyl)-6-chloro-3-(4-ethylphenyl)-1H-pyrazolo[3,4-
b]pyridine (34)

The title compound was obtained according to general D, using (4-(((tert-
butyldimethylsilyl)oxy)methyl)-2,6-dichloropyridin-3-yl)(4-ethylphenyl)methanone
31 (2.45 g, 5.77 mmol), DIPEA (1.06 mL, 6.06 mmol) and hydrazine (6.93 mL, 6.93 mmol).
The crude was purified by flash chromatography on silica gel, eluting with 0–60%
i-Hex-EtOAc to provide 1.03 g (43% yield) of the title product. HPLC-MS m/z:
402/404 [M − H]+.

Tert-butyl 4-(3-(4-ethylphenyl)-1H-pyrazolo[3,4-b]pyridin-6-yl)benzoate (35)

The title compound was obtained according to general procedure E using 6-
chloro-3-(4-ethylphenyl)-1H-pyrazolo[3,4-b]pyridine 32 (313 mg, 1.22 mmol), (4-
(tert-butoxycarbonyl)phenyl)boronic acid (324 mg, 1.46 mmol), K2CO3 (420 mg,
3.04 mmol) and Pd(dppf)Cl2·CH2Cl2 (99 mg, 0.12 mmol). The crude was purified by
flash chromatography on silica gel, eluting with 0–30% i-Hex-EtOAc to provide 254
mg (50% yield) of the title product. HPLC-MS m/z: 400 [M − H]+.

Tert-butyl-4-(3-(4-ethylphenyl)-4-(trifluoromethyl)-1H-pyrazolo[3,4-b]pyridin-6-
yl)benzoate (36)

The title compound was obtained according to general procedure E, using 6-chloro-3-
(4-ethylphenyl)-4-(trifluoromethyl)-1H-pyrazolo[3,4-b]pyridine 33 (250 mg, 0.768 mmol), (4-
(tert-butoxycarbonyl)phenyl)boronic acid (205 mg, 0.921 mmol), K2CO3 (265 mg, 1.92 mmol),
and Pd(dppf)Cl2·CH2Cl2 (62.7 mg, 0.077 mmol). The crude was purified by flash chro-
matography on silica gel, eluting with 0–30% i-Hex-EtOAc to provide 191 mg (49% yield)
of the title product. HPLC-MS m/z: 468 [M − H]+.

Tert-butyl-4-(4-(((tert-butyldimethylsilyl)oxy)methyl)-3-(4-ethylphenyl)-1H-pyrazolo[3,4-
b]pyridin-6-yl)benzoate (37)

The title compound was obtained according to general procedure E, using 4-(((tert-
butyldimethylsilyl)oxy)methyl)-6-chloro-3-(4-ethylphenyl)-1H-pyrazolo[3,4-b]pyridine 34
(388 mg, 0.965 mmol), (4-(tert-butoxycarbonyl)phenyl)boronic acid (257 mg, 1.16 mmol),
K2CO3 (333 mg, 2.41 mmol), and Pd(dppf)Cl2·CH2Cl2 (79 mg, 0.097 mmol). The crude
was purified by flash chromatography on silica gel, eluting with 0–30% i-Hex-EtOAc to
provide 335 mg (54% yield) of the title product. HPLC-MS m/z: 544 [M − H]+.
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Tert-butyl-4-(3-(4-ethylphenyl)-4-(hydroxymethyl)-1H-pyrazolo[3,4-b]pyridin-6-
yl)benzoate (38)

To a stirred solution of tert-butyl-4-(4-(((tert-butyldimethylsilyl)oxy)methyl)-3-(4-
ethylphenyl)-1H-pyrazolo[3,4-b]pyridin-6-yl)benzoate 37 (924 mg, 1.70 mmol) in THF
(10 mL) was added TBAF (3.4 mL, 3.4 mmol as a 1 M solution in THF) and the resulting
solution was stirred at rt for 16 h. The reaction was diluted with DCM (10 mL) and washed
with brine (2 × 5 mL). The collected organic layers were dried over MgSO4, filtered, and
evaporated under reduced pressure. The crude material was purified by flash chromatog-
raphy on silica gel, eluting with 0–60% i-Hex-EtOAc to provide 380 mg (52% yield) of the
title product as a white solid. HPLC-MS m/z: 430 [M − H]+.

Tert-butyl-4-(3-(4-ethylphenyl)-4-formyl-1H-pyrazolo[3,4-b]pyridin-6-yl)benzoate (39)

To a stirred solution of tert-butyl-4-(3-(4-ethylphenyl)-4-(hydroxymethyl)-1H-pyrazolo[3,4-
b]pyridin-6-yl)benzoate 38 (1.01 g, 2.35 mmol) in DCM (5 mL) was added MnO2 (3.07 g,
35.3 mmol) and the resulting mixture was stirred at 95 ◦C for 16 h. The reaction mixture was
filtered through celite. The filtrate was absorbed on silica and purified by flash chromatography
on silica gel, eluting with 0–50% i-Hex-EtOAc to provide 817 mg (74% yield) of the title product
as a yellow solid. LCMS m/z: 428 [M−H]+. 1H NMR in DMSO-d6 1582-97-P was consistent
with product structure at 95% purity.

Tert-butyl-4-(3-(4-ethylphenyl)-4-vinyl-1H-pyrazolo[3,4-b]pyridin-6-yl)benzoate (40)

To a stirred mixture of methyltriphenylphosphonium bromide (685 mg, 1.92 mmol) in
Et2O (10 mL) was added KOtBu (217 mg, 1.93 mmol) at 0 ◦C and the resulting mixture was
stirred at rt for 3 h. Tert-butyl-4-(3-(4-ethylphenyl)-4-formyl-1H-pyrazolo[3,4-b]pyridin-6-
yl)benzoate 39 (300 mg, 0.702 mmol) was added and the resulting mixture was stirred at rt
for a further 16 h. The reaction was absorbed on silica and purified by flash chromatography
on silica gel, eluting with 0–40% i-Hex-EtOAc, to provide 232 mg (78% yield) of the title
product as a white solid. LCMS m/z: 426 [M − H]+.

Tert-butyl-4-(4-ethyl-3-(4-ethylphenyl)-1H-pyrazolo[3,4-b]pyridin-6-yl)benzoate (41)

A mixture of tert-butyl-4-(3-(4-ethylphenyl)-4-vinyl-1H-pyrazolo[3,4-b]pyridin-
6-yl)benzoate 40 (86 mg, 0.20 mmol) and Pd/C (5%, type 87L) (27 mg, 0.10 mmol) in
EtOH (2 mL) and AcOH (1 drop) was hydrogenated at 5 bar, rt for 5 h. The reaction
was absorbed on silica and purified by flash chromatography on silica gel, eluting
with 0–40% i-Hex-EtOAc to provide 86 mg (91% yield) of the title product as a white
solid. LCMS m/z: 428 [M − H]+.

3-(4-Ethylphenyl)-6-(4-(methoxycarbonyl)phenyl)-1H-pyrazolo[3,4-b]pyridine-4-
carboxylic acid (42)

The title compound was obtained according to general procedure A using 3-(4-
ethylphenyl)-1H-pyrazol-5-amine (230 mg, 1.23 mmol), methyl 4-formylbenzoate (202
mg, 1.23 mmol) and 2-oxopropanoic acid (0.085 mL, 1.23 mmol). A precipitate was filtered
off from the reaction mixture and washed with ice-cold EtOH (3 × 1 mL) to provide 91
mg (18% yield) of the title product as a yellow solid. LCMS m/z: 402 [M + H]+. 1H NMR
(400 MHz, DMSO-d6): δ 14.20 (s, 1H), 13.76 (s, 1H), 8.47–8.33 (m, 2H), 8.19–8.10 (m, 2H),
8.06 (s, 1H), 7.57–7.48 (m, 2H), 7.31 (d, J = 8.2 Hz, 2H), 3.91 (s, 3H), 2.69 (q, J = 7.5 Hz, 2H),
1.25 (t, J = 7.6 Hz, 3H).

Methyl 4-(4-carbamoyl-3-(4-ethylphenyl)-1H-pyrazolo[3,4-b]pyridin-6-yl)benzoate (43)

To a solution of 3-(4-ethylphenyl)-6-(4-(methoxycarbonyl)phenyl)-1H-pyrazolo[3,4-
b]pyridine-4-carboxylic acid 42 (90 mg, 0.22 mmol) and DIPEA (0.196 mL, 1.12 mmol) in
DMF (5 mL) was added HATU (102 mg, 0.269 mmol). After 30 min, NH4Cl (36.0 mg,
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0.673 mmol) was added and the mixture was stirred at rt for 64 h. HATU (102 mg,
0.269 mmol) was added, and, after stirring for 60 min, NH4Cl (36.0 mg, 0.673 mmol)
and DIPEA (0.196 mL, 1.12 mmol) were added sequentially and the mixture was stirred
for a further 20 h. The reaction mixture was diluted with water (20 mL) and the resulting
precipitate was collected by filtration and washed with water (5 mL). The resulting solid
was dissolved in EtOAc (25 mL), dried over MgSO4, filtered and concentrated under
reduced pressure. The crude material was purified by flash chromatography on silica gel,
eluting with 0–50% THF/Hexane to provide 70 mg (74% yield) of the title product as a
white solid. LCMS m/z: 401 [M + H]+. 1H NMR (400 MHz, DMSO-d6): δ 14.14 (s, 1H),
8.53–8.39 (m, 2H), 8.20 (dd, J = 8.6, 1.9 Hz, 3H), 7.94 (s, 1H), 7.87 (s, 1H), 7.73–7.64 (m, 2H),
7.35 (d, J = 8.2 Hz, 2H), 3.97 (s, 3H), 2.74 (q, J = 7.6 Hz, 2H), 1.31 (t, J = 7.6 Hz, 3H).

6-(4-Carboxy-3-fluorophenyl)-3-(4-ethylphenyl)-1H-pyrazolo[3,4-b]pyridine-4-carboxylic
acid (1)

The title compound was obtained according to general procedure F, using ethyl-3-
(4-ethylphenyl)-6-(3-fluoro-4-(methoxycarbonyl)phenyl)-1H-pyrazolo[3,4-b]pyridine-
4-carboxylate 16 (67 mg, 0.15 mmol) and LiOH (17.93 mg, 0.749 mmol). The resulting
solid was collected by filtration, washed with water and dried under vacuum to
provide 49 mg (77% yield) of the title product. 1H NMR (DMSO-d6, 500 MHz): δ
14.19 (br s, 1H), 13.58 (br s, 2H), 8.20–8.10 (m, 2H), 8.07 (s, 1H), 8.03 (t, J = 7.9 Hz,
1H), 7.52 (d, J = 7.9 Hz, 2H), 7.30 (d, J = 7.9 Hz, 2H), 2.68 (q, J = 7.6 Hz, 2H), 1.24 (t,
J = 7.6 Hz, 3H); 13C NMR (125 MHz, DMSO-d6): δ 168.0, 165.2, 162.0, 154.0, 153.5,
144.8, 144.4, 144.0, 138.1, 133.1, 131.5, 128.9, 127.9, 123.4, 120.5, 115.8, 113.7, 108.1, 28.4,
16.0; HPLC-MS m/z: 406 [M + H]+; HRMS m/z: calcd for C22H16FN3O4 [M + H]+
406.1198, found 406.1201.

6-(4-Carboxy-2-fluorophenyl)-3-(4-ethylphenyl)-1H-pyrazolo[3,4-b]pyridine-4-carboxylic
acid (2)

The title compound was obtained according to general procedure F, using ethyl-3-(4-
ethylphenyl)-6-(2-fluoro-4-(methoxycarbonyl)phenyl)-1H-pyrazolo[3,4-b]pyridine-4-carboxylate
17 (72 mg, 0.16 mmol) and LiOH (40 mg, 1.7 mmol). The resulting solid was collected by filtra-
tion, washed with water/TBME/i-Hex (2.5:1:2.5) and dried under vacuum to provide 62 mg
(94% yield) of the title product. 1H NMR (500 MHz, DMSO-d6): δ 14.27 (br s, 1H), 13.58 (br s,
1H), 8.16 (t, J = 7.9 Hz, 1H), 7.96 (dd, J = 1.4, 8.2 Hz, 1H), 7.89–7.80 (m, 2H), 7.52 (d, J = 7.9 Hz,
2H), 7.31 (d, J = 8.1 Hz, 2H), 2.69 (q, J = 7.5 Hz, 2H), 1.25 (t, J = 7.6 Hz, 3H); 13C NMR (125 MHz,
DMSO-d6): δ 167.8, 166.4, 160.2, 153.9, 151.6, 144.8, 144.0, 137.3, 134.3, 132.0, 131.6, 130.8, 129.0,
127.8, 126.1, 117.6, 116.8, 107.7, 28.4, 16.0; HPLC-MS m/z: 406 [M + H]+; HRMS m/z: calcd for
C22H16FN3O4 [M + H]+ 406.1198, found 406.1204.

6-(3-Carboxyphenyl)-3-(4-ethylphenyl)-1H-pyrazolo[3,4-b]pyridine-4-carboxylic acid (3)

The title compound was obtained according to general procedure F, using ethyl-3-(4-
ethylphenyl)-6-(3-(methoxycarbonyl)phenyl)-1H-pyrazolo[3,4-b]pyridine-4-carboxylate 18
(122 mg, 0.273 mmol) and LiOH (6.5 mg, 0.27 mmol). The resulting solid was collected by
filtration, washed with water/TBME (2:1) and dried under vacuum to provide 90.5 mg
(85% yield) of the title product. 1H NMR (500 MHz, DMSO-d6): δ 14.16 (br s, 1H), 13.94–
12.94 (m, 2H), 8.83 (s, 1H), 8.47 (d, J = 7.9 Hz, 1H), 8.08 (d, J = 7.8 Hz, 1H), 8.04 (s, 1H), 7.70
(t, J = 7.8 Hz, 1H), 7.52 (d, J = 8.1 Hz, 2H), 7.31 (d, J = 8.1 Hz, 2H), 2.69 (q, J = 7.6 Hz, 2H),
1.25 (t, J = 7.6 Hz, 3H); 13C NMR (125 MHz, DMSO-d6): δ 168.0, 167.6, 155.1, 154.2, 144.7,
143.9, 138.7, 137.6, 132.0, 131.9, 131.7, 130.9, 129.9, 128.9, 128.4, 127.9, 113.4, 107.7, 28.4, 16.0;
HPLC-MS m/z: 388 [M + H]+; HRMS m/z: calcd for C22H17N3O4 [M + H]+ 388.1292,
found 388.1287.
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6-(4-(Carboxymethyl)phenyl)-3-(4-ethylphenyl)-1H-pyrazolo[3,4-b]pyridine-4-carboxylic
acid (4)

The title compound was obtained according to general procedure F, using ethyl-3-(4-
ethylphenyl)-6-(4-(2-methoxy-2-oxoethyl)phenyl)-1H-pyrazolo[3,4-b]pyridine-4-carboxylate 19
(94 mg, 0.21 mmol) and LiOH (30.5 mg, 1.27 mmol). The resulting solid was collected by
filtration, washed with water and dried under vacuum to provide 74.8 mg (87% yield) of
the title product. 1H NMR (500 MHz, DMSO-d6): δ 14.07 (br s, 1H), 13.80–12.23 (m, 2H),
8.18 (d, J = 8.1 Hz, 2H), 7.95 (s, 1H), 7.51 (d, J = 8.1 Hz, 2H), 7.45 (d, J = 8.2 Hz, 2H), 7.30
(d, J = 7.9 Hz, 2H), 3.68 (s, 2H), 2.68 (q, J = 7.5 Hz, 2H), 1.25 (t, J = 7.6 Hz, 3H); 13C NMR
(125 MHz, DMSO-d6): δ 173.0, 168.1, 156.0, 154.2, 144.6, 143.9, 137.4, 137.3, 136.8, 131.8,
130.5, 128.9, 127.8, 127.6, 113.3, 107.3, 40.9, 28.4, 16.0; HPLC-MS m/z: 402 [M + H]+; HRMS
m/z: calcd for C23H19N3O4 [M + H]+ 402.1448, found 402.1439.

6-(2,5-Difluoro-4-hydroxyphenyl)-3-(4-ethylphenyl)-1H-pyrazolo[3,4-b]pyridine-4-
carboxylic acid (5)

The title compound was obtained according to general procedure F, using ethyl-6-(2,5-
difluoro-4-hydroxyphenyl)-3-(4-ethylphenyl)-1H-pyrazolo[3,4-b]pyridine-4-carboxylate 20
(35 mg, 0.083 mmol) and LiOH (19.8 mg, 0.827 mmol). The resulting solid was collected
by filtration, washed with water/Hex (1:2) and dried under vacuum to provide 25 mg
(75% yield) of the title product. 1H NMR (500 MHz, DMSO-d6): δ 14.11 (br s, 1H), 13.68
(br s, 1H), 10.95 (br s, 1H), 7.84 (dd, J = 7.3, 11.9 Hz, 1H), 7.77 (d, J = 0.9 Hz, 1H), 7.49 (d,
J = 8.1 Hz, 2H), 7.30 (d, J = 8.1 Hz, 2H), 6.95 (dd, J = 7.3, 12.4 Hz, 1H), 2.68 (q, J = 7.6 Hz,
2H), 1.24 (t, J = 7.6 Hz, 3H); 13C NMR (125 MHz, DMSO-d6): δ 167.8, 156.8, 153.9, 151.7,
148.1, 148.5, 144.7, 143.9, 136.8, 131.7, 128.9, 127.8, 117.3, 117.1, 116.3, 107.1, 106.1, 28.4, 16.0;
HPLC-MS m/z: 396 [M + H]+; HRMS m/z: calcd for C21H15N3O3 [M + H]+ 396.1154,
found 396.1153.

6-(3,5-Difluoro-4-hydroxyphenyl)-3-(4-ethylphenyl)-1H-pyrazolo[3,4-b]pyridine-4-
carboxylic acid (6)

The title compound was obtained according to general procedure F, using ethyl-6-(3,5-
difluoro-4-hydroxyphenyl)-3-(4-ethylphenyl)-1H-pyrazolo[3,4-b]pyridine-4-carboxylate 21
(191 mg, 0.451 mmol) and LiOH (108 mg, 4.51 mmol). The crude was crystallized from
EtOH to provide 51 mg (27% yield) of the title product. 1H NMR (300 MHz, DMSO-d6): δ
14.03 (br s, 1H), 13.65 (br s, 1H), 10.72 (s, 1H), 8.02–7.87 (m, 3H), 7.50 (d, J = 8.1 Hz, 2H),
7.30 (d, J = 8.3 Hz, 2H), 2.68 (q, J = 8.0 Hz, 1H), 1.24 (t, J = 7.6 Hz, 3H); 13C NMR (125
MHz, DMSO-d6): δ 168.1, 153.9, 153.0, 144.6, 143.9, 137.5, 135.9, 131.6, 129.2, 128.8, 128.4,
127.9, 112.8, 111.1, 107.3, 28.4, 16.0; HPLC-MS m/z: 396 [M + H]+; HRMS m/z: calcd for
C21H15N3O3 [M + H]+ 396.1154, found 396.1152.

6-(2,3-Difluoro-4-hydroxyphenyl)-3-(4-ethylphenyl)-1H-pyrazolo[3,4-b]pyridine-4-
carboxylic acid (7)

The title compound was obtained according to general procedure F, using ethyl-6-(2,3-
difluoro-4-hydroxyphenyl)-3-(4-ethylphenyl)-1H-pyrazolo[3,4-b]pyridine-4-carboxylate 22
(85 mg, 0.20 mmol) and LiOH (48.1 mg, 2.01 mmol). The resulting solid was collected by
filtration, washed with water/ i-Hex (1:2) and dried under vacuum to provide 62.5 mg
(78% yield) of the title product. 1H NMR (400 MHz, DMSO-d6): δ 14.21 (br s, 1H), 13.77
(br s, 1H), 11.00 (br s, 1H), 7.80 (d, J = 1.8 Hz, 1H), 7.75 (dt, J = 2.2, 8.7 Hz, 1H), 7.55 (d,
J = 8.2 Hz, 2H), 7.36 (d, J = 8.3 Hz, 2H), 7.10–6.98 (m, 1H), 2.74 (q, J = 7.6 Hz, 2H), 1.30 (t,
J = 7.6 Hz, 3H); 13C NMR (125 MHz, DMSO-d6): δ 167.8, 153.9, 152.1, 150.0, 148.5, 144.7,
143.9, 140.4, 136.8, 131.7, 128.9, 127.8, 125.2, 118.8, 116.2, 113.8, 107.1, 28.4, 16.0; HPLC-MS
m/z: 396 [M + H]+; HPLC-MS m/z: 396 [M + H]+; HRMS m/z: calcd for C21H15N3O3
[M + H]+ 396.1154, found 396.1153.
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6-(3-Chloro-4-hydroxy-5-methoxyphenyl)-3-(4-ethylphenyl)-1H-pyrazolo[3,4-b]pyridine-
4-carboxylic acid (8)

The title compound was obtained according to general F, using ethyl-6-(3-chloro-4-
hydroxy-5-methoxyphenyl)-3-(4-ethylphenyl)-1H-pyrazolo[3,4-b]pyridine-4-carboxylate 23
(53 mg, 0.12 mmol) and LiOH (28 mg, 1.169 mmol). The resulting solid was collected by
filtration, washed with water/Hex (1:2) and dried under vacuum to provide 41 mg (82%
yield) of the title product. 1H NMR (400 MHz, DMSO-d6): δ 14.03 (s, 1H), 13.70 (br s, 1H),
9.97 (s, 1H), 8.01 (s, 1H), 7.89 (d, J = 2.0 Hz, 1H), 7.78 (d, J = 2.0 Hz, 1H), 7.51 (d, J = 8.2 Hz,
2H), 7.31 (d, J = 8.3 Hz, 2H), 3.99 (s, 3H), 2.68 (q, J = 7.6 Hz, 2H), 1.25 (t, J = 7.6 Hz, 3H);
13C NMR (125 MHz, DMSO-d6): δ 168.2, 154.9, 154.0, 149.4, 145.1, 144.5, 143.9, 137.4, 131.7,
129.7, 128.8, 127.9, 121.1, 120.9, 112.8, 109.6, 107.0, 56.9, 28.4, 16.0; HPLC-MS m/z: 424.0
[M + H]+; HRMS m/z: calcd for C22H18ClN3O4 [M + H]+ 424.1059, found 424.1054.

6-(3-Chloro-5-fluoro-4-hydroxyphenyl)-3-(4-ethylphenyl)-1H-pyrazolo[3,4-b]pyridine-4-
carboxylic acid (9)

The title compound was obtained according to general procedure F, using ethyl-6-
(3-chloro-5-fluoro-4-hydroxyphenyl)-3-(4-ethylphenyl)-1H-pyrazolo[3,4-b]pyridine-
4-carboxylate 24 (104 mg, 0.236 mmol) and LiOH (57.6 mg, 2.36 mmol). The resulting
solid was collected by filtration, washed with water and dried under vacuum to
provide 86 mg (87% yield) of the title product. 1H NMR (500 MHz, DMSO-d6): δ
14.05 (br s, 1H), 13.70 (br s, 1H), 10.95 (br s, 1H), 8.14 (s, 1H), 8.08 (dd, J = 2.1, 12.0 Hz,
1H), 7.99 (s, 1H), 7.50 (d, J = 8.1 Hz, 2H), 7.30 (d, J = 8.1 Hz, 2H), 2.68 (q, J = 7.6 Hz,
2H), 1.24 (t, J = 7.6 Hz, 3H); 13C NMR (125 MHz, DMSO-d6): δ 168.1, 153.9, 153.7,
152.6, 144.6, 143.9, 143.6, 137.6, 131.6, 130.0, 128.8, 127.9, 124.5, 123.1, 114.0, 112.8,
107.3, 28.4, 16.0; HPLC-MS m/z: 412 [M + H]+.

4-(3-(4-Ethylphenyl)-1H-pyrazolo[3,4-b]pyridin-6-yl)benzoic acid (10)

The title compound was obtained according to general procedure G, using tert-butyl
4-(3-(4-ethylphenyl)-1H-pyrazolo[3,4-b]pyridin-6-yl)benzoate 35 (252 mg, 0.631 mmol),
TFA/DCM (1:1, 4 mL). The crude was purified by flash chromatography on silica gel,
eluting with 0–100% i-Hex-EtOAc with1% AcOH, to provide 95 mg (43% yield) of the
title product. 1H NMR (300 MHz, DMSO-d6): δ 13.86 (br s, 1H), 13.10 (br s, 1H), 8.67 (d,
J = 8.6 Hz, 1H), 8.32 (d, J = 8.7 Hz, 2H), 8.11 (d, J = 8.6 Hz, 2H), 7.98 (d, J = 8.3 Hz, 2H), 7.94
(d, J = 8.6 Hz, 1H), 7.39 (d, J = 8.3 Hz, 2H), 2.69 (q, J = 7.6 Hz, 2H), 1.25 (t, J = 7.6 Hz, 3H);
13C NMR (75 MHz, DMSO-d6): δ 167.1, 154.2, 153.2, 144.0, 142.8, 142.4, 131.6, 131.5, 130.6,
129.9, 128.4, 127.3, 126.5, 114.9, 111.5, 28.0, 15.6; HPLC-MS m/z: 344 [M + H]+; HRMS m/z:
calcd for C21H17N3O2 [M + H]+ 344.1393, found 344.1381.

4-(3-(4-Ethylphenyl)-4-(trifluoromethyl)-1H-pyrazolo[3,4-b]pyridin-6-yl)benzoic acid (11)

The title compound was obtained according to general procedure G, using tert-butyl-4-
(3-(4-ethylphenyl)-4-(trifluoromethyl)-1H-pyrazolo[3,4-b]pyridin-6-yl)benzoate 36 (190 mg,
0.406 mmol), TFA/DCM (1:1, 4 mL). The crude was purified by flash chromatography on
silica gel, eluting with 0-100% i-Hex-EtOAc with 1% AcOH to provide 58 mg (34% yield)
of the title product. 1H NMR (300 MHz, DMSO-d6): δ 14.49 (br s, 1H), 13.17 (br s, 1H),
8.46–8.34 (m, J = 8.6 Hz, 2H), 8.18 (s, 1H), 8.16–8.08 (m, J = 8.6 Hz, 2H), 7.47–7.40 (m, 2H),
7.36–7.30 (m, 2H), 2.71 (q, J = 7.7 Hz, 2H), 1.26 (t, J = 7.6 Hz, 3H); 13C NMR (75 MHz,
DMSO-d6): δ 166.9, 154.8, 153.5, 143.9, 141.0, 132.1, 130.8, 130.7, 129.8, 129.4, 128.0, 127.5,
127.2, 122.0, 111.6, 106.5, 27.9, 15.4; HPLC-MS m/z: 412 [M + H]+; HRMS m/z: calcd for
C22H16F3N3O2 [M + H]+ 412.1267, found 412.1264.

4-(3-(4-Ethylphenyl)-4-(hydroxymethyl)-1H-pyrazolo[3,4-b]pyridin-6-yl)benzoic acid (12)

The title compound was obtained according to general procedure H, using tert-butyl-4-
(3-(4-ethylphenyl)-4-(hydroxymethyl)-1H-pyrazolo[3,4-b]pyridin-6-yl)benzoate 38 (70 mg,
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0.16 mmol) and 4 M HCl in 1,4-dioxane (407 µL, 1.63 mmo). The crude was purified by
flash chromatography on silica gel, eluting with 0-80% i-Hex-EtOAc with 1% AcOH to
provide 41 mg (65% yield) of the title product. 1H NMR (300 MHz, DMSO-d6): δ 13.82 (br
s, 1H), 13.09 (br s, 1H), 8.27 (d, J = 8.4 Hz, 2H), 8.11 (d, J = 8.4 Hz, 2H), 7.94 (s, 1H), 7.58
(d, J = 8.1 Hz, 2H), 7.35 (d, J = 8.2 Hz, 2H), 5.50 (br s, 1H), 4.73 (s, 2H), 2.71 (q, J = 7.6 Hz,
2H), 1.26 (t, J = 7.6 Hz, 3H); 13C NMR (125 MHz, DMSO-d6): δ 167.6, 155.0, 153.4, 148.4,
144.9, 144.4, 143.2, 132.3, 131.9, 130.4, 129.7, 128.1, 127.6, 111.5, 110.2, 60.5, 28.4, 16.0; HPLC-
MS m/z: 374 [M + H]+; HRMS m/z: calcd for C22H19N3O3 [M + H]+ 374.1499, found
374.1497.

4-(4-Ethyl-3-(4-ethylphenyl)-1H-pyrazolo[3,4-b]pyridin-6-yl)benzoic acid (13)

The title compound was obtained according to general procedure H, using tert-butyl-4-
(4-ethyl-3-(4-ethylphenyl)-1H-pyrazolo[3,4-b]pyridin-6-yl)benzoate 41 (85 mg, 0.20 mmol)
and 4 M HCl in 1,4-dioxane (0.5 mL, 2.0 mmol). The crude was purified by flash chromatog-
raphy on silica gel, eluting with 0–100% i-Hex-EtOAc with 1% AcOH to provide 23 mg
(31% yield) of the title product. 1H NMR (300 MHz, DMSO-d6): δ 13.77 (br s, 1H), 13.07 (br
s, 1H), 8.31 (d, J = 8.5 Hz, 2H), 8.09 (d, J = 8.4 Hz, 2H), 7.72 (s, 1H), 7.55 (d, J = 8.1 Hz, 2H),
7.36 (d, J = 8.1 Hz, 2H), 2.88 (q, J = 7.6 Hz, 2H), 2.71 (q, J = 7.5 Hz, 2H), 1.26 (t, J = 7.6 Hz,
3H), 1.05 (t, J = 7.5 Hz, 3H); 13C NMR (125 MHz, DMSO-d6): δ 167.6, 154.9, 153.6, 149.8,
145.2, 144.3, 143.2, 132.5, 131.9, 130.2, 129.9, 128.1, 127.7, 114.4, 112.0, 28.4, 26.0, 16.0, 14.6;
HPLC-MS m/z: 372 [M + H]+; HRMS m/z: calcd for C23H21N3O2 [M + H]+ 372.1706,
found 372.1708.

4-(4-Carbamoyl-3-(4-ethylphenyl)-1H-pyrazolo[3,4-b]pyridin-6-yl)benzoic acid (14)

To a solution of methyl 4-(4-carbamoyl-3-(4-ethylphenyl)-1H-pyrazolo[3,4-b]pyridin-
6-yl)benzoate 43 (70 mg, 0.18 mmol) in MeOH (1 mL), THF (1 mL), water (1 mL) was
added LiOH (32 mg, 1.4 mmol). After stirring at rt for 4 h, the mixture was diluted with
water (5 mL), acidified to pH 2 by addition of 2 M aqueous HCl, filtered and washed with
water (2 × 1 mL). The crude product was slurred in H2O/EtOH (1:2, 5 mL) for 4 h then
filtered and washed with ice cold EtOH (2 × 1 mL) to provide 15.5 mg (23% yield) of
the title product as a white solid. 1H NMR (400 MHz, DMSO-d6): δ 14.07 (s, 1H), 13.14
(s, 1H), 8.45–8.29 (m, 2H), 8.18–8.05 (m, 3H), 7.87 (s, 1H), 7.81 (s, 1H), 7.66–7.58 (m, 2H),
7.29 (d, J = 8.2 Hz, 2H), 2.68 (q, J = 7.6 Hz, 2H), 1.25 (t, J = 7.6 Hz, 3H); 13C NMR (125
MHz, DMSO-d6): δ 168.8, 167.5, 154.7, 154.1, 144.6, 143.9, 142.5, 141.7, 132.0, 131.4, 130.4,
128.8, 127.8, 127.8, 113.0, 107.9, 28.4, 15.9; LCMS m/z: 387 [M + H]+; HRMS m/z: calcd for
C22H18N4O3 [M + H]+ 387.1452, found 387.1430.

3.3. Protein Production and Purification

The blaOXA gene coding for the OXA-48 ß-lactamase, originally cloned from the K.
pneumonia 11978 (a clinical isolate from Istanbul Faculty Hospital, Istanbul, Turkey) was
overexpressed via a T7 expression system in E. coli BL21(DE3) [74,75], and its product,
native protein, (final yield of 30 mg/L of culture) was subjected to several purification
steps, including ion-exchange chromatography with Q-Sepharose and 20 mM Tris-HCl
buffer (pH 9.0), followed by chromatography with S-Sepharose columns and 100 mM
sodium phosphate buffer (pH 5.8). Elution of the beta-lactamase was performed with a
K2SO4 gradient. Peaks of beta-lactamase activity were concentrated and were dialyzed
with 100 mM phosphate buffer (pH 7.0). The OXA-48 enzyme was purified to homogeneity
(with a degree of purity around 95.4%.)-as measured by 12% SDS PAGE [23]. OXA-48
protein stock solution (2 mg/mL) was finally prepared in 20 mM Hepes (pH 8,1). OXA-48
β-lactamase specific activity was measured by following the hydrolysis of 100 µM nitrocefin
(ε: 17,000 M-1 cm−1 at 482 nm; ∆ε: 15,000 M-1 cm−1 at 482 nm) and corresponding to
60.45 µmoles min−1 mg−1 of OXA-48 (kcat = 28.85 s−1) enzyme. A MW of 28,147 g/mol,
calculated from the enzyme sequence was confirmed by MALDI-TOF analysis with a Mass
error of ±2.8 Da.
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3.4. X-ray Crystallography

OXA-48 crystals with ID2 and ID3 compounds were grown using the sitting drop
vapor diffusion method. The protein, starting from a solution Hepes 20 mM pH 8.1, was
concentrated up to 7.5–8.5 mg/mL using Amicon Ultra (Merck) centrifugal concentrators
and the ligands ID2 and ID3 added in large excess (6.5:1) and incubated overnight at
4 ◦C. A further step of purification was performed by gel filtration (Superdex 75 10/300
GL column; GE Healthcare) in buffer 20 mM HEPES pH 7.5 to remove the excess of the
ligands. Crystals of the two complexes were obtained after few days by the vapor diffusion
method at 18 ◦C using a sitting-drop setup made by mixing 2 µL of protein solution
(7.5–8.5 mg/mL, in 20mM HEPES, pH 7.5) with 2 µL of reservoir solution (0.1 M HEPES,
pH 7.5, 12% PEG8000, 8% 1-butanol). The best crystals were flash cooled in liquid nitrogen
after cryoprotection. X-ray data were collected at 100 K on the ID29 beamlines at the
European Synchrotron Radiation Facility (ESRF; Grenoble; France). Crystals of OXA-48 in
complex with ID2 and ID3 belong to the space group P212121 and diffracted to a maximum
resolution of 1.65 and 2.1 Å, respectively (Supplementary Table S3). The collected data were
processed using the programs MOSFLM/SCALA [76]. Crystal structures were solved with
AMoRe [77], using as starting model the coordinates of OXA-48 apo structure (PDB code:
3HBR). The coordinates were then refined with CNS [78] and a final step of refinement was
performed with the software Phenix [79]. Statistics of crystallographic data and refinement
are summarized in Table S3. The atomic coordinates and structure factors have been
deposited in the Protein Data Bank, www.pdb.org (PDB code 7AUX and 7AW5 for ID2
and ID3, respectively).

The two complexes were processed using the Protein Preparation Wizard tool supplied
with the Schrödinger modeling suite [80,81]. Fully atom-typed structures were obtained
with default setting calculation. Figures 13 and 14, and Supplementary Figures S2 and S3
were made using VMD 1.9.4 [82].

3.5. Primary Enzymatic Assay for OXA-48

The primary assay was developed to monitor the enzymatic activity of OXA-48
taking advantage of the spectroscopic properties of white microtiter plates (Optiplate-
384, PerkinElmer, #6007290), as indicated by Zuck et al. [83]. Nitrocefin is chromogenic
substrate for beta-lactamases with λmax = 395 nm (yellow). Upon hydrolysis by OXA-
48, nitrocefin yields (2R)-2-[(R)-carboxy[2-(thiophen-2-yl)acetamido]methyl]-5-[(E)-2-(2,4-
dinitrophenyl)ethenyl]-3,6-dihydro-2H-1,3-thiazine-4-carboxylic acid, with increased ab-
sorbance properties at λmax = 495 nm. Spectroscopic features of the reaction product are
exploited to quench the plate intrinsic fluorescence by absorbing the plate’s emission light,
which can be monitored by exciting the reaction at 485 nm and recording the emission
at 520 nm. Therefore, the primary assay for HTS was an ON-assay, in which compounds
targeting OXA-48 were predicted to elicit an increase of the fluorescence signal.

The primary assay was performed in reaction buffer (20 mM Hepes pH 8.0, 12.5 mM
NaCl, 0.005% BSA, 0.0005% Brij-35) in the presence of 0.0014 ng/µL OXA-48 and 25 µM
nitrocefin in a final volume of 20 µL/well in 384 MTP format. If not otherwise indicated,
compounds (50 mM stock solutions in 100% DMSO) were stepwise diluted to 0.5% DMSO
in reaction buffer and preincubated with OXA-48 for 15 min before the reaction start with
nitrocefin. Reactions were read in kinetics or as endpoint after 60 min at rt. The addition
steps of the automated protocol applied for the screening campaign were accomplished by
a CyBi®-Well Vario dispensing units integrated in the automated screening station.

3.6. Counter-Screening Assay

The counter-screening was implemented as negative selection of true-positive hit com-
pounds targeting OXA-48 with the identification of putative false-positive hits interfering
with the corresponding readout system, i.e., compounds displaying an autofluorescent
signal which was not quenched by the reaction product of nitrocefin hydrolysis. Counter-

www.pdb.org
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screening assay was run after the HC phase and also after the HE phase, to filter out
compounds with possible off-target interfering behavior.

Basically, the enzymatic reaction was assembled by adding first the OXA-48 enzyme
mix and the nitrocefin substrate mix under the same working concentrations and exper-
imental conditions described for the primary assay for HTS, but in the absence of the
compounds to be analyzed. After 60 min of enzymatic reaction, plate fluorescence was
measured at 520 nm upon excitation at 485 nm before and after the injection of selected
compounds at the equivalent concentration applied with the primary assay. The assay was
performed with interplate triplicates. Hit compounds which confirmed their activity with
the counter-screening assay were flagged as putative false-positive hits and excluded from
the subsequent selection.

3.7. HTS Campaign Mathematical Background

Raw data from the primary enzymatic assay were normalized versus neutral and
inhibitor controls in order to obtain the activity [%] using the following formula (1)

Activity [%] = −100 ∗ ( x− < NeutralControls >
< InhibitorControls > − < NeutralControls >

) (1)

where:
x is the calculated signal value of a well
< NeutralControl > is the median of the calculated signal values for the central

reference wells of a plate (median of enzymatic reaction occurred in presence of DMSO)
< InhibitorControl > is the median of the calculated signal values for the scale reference

wells of a plate (median of enzymatic reaction occurred in presence of tazobactam IC100)
The activity [%] was used for computation of Robust Z Prime Factor (RZ’ Factor) using

formula (2). It is based on the same formulas as the Z’ Factor [51], but standard deviations
and means are replaced by the Robust Standard Deviations (RSD) and medians (“< >”),
respectively.

RZ′ = 1− 3 ∗ (RSDNeutralControls + RSDinhibitorControls
Abs(〈NeutralConttrols〉 − 〈InhibitorControls〉 (2)

RZ’ Factor was used as plate quality criteria, including in the analysis only those
plates having a RZ’ > 0.5.

3.8. Mechanism of Action of OXA-48 Inhibiotors

The nature of the inhibition of the compounds was studied on the OXA-48 primary
assay to assess the reversibility of the inhibition mechanism by analyzing a subset of test
compounds for their time-dependent inhibition of OXA-48 and their ability to retain their
inhibition properties in dilution-after-preincubation experiments.

3.8.1. Time-Dependent Inhibition of OXA-48

In order to investigate whether the compounds acted as reversible or non-reversible
inhibitors of the OXA-48 catalytic activity, dose–response curve of reference inhibitor
tazobactam (10 concentrations from 46.2 µM to 0.001 µM; fold dilution 1:3.16) and test
compounds ID1 and ID2 (10 concentrations from 100 µM to 0.0032 µM; fold dilution 1:3.16)
were preincubated with OXA-48 enzyme to measure the time-dependent inhibition of each
compound. Experimental conditions were identical to the ones applied for the primary
assay for HTS: 20 µL of 2X compounds with 1% DMSO; 10 µL 4X enzyme (0.0014 ng/µL
OXA-48 final concentration) were dispensed into preincubation plate. The reaction buffer
was: 20 mM Hepes pH 8.0, 12.5 mM NaCl, 0.005% BSA-pf, 0.0005% Brij-35.

Preincubation time was for a period spanning from 0 up to 240′ at rt between enzyme
and compounds and for 15′ at rt between enzyme and control wells. The reactions were
started by transferring of 15 µL of enzyme-compounds or enzyme-control from preincu-
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bation plate into assay plate adding 5 µL 4X nitrocefin substrate (25 µM final concentra-
tion) at different time points, at 0 (i.e., no preincubation)–15–30–60–90–120–180–240 min
of preincubation between OXA-48 and compounds. Reading was at PHERAstar (BMG
Labtechnologies), in kinetic for up to 60′ (λex: 485 nm; λem: 520 nm). Data were analyzed to
determine the respective AC50 values obtained at all the tested preincubation time points.

a. If the AC50 value was independent on the preincubation time with OXA-48, the
compound was assigned as reversible inhibitor.

b. If the AC50 value was inversely proportional to the preincubation time with OXA-48,
the compound was assigned as non-reversible inhibitor.

3.8.2. Dilution after Preincubation of OXA-48 with Selected Inhibitors

In order to validate the results obtained in the time-dependent inhibition assay, dose–
response curves of reference inhibitor tazobactam, test compounds and enzyme mix were
prepared as above described and 5-fold concentrated. Compounds (20 µL of 10X com-
pounds) and enzyme (10 µL 20X enzyme in order to have a 0.0014 ng/µL OXA-48 final
concentration) were preincubated for a time period of 60 min with the selected compounds
and 90 min with tazobactam. The preincubation time was identified in the time-dependent
inhibition experiment as suitable to detect a shift of the IC50 value. At the end of preincuba-
tion, the mix was diluted 1:5 times to restore the standard assay conditions as described for
time-dependent inhibition. The reactions were started by transferring of 15 µL of enzyme-
compounds or control diluted from preincubation plate into assay plate and adding 5 µL
4X nitrocefin substrate (25 µM final concentration) after 60 or 90 min. In parallel, a control
experiment was assembled under the same conditions, but omitting the preincubation time
between compounds and OXA-48.

The following criteria were applied to assign the mechanism of action of the compounds:
a. If the AC50 value observed in the standard assay conditions was substantially

unaffected by the preincubation with the 5X samples, the corresponding compound was
classified as putative reversible inhibitor.

b. If the AC50 value was significantly decreased by the preincubation with the 5X
samples, the corresponding compound was classified as putative non-reversible inhibitor.

3.8.3. Determination of the Apparent Km and Vmax of Nitrocefin in the Presence of AC30,
AC50 or AC70 of the Selected Inhibitors

In this study, the characterization of the type of reversible inhibition was performed
by the determination of the apparent Km and Vmax of nitrocefin in the presence of three
concentrations of the selected inhibitors.

Stock AC30, AC50, and AC70 solutions for selected compounds were prepared at 200X
in 100% DMSO. 2X compounds were prepared by diluting stock AC30, AC50 and AC70
solutions 1:100 in 1X reaction buffer.

20 µL of 2X compounds with 1% DMSO; 10 µL 4X enzyme (0.0014 ng/µL OXA-48
final concentration) were dispensed into preincubation plate and kept for 15′ at rt. The
reactions were started by transferring 15 µL of enzyme-compounds or enzyme-control
from preincubation plate into assay plate and adding 5 µL 4X nitrocefin substrate solutions
(50–25–12.5–6.25–3.125–1.56–0.78–0 µM final concentrations) ranging from limiting concen-
trations (typically ≤ 3-fold Km value) up to saturating concentrations (typically ≥ 5-fold
Km value). Each compound ACn was tested in duplicate against each dose of nitrocefin.
Compound activity was quantified on the fluorescence signal measured at 520 nm (kinetic
measurement for 60 min of reaction). The initial velocity (V0) of the reaction was computed
in the first 300′’ of measurements as robust slope. The slopes computed by Genedata
Screener 13.0.5. were copied in GraphPad Prism (version 7.00, GraphPad Software Inc.) for
the Michaelis-Menten analysis and the Lineweaver-Burk analysis. The average of slope
replicates (n = 2) was transformed into double-reciprocal and linear regression analysis
was applied.

The following criteria were applied to assign the type of reversible inhibition of
the compounds:
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a. When the Vmax value was independent from inhibitor concentration and the
Km value of the substrate was directly proportional to the inhibitor concentration, the
corresponding compound was assigned as competitive inhibitor.

b. When the Vmax value was inversely proportional to the inhibitor concentration and
the Km value of the substrate was substantially independent from inhibitor concentration,
the corresponding compound was assigned as non-competitive inhibitor.

c. When the Vmax value and the Km value of the substrate were both inversely
proportional to the inhibitor concentration, the corresponding compound was assigned as
uncompetitive inhibitor.

3.8.4. Determination of the Ki and a Values

V0 data obtained for the determination of apparent Km and Vmax of nitrocefin in the
presence of three concentrations of the selected inhibitors, were used for the computation
of Ki and a values using in GraphPad Prism (version 8.00, GraphPad Software Inc.) the
mixed model inhibition/nonlinear regression curve fit method.

3.9. MICs Assays

All BLIs were dissolved in 100% DMSO and they were tested at a fixed concentration
of 32 µg/mL and 1% of DMSO final concentration. Avibactam was used as reference β-
lactamase inhibitor. All antimicrobials were prepared in line with CLSI susceptibility testing
standards [66]. AMP (USP # 1033000; batch no. K1M493) was dissolved at 5.12 mg/mL,
IMP (USP # 1337809; batch no. R038R0) and avibactam (Biochem # NXL 104; batch no.
20180726) were dissolved at 1.28 mg/mL in the respective solvents recommended by
CLSI (2). Solutions at 4X the final concentrations of the test range were made in Cation
adjusted Mueller-Hinton broth (CA-MHB, BD # 212322; batch no. 6117994; Expiry date:
29.02.2020) by serial dilutions, and then diluted 2-fold with CA-MHB (for antimicrobials
alone), or with the BLIs/avibactam (for combinations of new/reference inhibitors and
antimicrobials). Moreover, all BLIs were tested alone at a fixed concentration of 32 µg/mL.
The final concentration of DMSO in the test tubes was 1% for each different combination.

50 µL of each well were then transferred from the masterblock into 96-well plates to
whom were then added 50 µL of the final inoculum. MIC tests were performed by broth
microdilution in line with CLSI susceptibility testing standards [65,66]. Bacterial inocula
were prepared at ca. 1 × 106 CFU/mL by diluting 100-fold a 0.5 McFarland suspension in
CA-MHB with TES (TREK Diagnostic Systems, Product code: T3462; Batch: 356347; Expiry
date: 12-Jun-2019). 50 µL of antibacterial solutions at 2 × the final concentrations were
diluted 2-fold with 50 µL of inoculum to give a final inoculum of ca. 5 × 105 CFU/mL and
desired test concentrations of antibacterial agents. Test plates were incubated according to
CLSI guidelines and read visually [65,66]. MIC values corresponded to the first well with
no visible growth.

3.10. Aqueous Solubility Assay (PBS, pH 7.4)

Compound was dissolved in DMSO as stock solution and then added to isotonic
buffer (pH 7.4) at a concentration of 200 µM (2% DMSO final concentration). After a 24 h
incubation under shaking at room temperature, dissolved compound is measured by a chro-
matographic procedure with photodiode array detection. Metoprolol tartrate, rifampicin,
ketoconazole, phenytoin, haloperidol, simvastatin, diethylstilbestrol, and tamoxifen were
used as reference compounds for different solubility degrees.

3.11. Cytotoxicity Assay

Compound ID2 was tested in cell viability assays with HepG2 cells. The viability of
cultured cells was evaluated using alamarBlue staining as described by Nociari et al. [69].
Concentration–response curves were prepared for each compound by testing eight con-
centrations in triplicate with three-fold dilutions starting from 100 µM to 0.030 µM. After
incubation for 48 h at 37 ◦C, the percentage of control activity was calculated by comparing
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the fluorescence reading in the presence of the test compound to that in the absence of a
test compound (control). IC50 values were determined by non-linear regression analysis
of the concentration–response curves. These parameters were obtained by Hill equation
curve fitting. Chlorpromazine was used as a reference compound.

4. Conclusions

Nowadays, the combination of susceptible β-lactams with BLIs, which protect them
from degradation and restore their antibacterial activity, serves as the major strategy for
overcoming antibiotic resistance. Nevertheless, the emergence of carbapenemases like OXA-
48 that significantly contribute to the global burden of antibiotic resistance, has highlighted
the limited utility of current clinical treatments and the need for novel specific BLIs. In
this respect, we screened a proprietary compound collection in HTS against K. pneumoniae
OXA-48 and identified several compounds belonging to 20 different chemotypes able to
inhibit the enzyme at micromolar concentration. The favorable hit rate of the screening
campaign (0.5% considering 176 hits out of 36426 tested compounds) and the good quality
of identified hits (77% of final hits with LE > 0.2) proved the potential of the tested library
and the success of HTS triage strategy in identifying OXA-48 inhibitors.

We then prioritized the 4-ideneamino-4H-1,2,4-triazole (SC_2) and pyrazolo[3,4-b]pyridine
(SC_7) derivatives for further investigation and demonstrated by biochemical and X-ray studies
a reversible and competitive binding mode within OXA-48 active site for both series. Such an
MoA might represent an alternative to the covalent inhibition of clinically available BLIs.

We analyzed the OXA-48 inhibitory data of both commercial and synthesized analogs
of SC_2 and SC_7 families and built up a robust SAR around the two series, which high-
lighted the key role of negatively ionizable chemical features, such as carboxylate and
thiolate groups, for target inhibition.

The most promising derivative of SC_7 (ID2, AC50 = 0.99 µM), tested in combination
with AMP and IMP in β-lactam resistant bacteria, lowered the MIC of IMP of two-fold
in E. coli ATCC BAA-2523. Despite this modest activity, we envisage that ID2 could be
amenable to structural changes to allow for optimization of the whole cell potency of later
stage compounds.

ID2 also showed favorable properties in a preliminary in vitro ADMET assessment.
Overall, these findings suggest SC_7 as a promising starting point for further hit optimiza-
tion programs toward novel and effective non-β-lactam BLIs with an innovative MoA.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ph14070612/s1, Figure S1: (a) Bar chart showing the distribution of the hits across the AC50
ranges. (b) Pie chart showing the frequency of the confirmed OXA-48 inhibitors across the chemical
classes; Figure S2: Detailed binding mode of cocrystal structure of ID3 in complex with OXA48
enzyme from different perspectives; Figure S3: Detailed binding mode of cocrystal structure of
ID2 in complex with OXA-48 enzyme from different perspectives; Table S1: 2D structures of the
thirty-eight compounds belonging to SC_2 group showing measurable OXA-48 AC50 (µM); Table
S2: 2D structures of the thirty-seven compounds belonging to SC_7 group tested in the HTS; Table
S3: Statistics of crystallographic data and refinement for crystals of OXA-48 in complex with ID2
and ID3, 1H and 13C NMR spectra of final ligands 1–14, HPLC and LC/MS analysis of final ligands
1–14. (PDF).
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