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Abstract: Anthriscus cerefolium (L.) Hoffm. is a plant traditionally used around the globe since
antiquity. Although widely used in many traditional medicines in different cultures, from the
scientific point of view it is poorly investigated. Glioblastoma, a tumor type with poor prognosis,
is the most common and lethal brain tumor in adults. Current therapeutic strategies for glioblastoma
include surgery, radiation and chemotherapy. On the other hand, it has been revealed that patients
with cancers are highly susceptible to microbial infections due to the invasive nature of cancer
treatment approaches. This study was designed to investigate the chemical profile of herba Anthriscii
cerefoli methanolic extract by applying UHPLC-LTQ OrbiTrap MS* analysis and to analyze its
anti-glioblastoma and antimicrobial activities. This study revealed that methanolic extract of herba
Anthrisc cerefolii contained phenolic acids and flavonoids, with 32 compounds being identified. Anti-
glioblastoma activity was investigated in vitro using A172 glioblastoma cell line. The cytotoxic effects
of the extract on A172 cells were compared to the same effect on primary human gingival fibroblast
(HGF-1) cells. Decreased rate of proliferation and changes in cell morphology were detected upon
treatment of A172 cells with the extract. The antimicrobial activity of extract was tested against
Staphylococcus aureus and Candida species. The extract was active against the tested bacterium and
yeasts, inhibiting free floating cells and microbial biofilms. This study is the first one to provide a
detailed description of the chemical profile of A. cerefolium extract dealing with scientific insights into
its anti-glioblastoma and antimicrobial activities.

Keywords: A. cerefolium; extract; herba; phenolic composition; anti-glioblastoma; antimicrobial;
mechanisms of action

1. Introduction

According to the World Health Organization (WHO) grading of central nervous
system (CNS) tumors, glioblastoma (GBM) is classified as a malignant grade IV glioma
tumor [1]. With poor prognosis and a median survival time of about 15 months GBM is
the most aggressive glioma and one of the deadliest forms of brain cancer [2,3]. In most
cases by the time of diagnosis GBM is already widely spread. Existing therapeutic strate-
gies for GBM include surgery, radiation and chemotherapy. Combined radiotherapy and
chemotherapy are currently used for the cytoreduction of the tumor, but over 90% of pa-
tients usually experience rapid tumor recurrence [4-6]. Tumor recurrence, poor prognosis,
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and the side effects of radio- and chemotherapy suggest the need to prioritize the further
search for novel therapeutic approaches, especially among natural sources.

It has been revealed that microbial infections contribute to cancer promotion through
the production of carcinogenic metabolites and alterations in host physiological pro-
cesses [7,8]. There is cumulative evidence that Candida albicans is able to stimulate the
onset and progression of cancers by provoking inflammation and producing carcinogens
such as acetaldehyde [9]. On the other side, bloodstream infections, no surgery, more than
two hospitalizations, distant metastasis, absence of drainage tubes and radiotherapy are
potential prognostic risk factors in cancer patients with S. aureus infection [10]. Therefore,
the search for novel natural substances that can be used to prevent or treat cancer and
related microbial infections is a high priority.

Anthriscus cerefolium (L.) Hoffm. is an annual aromatic plant, belonging to the chervil
plant genus of the family Apiaceae. The genus encompasses twelve species, some of which
are considered weeds [11]. For thousands of years, since the times of the ancient Greeks,
the delicate young leaves of chervil have been used in spring tonics. Herbalists have used
chervil throughout history as a diuretic, expectorant, digestive and skin freshener. It is also
thought to relieve the symptoms of eczema, gout, kidney stones and pleurisy. Chervil is
a traditional remedy for bad dreams, burns and stomach problems and supposedly, the
whole plant alleviates hiccups. It is used as an eyewash for rinsing and refreshing the
eyes [11,12]. Previous research regarding chemical composition of Anthriscus has been
mainly focused on the flavonoids present in A. sylvestris. Thus quercetin, apigenin and
rutin have been identified in A. sylvestris [13]. Furthermore, Dall’Acqua et al. [14] showed
that fractions of this plant contain mainly luteolin-7-O-glucoside (cinaroside).

Since herbalists have used chervil throughout history for numerous biological activi-
ties, one of the aims of the present study was to investigate the chemical composition of
the methanolic extract of herba Anthrisci cerefolii. As traditional uses of the plant include
its use against bad dreams, meaning that it probably contains compounds that can pass
the blood-brain barrier, we investigated anti-glioblastoma activity of methanolic extract
of A. cerefolium. Since the plant was traditionally used for the treatment of pneumonia,
suggesting its antimicrobial effect, we tested the activities of extract against microbes
Staphylococcus aureus and Candida species.

2. Results and Discussion
2.1. Analysis of Phenolic Acids and Flavonoids

A review of the literature revealed that the chemical compounds derived from An-
thriscus cerefolium have not been extensively studied. In the genus Anthriscus, the essential
oils [15] and lignans [16] were the most investigated chemical compounds. Here we inves-
tigate the presence of phenolic acid and flavonoid derivatives in the methanolic extract
of herba Anthrisci cerefolii. Since there is no literature data regarding these chemical com-
pounds in Anthriscus cerefolium, we compared our results with results obtained in some
other Antriscus species, as well as in other plants belonging to the Apiaceae family (Table 1).
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Table 1. High resolution mass spetrometry (HRMS) and MS* data for phenolic acids and flavonoids identified in Anthriscus cerefolium extract.

" . Molecular Formula, Calculated Mass, Exact Mass, MS? Fragments, MS3 Fragments, Ms? Fragments,
Peak No. Identified Compounds tr, min [M-H]~ [M-H]~ [M-H]~ A ppm (% Base Peak) (% Base Peak) (% Base Peak) Reference
Phenolic Acid Derivatives
. . _ 109(10), 152(22), 153(100),
d _
1 Dihydroxybenzoyl hexoside 3.95 C13H1509 315.07216 315.07246 0.31 154(9), 268(10), 278(9), 279(23) 108(7), 109(100) NA /
2 Caffeoyl-hexoside isomer 1¢ 461 C15H1709~ 341.08781 341.08750 031 135(4), 179(100), 180(3) 135(100) 79(21), 107(100), 117(49) [17]
89(19), 129(15), 134(11),
3 Caffeic acid *? 461 CoH;04~ 179.03498 179.03487 0.11 135(100), 143(23), 144(20), 91(9), 94(64), 106(6), NA [18]
161(13) 107(100), 132(5)
4 Aesculin ¢ 488 Ci5H1509~ 339.07216 339.07142 0.74 177(100), 178(3) 89(4), 10?219?6’)133(100)’ 89(100), 105(9), 123(15) [17]
5 Caffeoyl-hexoside isomer 2 © 5.11 Ci5H1709~ 341.08781 341.08674 1.07 135(9), 179(100), 180(7), 295(3) 135(100) 79(18), 107(100) [17]
5-O-Caffeoylquinic acid isomer _ 85(95), 93(56), 111(41), 83(11), 85(100), 97(10),
6 1 (Chlorogenic acid) ** 524 Ci6H1709 353.08781 353.08753 0.28 179(3), 191(100) 127(100), 171(32), 173(81) 99(38), 109(29) (1]
99(13), 115(18), 116(12),
7 p-Coumaric acid ¢ 5.29 CoH;05~ 163.04007 163.03968 0.39 119(100), 128(16), 131(19), 66(100), 91(60) NA [17]
135(12)
111(10), 134(6), 145(5),
. N 57(6), 85(13), 99(6), 101(7), 55(20), 57(50), 73(8), ,
a.c -
8 Ferulic acid 5.57 C10HoO4 193.05063 193.05139 0.76 147(100), 115408((71)5), 149(9), 1037, 119(7), 129(100) 85(100), 101(14) [17]
5-O-Caffeoylquinic acid isomer _ 85(98), 93(58), 109(22), 81(4), 83(11), 85(100),
9 2b 5.69 C16H1709 353.08781 353.08795 —0.15 179(3), 191(100), 192(4) 111(31), 127(100), 173(69) 99(46), 109(27) [19]
o _ 85(96), 93(64), 109(26), 81(17), 83(12), 85(100),
()1 c
10 5-0-p-Comaroylqunic acid 5.87 C16H170g 337.09289 337.09270 0.19 163(4), 173(8), 191(100) 111(35), 127(100), 173(91) 99(49), 109(59) [20]
5-O-Feruloylquinic acid isomer _ B 85(100), 93(54), 109(25),
11 1c 6.32 C17H1900 367.10346 367.10372 0.26 191(100), 192(8), 193(4), 321(4) 1) (35), 1270%), 173(61) 57(100) [17]
. S _ 191(13), 335(9), 353(100), 85(93), 93(63), 111(32),
-()- C
12 3,5-O-Dicaffeoylquinic acid 7.04 Cy5Hp3012 515.11950 515.11763 1.87 354(14) 179(4), 191(100) 127(100), 173(76) [21]
395(55), 439(72), 440(12),
Malonyl-1,4-O- _ B 233(32), 335(4), 377(9),
13 dicaffeoylquinic acid 7.12 CasHasO15 601.11989 601.12114 1.25 515(85), 551%(22(25 557(100), 395(100; 173(13), 233(100), 335(8) [22]
Malonyl-1,5-0- _ 233(10), 395(100), 396(13),
14 dicaffeoylquinic acid 7.34 CosHosO15 601.11989 601.11856 133 139(9), 515(5), 557(58), 558010 173(12),233(100), 335(5) 155(3), 173(100) [22]
395(55), 396(11), 439(53),
Malonyl-4,5-O- _ B 233(30), 335(4), 377(10),
15 dicaffeoylquinic acid 7.47 CogHosO15 601.11989 601.12119 1.30 515(56), 551568((1;3)3 557(100), 395(100), 515(3) 173(13), 233(100), 335(7) [22]
5-O-Feruloylquinic acid isomer _ 191(100), 192(16), 321(17), 85(99), 93(45), 109(29),

16 ! 7.79 C17H1909 367.10346 367.10270 0.75 302(9), 3239, 329(8), 3300%) 127100}, 171(26), 17356) NA [17]
17 o-Hydroxybenzoic acid © 8.17 C;H505~ 137.02442 137.02435 0.06 93(100) NA [18]
Flavonoid derivatives

Quercetin
e . ) _ 225(5), 271(7), 300(37), 151(77), 179(100), 255(45),
18 3-0-(6 rh&{r?;isf;ll)? glucoside 6.40 CoyHp9O16 609.14611 609.14539 0.72 301(100), 343(12) 257(13), 271(76), 273(19) 151(100) [19]
19 Luteolin 7-O-glucoside 668 CptHigOm- 14709329 14708956 373 285(100), 286(13) 151(41), 175(100), 199(87),  119(8), 131(86), 133(20), 03]

(Cynaroside)

217(80), 241(97), 243(70)

147(100), 157(5)
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Table 1. Cont.
. . Molecular Formula, Calculated Mass,  Exact Mass, MS? Fragments, MS? Fragments, MS* Fragments,
Peak No. Identified Compounds tr, min [MH]~ [M-H]~ [M-H]~ A ppm (% Base Peak) (% Base Peak) (% Base Peak) Reference
Kaempferol _ 151(37), 175(82), 199(88),  185(49), 197(99), 198(100), )
20 3-0-(6/"-acetyl)-hexoside 7.20 Cp3Hy1017 489.10385 489.10298 0.87 285(100), 286(9), 429(6) 217(72), 241(100), 243(59) 199(79), 213(61) [24]
Apigenin 7-O-glucoside _ 3 268(11), 269(100), 270(11), 149(30), 181(26), 183(27),  157(35), 169(44), 181(63),
zn (Apigetrin) ¢ 722 Ca1H19010 431.09837 43109842 0.05 311(3) 204(26), 225(100), 227(29) 196(40), 197(100) [17]
. ) _ 255(6), 284(60), 285(100), 229(51), 241(29), 255(58),  163(75), 185(14), 213(23),
22 Kaempferol 3-O-rhamnoside 7.65 C1H190q9 431.09837 431.09750 0.87 286(7), 327(4) 256(51), 257(100), 267(45) 229(100), 239(45) [17]
Apigenin , B 268(50), 269(100), 270(14), 149(30), 151(21), 183(28),  169(37), 181(57), 183(39),
B 7-0-(6"-acetyl)-hexoside ¢ 843 CasH21On 47310894 473.10989 095 311(6) 197(34), 201(24), 225(100) 196(21), 197(100) [17]
151(28), 175(72), 197(21),
) _ 197(100), 198(80), 199(59),  153(4), 169(100), 179(10),
ab
24 Luteolin 8.65 C15Hy0g 285.04046 285.03874 1.73 199(69), 221535(5;3)) 241(100), 212(21), 213(44), 223(29) 18014), 182(5) [25]
Kaempferol 3-O-(6"-p- _ 285(100), 286(9), 307(31), 151(100), 213(50), 229(57),
25 coumaroyl)-hexoside 9.39 C30Hy5013 593.13007 593.12989 0.18 308(4) 241(42), 243(36), 257(87) 83(4), 107(100) [26]
149(45), 151(29), 183(17),
- _ 169(13), 180(15), 181(100),  117(17), 139(25), 152(100),
ab
26 Apigenin 9.50 C15H9Os5 269.04555 269.04531 0.23 201(27), 22257((110;)), 226(18), 183(27), 196(20), 197(38) 15341), 163(7) [25]
Kaempferol 3-O-(4"-p- _ 3 151(80), 229(38), 241(41), 163(27), 211(7), 213(16),
27 coumaroyl)-rhamnoside © 9-90 CaoH25012 57713515 577.13701 1.86 285(100), 286(9) 255(33), 257(100), 267(27) 229(100), 239(12) 27]
Isorhamnetin 3-O-(3"/-p- _ 284(6), 285(27), 299(16), 151(21), 227(12), 255(61),
3 coumaroyl)-rhamnoside 10.10 Ca1Hz7013 607.14572 607.14261 3.1 300(17), 315(100), 316(11) 300(100) 271(100), 272(51) /
Quercetin 3-O-(2",6"-di-p- _ B 271(3), 285(4), 301(3), 307(6),  135(11), 161(56), 179(100),
» coumaroyl)-hexoside ¢ 10.50 Ca9H31016 755.16176 75516248 0.72 469(100), 470(20), 593(5) 271(22), 307(68) NA (28]
Kaempferol 3-0-(2",6/-di-p- _ 285(9), 307(4), 453(100), 135(10), 161(100), 163(31),
30 coumaroyl)-hexoside © 11.08 CaoHa1015 739.16684 739.16671 0.14 454(22), 455(4), 593(4) 179(65), 289(12), 307(67) 117(3), 133(100) (2]
Kaempferol 3-0-(2",3"-di-p- _ 285(53), 286(8), 437(100), 145(100), 163(71), 187(24),
31 coumaroyl)-rhamnoside ¢ 11.54 CaoHa1014 72317193 72316845 348 438(17), 439(3), 577(3) 211(14), 273(29), 291(46) 117(100) (30]
Kaempferol 3-O-[2"-(4"'- 285(100), 286(9), 315(39),
32 methoxycinammoyl)-6"-p- 11.57 C4oH33015~ 753.18249 753.18286 —0.36 437(49), 453(12), 467(77), 151(87), 185(47), 213(46),  189(28), 213(57), 215(13), [29]

coumaroyl]-hexoside °

468(12)

229(60), 239(42), 257(100)

229(100), 239(24)

? Confirmed by standards; b Earlier identified in some Antriscus species; ¢ Identified in some other species from Apiaceae family; 4 For the first time identified in Apiaceae family; tr—retention time; A ppm—mean
mass accuracy.
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Using liquid chromatography in combination with the hyphenated mass spectrometry
technique, we identified 32 compounds in total. To the best of our knowledge, this is the
first report in which 32 compounds are identified in this plant. Table 1 lists all identified
compounds with retention times and major mass spectrometry characteristics (exacts
masses, MS?, MS?, and MS* fragmentations). Among 32 compounds, 17 of them belong
to phenolic acids and related compounds, and the 15 of them are flavonoids aglycones
and glycosides. The presence of 10 compounds (caffeic acid—3, aesculin—4, chlorogenic
acid—6, p-coumaric acid—7, ferulic acid—S8, rutin—18, cynaroside—19, apigetrin—21,
luteolin—24, and apigenin—26) was confirmed by comparison with available standards.

Regarding phenolic acid derivatives, in addition to simple acids, hexosides and
esters with quinic acid were also found. All compounds, except o-hydroxybenzoic acid
(compound 17), belong to the group of hydroxycinnamic acids. Compound 17 found
at 8.17 min and 137 m/z showed characteristic MS? base peak at 93 m/z (generated by
the loss of CO,—44 Da) and it has been previously detected in Anthriscus vulgaris Bernh.
(Apiaceae) from Algeria [18]. Fragmentation pattern and MS spectra of compound 1
(dihydroxybenzoyl hexoside) is fully consistent with the literature [31]. As far as we know,
this compound has not been detected so far in any extract of the plant from the Apiaceae
family. Compounds 11 and 16 (eluted at 6.32 and 7.79 min, respectively) were marked
as feruloylquinic acid isomers. In this case, we can also speculate about the position of
esterification because Shrestha et al. [32] showed the differentiation of all feruloylquinic
acid derivatives by MS? base peaks. Namely, unlike other derivatives, MS? base peak of 5-O-
feruloylquinic acid was found at 191 m/z, so these compounds can be cis and trans isomers.
Similarly, compounds 13, 14, and 15 (malonyl-dicaffeoylquinic acid isomers) found at
601 m/z, previously identified in Erigeron breviscapus (Apiaceae) extract, were named
according to the available literature data [22].

By analyzing flavonoids, compounds from the subgroup of flavonols and flavones
were found. Only two aglycones were detected, luteolin (compound 24) and apigenin
(compound 26) and both compounds have already been confirmed as constituents of
Anthriscus sylvestris Hoffm. (Apiaceae) [25]. The most common compounds were flavonol
glycosides with a p-coumaroyl residue. Almost all such compounds showed specific
fragmentation where the mass of deprotected aglycone does not appear as MS? base peak,
but it is formed by loss of mass of aglycone. Thus, for example, compound 31 at 11.54 min
and 723 m/z generated MS? base peak at 437 m/z, which corresponds to the fragment
resulting from kaempferol loss [M-H-286], while the secondary MS? peak was found
at 285 m/z (deprotonated kaempferol). Further, MS® fragmentation gave a base peak
at 145 m/z (loss of two p-coumaroyl residues) and secondary peaks at 291 and 163 m/z
(Figure 1). Based on all these findings, a given compound is presumed to be kaempferol
3-O-(2",3"-di-p-coumaroyl)-thamnoside, which was previously isolated from the flowers
of Foeniculum vulgare Mill. and Foeniculum dulce DC. (Apiaceae) [30].

Another compound that, to the best of our knowledge, has not been previously
detected in any extract of the plants from the Apiaceae family is isorhamnetin 3-O-(3"-p-
coumaroyl)-rhamnoside (28). The exact position of the p-coumaroyl residue can only be
assumed, but the only compound corresponding to the exact mass and fragmentation of
our compound was found in Persicaria glabra (Willd.) M.Gémez extract [33]. Its proposed
structure and fragmentation are shown in Figure 2.
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Figure 1. Schematic representation of fragmentation of compound 31 (kaempferol 3-O-(2",3"-di-p-coumaroyl)-rhamnoside).

OH
— p-coumaroyl
— rhamnosyl Q
— = HO e o}
292 Da
o] & o
Q # > MS* base peak
OH MS2 base peak MS? base peak C14H;06~
OH C1gH1107” CisHgO7~ 271 m/z
Molecular ion 315m/z 300 m/z

CaqHa7043"
607.14571 m/z

Figure 2. Proposed fragmentation pattern of compound 28 (isorhamnetin 3-O-(3"-p-coumaroyl)-rhamnoside).

2.2. Anti-Glioblastoma Activity

Cytotoxic effect of the extract on A172 glioblastoma cell line was tested using crystal
violet assay. Obtained result was compared with result achieved on human gingival fibrob-
last (HGF-1) cells. Results are presented in the Table 2. Extract concentration required for
50% inhibition of growth (IC50) of A172 glioblastoma cell line was 765.21 ug/mL. On the
other hand, the extract displays no cytotoxicity on HGF-1 primary cells at concentrations
up to 800 pg/mL.

Table 2. Cytotoxic activity of A. cerefolium methanolic extract on A172 and HGF-1 cells.

Cell lines A. cerefolium ICsp (ug/mL)
A172 765.21 £+ 56.7
HGF-1 >800

Previous investigations showed that A. cerefolium extract had potent cytotoxic effect
as determined by brine shrimp lethality assays on Artemia larvae [34]. Aqueous extract
of A. sylvestris leaves showed no cytotoxicity towards RAW264.7 macrophages cells, but
induced an anti-inflammatory defense response in this cell model [35]. Essential oil of
the aerial parts of A. caucalis showed cytotoxic activity on liver hepatocellular carcinoma
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(HepG2) and human breast adenocarcinoma (MCF-7) cells [36]. Our results on A. cerefolium
are supporting previous data regarding cytotoxicity against cancer cell lines of the species of
the genus. However, this is the first report of the cytotoxic effects of A. cerefolium methanolic
extract against a glioblastoma cell line.

The cell morphology of A172 glioblastoma cells treated with vehicle control or
A. cerefolium methanolic extract (IC5) concentration) was analyzed by examining the ex-
pression of the cytoskeletal protein tubulin by immunofluorescence and laser confocal
microscopy (Figure 3). As shown in Figure 3A, A172 control cells treated with vehicle
(DMSO) exhibited a characteristic fibroblast-like morphology. The microtubule network is
interconnected and appears filamentous (Figure 3A). In contrast, A172 cells treated with
A. cerefoilum methanolic extract (Figure 3B) lost their fibroblast-like morphology became
rounded with the fragmented nuclei. They exhibited a diffuse tubulin staining pattern
and some of them contained multiple micronuclei (arrowheads in Figure 3B). Detected
morphological changes are indicative for mitotic arrest and cell death (apoptosis). Further
research is needed in order to dissect mechanism of action of the methanolic extract on
A172 morphology.

DAPI Tubulin

Tubulin

B

Figure 3. Morphology of A172 control cells (A) and A172 cells treated with A. cerefolium methanolic
extract (B). Boxed regions in B are enlarged in (B’,B”) figures. White arrowheads in B mark cells with

multiple micronuclei.
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The impact of the extract on the proliferation of A172 glioblastoma cells was inves-
tigated by analyzing the expression of Ki67 protein, a marker of proliferation. Ki67 is
well-known marker for determination of the proliferation of tumor; its expression is used
as a prognostic marker for cell proliferation in many tumors and it has been revealed that
Ki67 value predicts the response to neoadjuvant chemotherapy [37]. The percentage of
proliferating cells (Ki-67 labeling index) can discriminate more aggressive phenotypes
of tumors; currently, thus the values of Ki67 labeling index is used both to predict the
prognostic stratification of patients and to estimate the responsiveness to the resistance to
chemotherapy [38]. By Ki67 immunostaining we detected that proliferation rate of A172
cells treated with the extract was decreased by aproximately 30% compared to proliferation
rate of control cells (Figure 4). Our study is the first to explore the effect of herba Anthrisci
cerefolii on the properties of glioblastoma cells. The obtained results provide a good basis
for further research that could explore the possibilities of applying the extract of herba
Anthrisci cerefolii in the treatment of glioblastoma.

120
100
80
60
40

20

control plant extract

Figure 4. The effect of A. cerefolium methanolic extract on expression of Ki67 in A172 cell line; (A) The number of Ki67

positive cells in cells treated with the extract is presented as fold change of the number of Ki67 positive cells in cells treated

with vehicle (DMSO) (arbitrarily set at 100%). Results are presented as the mean + SD of three independent experiments,

*p <0.05 (B) A representative image of Ki67 immunostaining in the control cells treated with vehicle solvent DMSO;

(C) A representative image of Ki67 immunostaining in cells treated with the extract. Nuclei are counterstained with DAPL

It has been shown previously that quercetin, catechins and proanthocyanidins inhibit
the proliferation of glioblastoma cells and induce their death; being able to cross the blood-
brain barrier. Some of them inhibit pro-oncogene signaling pathways and intensify the
effect of conventional anti-cancer therapies [39]. Our results indicate that extract of herba
Anthrisci cerefolii was rich source of flavonoid molecules.



Pharmaceuticals 2021, 14, 55

9of 15

2.3. Antimicrobial Activities of Herba Anthrisci cerefolii

The antimicrobial activity of the A. cerefolium extract was tested by the microdillution
method (Table 3). The most sensitive species to the effect of the A. cerefolium extract was
yeast C. tropicalis, while the most resilient species to the microbicidal effect was the S. aureus
ATCC 11632 bacterium strain. The results obtained for the extract were comparable with
results obtained for the positive controls. It is important to highlight that extract was active
against methicillin resistant strain of S. aureus.

Table 3. Antimicrobial activity of the A. cerefolium methanolic extract (mg/mL).

Bacteria A. cerefolium Streptomycin Ampicillin
S. aureus MIC 2.50 0.17 0.34
(ATCC 11632) MBC 5.00 0.25 0.37
S. aureus MIC 1.25 0.10 -
MRSA MBC 2.50 - -
Yeasts A. cerefolium Ketoconazole Bifonazole
C. albicans MIC 1.25 0.50 0.15
(ATCC 10231) MFC 1.25 1.00 0.30
C. krusei MIC 1.25 0.50 0.25
(clinical isolate) MFC 1.25 1.00 0.50
C. tropicalis MIC 0.62 0.30 0.25
(ATCC 750) MEC 1.25 0.50 0.50

Previous investigations were focused on essential oils from the genus Anthriscus and
there are no reports about antimicrobial activity of methanolic extract of A. cerefolium.
Namely, the essential oil from the aerial parts of Anthriscus caucalis M. Bieb showed signifi-
cant activity against Bacillus subtilis and Escherichia coli with MIC values of 0.095 mg/mL
and 0.105 mg/mL, respectively [36]. The essential oil obtained from the root of Anthriscus
nemorosa (Bieb.) Sprengel showed significant activity against the following microbes:
Candida albicans, Staphylococcus epidermidis, Bacillus subtilis and Escherichia coli [40].

The effect of the methanolic extract of A. cerefolium on Staphylococcus aureus (clinical
isolate) biofilm formation was assessed by bacterial biofilm inhibition assay. The inhibition
of biofilm formation by S. aureus was achieved at sub-MICs of the A. cerefolium extract.
Bacterial biofilm was inhibited at 1/2 MIC for 69.88%, while at lower MICs inhibition
capacity decreased (Table 4A). Regarding the inhibition of pre-formed yeast biofilms, the
extract was equally active against all of the tested Candida species (Table 4B). Our results
strongly point to the antibiofilm potential of the extract. These results are significant
since microbial biofilms are more resistant to conventional therapeutics. According to our
knowledge, there are no previous reports on antibiofilm potential of Anthriscus species.

Table 4. The effects of A. cerefolium methanolic extract on: (A) bacterial biofilm formation by S. aureus
at sub-MICs (%) and (B) on MIC and MFC (mg/mL) in formed fungal biofilm.

(A) Inhibition of S. aureus bacterial biofilm formation

1/2 MIC 1/4 MIC 1/8 MIC 1/16 MIC 1/32 MIC
A. cerefolium 69.88 £6.86 6791 +£499 44254470 NI NI
Streptomycin 55.64 £2.12 3533 +147 33224108 1521+1.12 NI
(B) Inhibitiory and fungicidal effects on formed fungal biofilms
A. cerefolium Fluconazole
Fungi

MIC MEC MIC MEC

C. albicans (ATCC 10231) 5.00 10.00 8.00 9.00
C. krusei (clinical isolate) 5.00 10.00 2.00 3.00

C. tropicalis (ATCC 750) 5.00 10.00 3.00 6.00
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Our results indicate that the extract of A. cerefolium did not significantly inhibit staphy-
loxanthin production in S. aureus at sub-MICs (data not shown). The extract had no influ-
ence on the ergosterol biosynthetic pathway in C. albicans, as well. The extract was able to
induce leakage of cellular components in C. albicans (Figure 5), suggesting that the main
mode of antifungal action is in the level of cell membrane permeability. Our results provide
the first highlighting of the impact of A. cerefolium extract on the yeast cell membrane
permeability.

1.4 -

1.2 -+
o 1 -
g 44— A. cerefolium 260 nm
c 0.8 -
2 —fi= control 260 nm
906 - A -
2 . cerefolium 280 nm
< 04 - control 280 nm

02 4 E -

< D . e S ad
O T T T T

min
Figure 5. Leakage of cellular components in C. albicans measured at 260 nm and 280 nm.

3. Materials and Methods
3.1. Collection and Extraction of Plant Material

Anthriscus cerefolium (L.) Hoffm. (Apiaceae) was collected in Belgrade, Serbia, during
the flowering period of plant in May 2018. The aerial parts of the plant were lyophilized
and reduced to a fine powder. Plant material was successively extracted with methanol
according to the procedure described previously [41,42].

3.2. Chemicals and Reagents

Solvents for UHPLC/MS analysis (acetonitrile and formic acid) were of MS grade,
obtained from Fisher Scientific (Loughborough, UK). Ultrapure water was generated by
deionization (Millipore, Billerica, MA, USA). Standards of phenolic acids and flavonoids
(caffeic acid, aesculin, chlorogenic acid, p-coumaric acid, ferulic acid, rutin, cynaroside,
apigetrin, luteolin, and apigenin) were purchased from Sigma-Aldrich (Steinheim, Germany).

3.3. UHPLC-LTQ OrbiTrap MS* Analysis of Phenolic Acid and Flavonoid Derivatives

Analysis of compounds of interest was carried out by an Accela UHPLC system
connected with LTQ OrbiTrap mass spectrometer equipped with heated-electrospray
ionization (HESI) ionization applied in negative mode (ThermoFisher Scientific, Bremen,
Germany). The separation was achieved using a Syncronis C18 column (100 x 2.1 mm,
1.7 pm particle size; ThermoFisher Scientific). The gradient elution program, settings of
ion source and the other parameters of the mass detector were the same as previously
described [43]. Identification of compounds was done according to their monoisotopic mass
(obtained by full scan analysis) and MS* fragmentation and also confirmed by literature
data. Accurate mass of compounds was calculated using ChemDraw software (version
12.0, CambridgeSoft, Cambridge, MA, USA) and for instrument control, data acquisition
and data analysis Xcalibur software (version 2.1, Thermo Fisher Scientific, Waltham, MA,
USA) was used.

3.4. Investigation of the Antiproliferative Effect of A. cerefolium Extract

Crystal violet assay was used to study the cytotoxic effect of A. cerefolium extract on
A172 glioblastoma cell line and human gingival fibroblasts cells HGF-1 (ATCC® CRL-
2014™). Cytotoxic effect of A. cerefolium methanolic extract on HGF-1 cells was determined
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as described by Stojkovic et al., [42]. The A172 cells were grown in high-glucose Dulbecco’s
Modified Eagle Medium (DMEM) supplemented with 10% fetal bovine serum (FBS), 2 mM
L-glutamine and 1% penicillin and streptomycin at 37 °C in 10% CO,. The day before
treatment, 4 x 103 cells were seeded per well in a 96-well plate. On the day of treatment,
the fresh medium with different concentrations of the extract (250-1000 pug/mL) dissolved
in dimethyl sulfoxide (DMSO) was added to the cells and cells were incubated with the
extract for 48h. After that period, cells were washed twice with phosphate-buffered saline
(PBS), stained with 0.5% crystal violet staining solution for 15 min at room temperature
and after removal of crystal violet the cells were washed in a stream of tap water and left to
air-dry at room temperature. Later, the dye was dissolved in methanol and the absorbance
of dye was measured in a microplate reader Infinite 200 PRO at 590 nm. Control cells were
treated with the same percentage of DMSO as treatment with the highest concentration of
the extract. The DMSO concentration in the assay did not exceed 0.5%. The experiment was
done in triplicate for each concentration of the extract and three independent experiments
were performed. The results were expressed as IC50 values in pg/mL.

3.5. Immunocytochemistry

Twenty four hours before treatment 2.5 x 10* A172 cells were seeded per well on cover-
slips in a 12-well plate. After that, cells were treated with the extract (IC50 concentration) or
vehicle DMSO (control cells) for 48 hours. Later, cells were fixed in 4% paraformaldehyde
for 15 min at room temperature (RT), washed 3 times for 20 min in 1x PBS, permeabi-
lized 10 min in 0.2% Triton X-100 in PBS and blocked for 1h at RT in 10% normal goat
serum/1% bovine serum albumin (BSA) in PBS. Primary antibodies, rabbit anti-Ki67 anti-
body (diluted 1:250, Abcam, Cambridge, UK) and mouse anti-tubulin antibody (Abcam,
diluted 1:100) were diluted in PBS containing 1% BSA /0.1% Triton X-100. After one hour
incubation at room temperature with anti-Ki67 antibody, cells were washed 3 times for
15 min with 0.1% Triton X-100 in PBS and incubated with anti-rabbit secondary antibody
conjugated with Alexa Fluor 488 (diluted 1:500 in 1% BSA /0.1% Triton X-100 in PBS) (Invit-
rogen, Life Technologies Corporation, Carlsbad, CA, USA) for 1 h. Afterward, cells were
washed 3 times for 15 min with 0.1% Triton X-100 in PBS and stained with 0.1 mg/mL
diaminophenylindole (DAPI; Sigma,, Saint Louis, MO, USA). Images were taken using a
BX51 fluorescent microscope (Olympus, Tokyo, Japan) equipped with appropriate filters
and analyzed using the Cytovision software (Applied Imaging Corporation, Santa Clara,
CA, USA). Ki67 index was determined as number of Ki67 positive cells (without measure-
ment of fluorescence intensity)/total number of cells. At least 10 independent images per
experiment were chosen to score Ki67 positive cells in controls and at least 15 independent
images per experiment were chosen to score Ki67 positive cells in treatments with the
extract. Images for control and treatment were taken with the same magnification. In other
experiments, after overnight incubation at 4°C with mouse anti-tubulin antibody, cells were
washed 3 times for 15 min with 0.1% Triton X-100 in PBS and incubated for one hour at RT
with biotinylated anti-mouse IgG antibody (diluted 1:500 in 1% BSA/0.1% Triton X100 in
PBS, Vector Laboratories, Burlingame, CA, USA). Following washing 3 times for 15 min
with 0.1% Triton X-100 in PBS, cells were incubated with DyLight 594 Streptavidin antibody
(diluted 1:500 in PBS, Vector Laboratories) for one hour at RT. After washing 3 times for
15 min with 0.1% Triton X-100 in PBS, nuclei were stained with 0.1 mg/mL DAPI. Images
were taken using a TCS SP8 confocal microscope (Leica Microsystems, Wetzlar, Germany)
applying the Leica LAS AF-TCS SP8 software.

3.6. Antimicrobial Susceptibility Tests

The A. cerefolium methanolic extract at the concentration of 0.1-20 mg mL ™! (in
5% dimethylsulfoxide—DMSO) was tested for antibacterial and antifungal activity through
the serial microdilution method as described previously [41,42]. All microorganisms were
provided by the Institute for Biological Research “Sinisa Stankovi¢”—National Institute
of the Republic of Serbia, University of Belgrade (Belgrade, Serbia). Staphylococcus aureus
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(ATCC 11632), and methicillin-resistant S. aureus (MRSA isolate) were used for antibacterial
analysis. For analysis of antifungal activity, the Candida albicans (ATCC 10231), C. tropicalis
(ATCC 750), and C. krusei (clinical isolate) were used. Streptomycin and ampicillin were
used as positive controls for antibacterial assays, whereas ketoconazole and bifonazole
were selected as positive controls for the antifungal assays, while 5% DMSO was used as a
negative control. The results were presented as minimum inhibitory concentration (MIC,
required for microbial growth inhibition), bactericidal (MBC) and fungicidal concentrations
(MFC), expressed in mg/mL.

3.7. Activity against Formation and Inhibition of Microbial Biofilms

The effect of A. cerefolium methanolic extract on Staphylococcus aureus (clinical isolate)
biofilm formation was assessed by bacterial biofilm inhibition assay. Crystal violet was used
as a staining solution for the biofilm and biofilm formation inhibition was evaluated by
spectrophotometric techniques. Results were presented as percentage of biofilm formation
inhibition with respect to untreated control [41].

The effect of A. cerefolium methanolic extract on inhibition of formed biofilm of
C. albicans, C. krusei and C. tropicalis was determined as previously described [42]. MIC was
defined as the minimum concentration of the extract that inhibited further growth of the
initial biofilm, and minimum fungicidal concentration (MFC) represents the concentration
of the extract that resulted in the level of luminescence presenting no fungal growth.

3.8. Insights into Modes of Antibacterial and Antifungal Actions of Extract

The staphyloxanthin inhibition assay in S. aureus was performed as previously de-
scribed [41]. SubMIC concentrations of the extract, ranging from 1/2 MIC to 1/32 MIC,
were used for the assay. The pigment production was measured at 465 nm using a spec-
trophotometer. The results were presented as percentage of staphyloxanthin production in
treated bacterium with respect to non-treated control bacterium.

A Candida albicans strain was used for ergosterol binding and membrane permeability
assays. In order to determine whether the antifungal effect of the extract was achieved via
disruption of ergosterol biosynthetic pathway, serial dilutions (same as for microdilution
method) of the extract were prepared with addition of ergosterol (25-100 ug/mL). After 24 h
of incubation at 37 °C, MFC values were determined as explained for antifungal activity
assay. The effect of A. cerefolium extract on cell membrane permeability was analyzed as
described previously. The optical density of the filtrate was measured at room temperature
(25 °C) at 260 and 280 nm (8453 spectrophotometer, Agilent, Santa Clara, CA 95051 United
States) [42].

4. Conclusions

Methanolic extract obtained from herba Anthrisci cerefolii was investigated for the first
time regarding its phenolic composition. Phenolic acids and their derivatives, phenolic-
related compounds and flavonoids were identified in the extract. The extract decreased
the proliferation rate of A172 glioblastoma cells and induced cell morphology changes
indicative for mitotic arrest and apoptosis, while at the same time it was not cytotoxic to
control HGF-1 cells. Additionally, the extract was active against bacteria and yeast, and
the obtained results suggest that antifungal mode of action is associated with disruption
of cell membrane permeability. Previously, it was published that some natural products,
like green barley extract [44], and lactoferrin [45] exhibited an antiproliferative activity on
cancer cells, making our results in agreement with literature pointing to the anticancer
effects of natural products. Altogether, the obtained results serve as a good basis for
further research of the anti-glioblastoma and antimicrobial mechanisms of actions of herba
Anthrisci cerefolii.
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