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Abstract: Diclofenac (DIC) is a non-steroidal anti-inflammatory drug of wide use around the world.
Electroanalytical methods display a high analytical potential for application in pharmaceutical
samples but the drawbacks concerning electrode fouling and reproducibility are of major concern.
Henceforth, the aim of this work was to propose the use of alternative low-cost carbon black (CB)
and ionic liquid (IL) matrix to modify the surface of pencil graphite electrodes (PGE) in order to
quantify DIC in raw materials, intermediates, and final products, as well as in stability assays of
tablets. The proposed method using CB+IL/PGE displayed good recovery (99.4%) as well as limits of
detection (LOD) of 0.08 µmol L-1 and limits of quantification (LOQ) of 0.28 µmol L−1. CB+IL/PGE
response was five times greater than the unmodified PGE. CB+IL-PGE stands as an interesting
alternative for DIC assessment in different pharmaceutical samples.

Keywords: pharmaceutical electroanalysis; stability assays; anti-inflammatory drugs; pencil graphite
electrodes

1. Introduction

Inflammatory diseases constitute a complex and heterogeneous group of diseases, which are an
important cause of disability. The pharmacological treatment of such diseases is mostly based on the
use of corticosteroids and non-steroidal anti-inflammatory drugs (NSAIDs) [1–3]. Diclofenac (DIC) is a
non-selective cyclooxygenase inhibitor belonging to NSAIDs, which acts by inhibiting the synthesis of
prostaglandins that have a wide capacity to induce inflammation [1].

Pharmacopoeial methods for DIC assessment are often based in high-performance liquid
chromatography (HPLC) [2–4], however, such techniques involve a number of pre-preparative
steps, elevated cost of laboratory equipment, and are reagent-consuming methods. Although methods
such as titulometry and spectrophotometry are also largely applied for DIC assessment to avoid costly
methods, they lack nevertheless suitable precision and accuracy [4–6].

Concerning cost/benefit and environmental issues, electroanalysis emerged as a promising
alternative to traditional analytical tools due to electrode versatility, selectivity, low cost, and minimal
solvent use [5–8]. Amongst the myriad of electrode matrixes employed in electroanalysis, glassy
carbon (GC) and carbon paste (CP) electrodes (E) are the most employed [7–13]; however, surface
adsorption of oxidized/reduced compounds may promote electrode fouling; therefore, leading to
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reduced reproducibility. To overcome such drawback, electrode polishing of GCE or surface renewal of
CPE are routine steps in electroanalytical assays [9–12]. In this context, pencil graphite electrode (PGE)
is a soft and very cheap material whose surface layers are easily renewed by abrasion on paper [11–15].

Another promising and cheap approach is the use of carbon black (CB), a nanostructured material
which offers the possibility to increase the effective electrode surface area. CB is a material that
represents an excellent modification tool due to its enhancing qualities regarding high electrical
conductivity and fast charge transfer kinetics. These characteristics are highly demanded in fields such
as electrode modification and biosensors development [16]. In recent years, many applications for
modifications with CB have appeared in literature, such as the modification of DNA biosensors [16],
plastic films [17,18], and nano-film electrosensors [19–22].

These electrode surface modifications can be further enhanced through ionic liquid (IL) based
matrices, whose intrinsic conducting properties may substantially increase method sensibility [20]
without drawbacks concerning increased cost [11–16]. Moreover, IL provides anchorage to CB surface
modifications, turning it feasible without further treatments.

In view of electrochemical versatility and benefits towards drug assessment, this research aimed
to study the use of different electrodes, namely PGE, IL/PGE, and IL+CB/PGE as working electrodes
for DIC assessment in pharmaceutical samples. The procedures herein used to renew and to improve
the electroactive surface area were cleaner and easier than those applied for CPE and GCE, thus being
in accordance with pharmaceutical regulatory issues.

2. Results and Discussions

2.1. Evaluation of PH Effects on Analytical Performance

The protonation mechanisms can affect redox processes and the experimental optimization was
prior assessed by differential pulse voltammetric (DPV) assays at PGE in different pH conditions.
The highest peak current was found in pH 3.0 (Figure 1A), whereas the linear shift observed in the
plotted Epa vs. pH value (Figure 1B), in which the slope close to the nerstian value of 59 mV/pH
shows that the proton transfer has equal participation on this redox process. In turn, the appearance of
new peaks observed only in higher pH may be explained by means of electrochemical oxidation of
hydrolytic products.
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Figure 1. (A) 3D plot obtained for differential pulse voltammetric (DPV) assays at different pH solutions
for 25 µmol L−1 Diclofenac (DIC); inset: the plot of peak current values vs. pH. (B) Linear plot of peak
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2.2. Electrochemical Behavior of DIC in PGE

Figure 2A presents the sequential scans of 25 µmol L−1 DIC in pH 5.0 0.1 M acetate (ACS) at
PGE. The first direct scan displays an anodic peak, 1a, at E1a c.a. 0.8 V, on the reverse scan, a cathodic
peak, 2c, is seen, whereas its related anodic peak, 2a, at E2a c.a. 0.55 V, appears on the second scan
as a consequence of the first anodic process (Figure 2A). These results are supported by literature
data, in which the first redox process, 1a, was attributed to amine oxidation, leading to the subsequent
chemical reaction [15]. In turn, a residual anodic process, 3a, seen at DPV (Figure 2B) might be
attributed to para-quinonic groups electro-generated at the graphite surface [23].
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Figure 2. First (——), second (• • •), and third (– • –) sequential cyclic voltammetry (CV) (A); DPV
scans obtained at pencil graphite electrodes (PGE) without polishment prior to each assay (B); Square
wave (SW) voltammograms, It as total current, If as forward current, and Ib as backward current (C);
CV assays performed at different scan rates: 25 mV s−1 (• • •), 50 mV s−1 (- - -), 100 mV s−1 (– • –),
250 mV s−1 (– – –), 500 mV s−1 (——) (Inset: linear plot of peak current vs. v1/2) (D). All for 25 µmol L−1

DIC in pH 5.0 0.1 M acetate (ACS) at PGE. The proposed electrochemical reaction mechanisms for
DIC (E).
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Indeed, this residual process was not observed in CV assays, whereas the cathodic peak related
to the anodic, 2a, can also be observed in Figure 2C. Moreover, the reversibility of redox pair 2a/2c
is stated by the ratio between anodic/cathodic current signals equals to one unit, as well as, by the
narrow difference between the overpotential values ~60 mV. The square wave voltammetry (SWV)
assay demonstrated moreover that the first anodic process, 1a, is irreversible (Figure 2C).

In order to see the effect of scan rate on DIC anodic process, 1a, different scan rates CV assays
were performed (Figure 2D). It was observed linearity (r = 0.99) between the square root of the scan
rates (v1/2) and the peak current in a range from 25 to 500 mV s−1, so it can be inferred that the
electro-oxidation processes are controlled by diffusion [4,15,23–30].

2.3. Effect of CB+IL on the PGE Performance

Owing to the recognized properties of CB [14–19], its effect as a modifying agent was investigated
focusing on the possibility to extend the applications of PGE for samples containing low DIC levels.
Concerning the feasibility of the manufacturing procedures, the approach herein used was easily
conducted and consisted of an adsorption/immobilization method. In this context, the CB was
suspended in IL in equal proportion. The choice for IL was due to its good conducting property and
low proneness to undergo lixiviation process. Figure 3 shows DPV responses of bare PGE and two
modified electrodes, namely IL/PGE and CB+IL/PGE (Figure 3).
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It can be observed that the analytical signal had a notable improvement in both IL/PGE and
CB+IL/PGE when compared to bare PGE (Figure 3). The increase of peak amplitude in IL/PGE could
have occurred due to favorable molecular interactions between IL (1-butyl-3-methylimidazolium) and
DIC, as DIC chemical structure is prone to allow van der Waals, electrostatic, and ionic interactions.
Therefore, IL modified PGE signal enhancement is exerted by a pre-accumulation effect. However, a
greater increase in the signal was observed in the CB+IL/PGE, due to the superior increment of the
electrode surface area promoted by the CB nanostructured system [27–29].

2.4. Quantitative Determination of DIC in Pharmaceutical Samples

To verify the suitability of the DPV assay using PGE and CB+IL/PGE for quantitative determinations
of DIC in commercial drug tablets, calibration curves were conducted in increasing concentrations
(Figure 4).

The resulting linear regression equations were: y = 1.5410 × 10−7 (±0.0098) + 1.8605 × 10−7
×

(r = 0.9986) and y = 8.6102 × 10−8 + 5.7208 × 10−8
× (r = 0.9922) and, whereas the relative standard

deviation values (RSD, n = 3) ranged from 3 to 8% and 2 to 5% for CB+IL/PGE and PGE, respectively.
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No calibration curve was constructed for IL/PGE as it was intended solely for comparative purposes
concerning CB+IL/PGE sensibility.Pharmaceuticals 2019, 12, x FOR PEER REVIEW 5 of 11 
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The addition–recovery studies of DIC in tablet samples (n = 6) were performed for PGE, CB+IL/PGE,
HPLC, and UV-Vis spectrophotometry. The DP voltammetric assays at PGE showed recovery of 98.4%
with values close to other electroanalytical works [16–19]. RSD for this electrode was lower than the
required value of 5% [2] and calculated limits of detection (LOD) and limits of quantification (LOQ)
were respectively of 0.27 µmol L−1 and 0.91 µmol L−1. CB+IL/PGE showed a recovery of 99.4% and
displayed LOD of 0.08 µmol L−1 and LOQ of 0.28 µmol L−1. These results indicate that matrix effects
do not affect PGE and CB+IL/PGE determination of DIC. The comparison between the obtained results
using the proposed modified electrode and the official methods (HPLC and UV-Vis spectrophotometry)
are presented in Table 1.

Table 1. Determination of DIC tablets of DPV with unmodified (PGE) and modified (CB+IL/PGE)
electrodes, high-performance liquid chromatography (HPLC), and UV-Vis spectrophotometry and
their respective standard deviations (n = 6).

Sample Labeled
(mg)

DPV-PGE
(mg)

DPV-CB+IL/PGE
(mg) HPLC (mg) UV-Vis Spectrometry

(mg)

DIC tablets 1 70 68.9 ± 3.5 69.6 ± 2.8 69.6 ± 2.1 68.7 ± 3.1
DIC tablets 2 70 69.1 ± 3.4 69.0 ± 2.9 69.8 ± 2.2 68.8 ± 3.0

Table 2 presents the LOD and LOQ of this work compared to results obtained with data in the
literature that used electrochemical techniques in the determination of DIC.

Table 2. Comparisons of the limits of detection (LOD) and the limits of quantification (LOQ) in the
determination of DIC with electroanalysis.

Electrode Method LOD (µmol L−1) LOQ (µmol L−1) Reference

CB+IL/PGE DPV 0.08 0.28 Our work
Platinum Disk LSV 5.4 16.2 [29]

IL/CNTPE SWV 0.09 - [27]
CPE-MWCT DPV 0.74 3.49 [30]

Carbon paste/CNT’s DPV 0.9 2.96 [31]
CuZEGEg DPV 0.3 - [32]
IL/CNTPE DPV 0.2 - [33]

MWCNT-IL DPV 0.0003 - [34]
F–CNF SWV 0.0001 - [35]
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However, many works [34,35] have achieved impressively lower LOD; this feature is not imperative
for quality control applications. Moreover, the pencil graphite and carbon black is much less expensive,
whereas the cleanness and practical procedure to renew the electrode surface are very attractive [18].

To validate the results, a statistical test of t-Student and ANOVA were performed for the
DIC determination values (Table 3) at the 0.05 significance level (α). The calculated values of t
(−0.75) and F (0.17) were smaller than tabulated critical values; thus, the variance of the obtained
results for all performed methods (PGE, CB+IL/PGE, HPLC, and UV-Vis spectrophotometry) are not
statistically different.

Table 3. Recovery values of DIC tablet with voltammetric and chromatographic assays of the three
different industrial lots.

t Student * ANOVA *

t value −0.7513 F value 0.1796
Prob. > t 0.4863 Prob. > F 0.6806

* α = 0.05 (significance level).

2.5. Accelerated Stability Test of DIC in Pharmaceutical Samples

The CB+IL/PGE was also used to monitor the stability of DIC tablets. In this context, the three
tablet lots (A, B, and C) were submitted to stress through incubation in a thermal stove with 40 ◦C ± 5.0
for 6 months (Table 4). Analytical assays were performed before incubation, after three months of
incubation and after six months of incubation.

Table 4. Recovery values of DIC tablet with voltammetric and chromatographic assays of three different
industrial lots.

Found Recovery (% ± RSD)

Lot Months Voltammetry Chromatography

A
0′ 99.9% ± 2.0% 100.2% ± 0.72%
3′ 100.5% ± 2.2% 100.4% ± 1.2%
6′ 101.3% ± 1.5% 100.9% ± 1.0%

B
0′ 101.4% ± 2.1% 102.0% ± 1.0%
3′ 100.7% ± 2.3% 101.2% ± 1.5%
6′ 100.9% ± 1.8% 101.6% ± 1.1%

C
0′ 101.9% ± 2.1% 101.7% ± 1.2%
3′ 100.7% ± 2.7% 101.0% ± 1.6%
6′ 101.2% ± 1.9% 101.6% ± 0.89%

As expected, the recovery values of voltammetric and chromatographic determinations showed
virtually no degradation of the samples in all analyzed lots in the three evaluated times (Table 4).
All found concentrations were less than 5% of the relative standard deviation. Both methods displayed
effective approaches to evaluate the stability of DIC tablets under thermal stress conditions. Moreover,
no evidence of degradation products was found in neither approach.

2.6. Interference Study

To evaluate the interference of different excipients in DIC determination, DPV analysis was
conducted to ascertain their non-electro-activity. Results are displayed in Figure 5.
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Results evidenced that all tested excipients did not display electro-activity, as corroborated by
previous experiments done with DIC tablets. Moreover, excipients did not interfere with the signal
gathering of DIC (Figure 5). Therefore, the results show that the method proposed in this work is
nonetheless selective concerning DIC determination in pharmaceutical forms.

3. Materials and Methods

3.1. Reagents, Samples, and Solutions

The chemicals and solvents were of analytical grade and used without further purification.
Analytical grade DIC potassium salt was purchased from Sigma (Saint Louis, MO, USA) and the stock
solutions were prepared immediately before the experiments. Manitol, lactose, and hydroxipropil
cellulose were donated by University Pharmacy of the Federal University of Goiás, and their stock
solutions were prepared using the same protocol of DIC stock solutions. 1-Butyl-3-methylimidazolium
hexafluorophosphate was purchased from Acros Organics, Geel, Belgium. 4B, 2.0 mm diameter
graphite pencils were purchased from Koh-I-Hdmuth (Czech Republic). CB (Vulcan® VXC72R, Cabot
Corporation, Alpharetta, GO, USA) was kindly provided by Prof. Orlando Fatibello-Filho from UFSCar.

Electrolyte solutions were prepared by using high analytical grade salts, which were diluted in
double distilled Milli-Q water (conductivity ≤ 0.1 µS cm−1) (Millipore S. A., Molsheim, France).

3.2. PGE Preparation

PGE was produced simply by fitting graphite pencil into a plastic tube c.a. 2.0 mm in such a
way that the pencil was firmly placed and only 2.0 mm diameter circular area was in contact with the
analytical solution (Scheme 1: steps 1 and 2). The pencil was polished in a Jet401 Norton 47F 1200
sandpaper after each assay and then further smoothed in writing paper. The polishment was achieved
by drawing 6 small full circles of 0.5 cm, whereas smoothing was executed by doing 5 full circles of
the same size. The electrical connection was made with alligator clips in the other extremity of the
electrode surface/solution interface (Scheme 1).
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3.3. CB+IL/PGE Preparation

To produce the CB+IL/PGE, a mixture of (1:1) CB powder and IL, 1-butyl-3-methylimidazolium
hexafluorophosphate, was prepared. The mixture was rinsed thoroughly until a homogeneous paste
was formed. A bare PGE, with only the circular surface area of the tip exposed, was smoothly pressed
against the resulting paste resulting in a homogenous surface.

The effects of IL on PGE were also tested through DIC assessment using IL/PGE. The preparation of
IL/PGE was performed by immersing PGE in IL for 15 min. IL/PGE was then dried at room temperature.

3.4. Electroanalytical Assays

Voltammetric experiments were carried out with a potentiostat/galvanostat µAutolab III®

integrated to the GPES 4.9® software, Eco-Chemie, Utrecht, The Netherlands. The measurements
were performed in a 5.0 mL one-compartment electrochemical cell, with a three-electrode system
consisting of a PGE; IL/PGE or CB+IL/PGE, a Pt wire and a Ag/AgCl/KClsat (both purchased from
Lab solutions, São Paulo, Brazil), representing the working electrode, the counter electrode and the
reference electrode, respectively. The experimental conditions for differential pulse voltammetry
(DPV) were: pulse amplitude 50 mV, pulse width 0.5 s, and scan rate 10 mV s−1. The experimental
conditions for square wave voltammetry (SWV) were: pulse amplitude 50 mV, frequency 50 Hz, and a
potential increment of 2 mV, corresponding to a scan rate of 100 mV s−1. The experimental conditions
for cyclic voltammetry (CV) were: scan rate of 100 mV s−1 and scan range from 0 to 1 V, however,
CV was also performed in different scan rates of 25, 50, 100, 250, 500 mV s−1. All experiments were
done at room temperature (21 ± 1 ◦C) in sextuplicate (n = 6) and the main electrolytes used were
0.1 mol L−1 acetate (ACS) and phosphate buffer solutions (PBS), pH 3.0–9.0. The DP voltammograms
were background-subtracted and baseline-corrected. All data were analyzed and treated with Origin
8® software.

3.5. Determination of DIC in Tablets

To quantify DIC content in tablet form, an electroanalytical method and two official compendia
approaches were chosen for comparative reasons, namely: spectrophotometry and HPLC assays.
The analyzes using the official methods were performed according to the Brazilian pharmacopeia [2].
For electroanalytical assays, DIC stock solutions were prepared by weighing 20 tablets, then transferring
enough powder in a 1 mmol L−1 NaOH solution to render 200 mL of 1 mmol L−1 DIC solution. Moreover,
the resulting solution was sonicated at room temperature (22 ± 1 ◦C) for 20 min and then filtered in filter
paper. The stock solution was prepared shortly before analysis, whereas the analytical measurement
range was 5.0 to 500 µmol L−1.
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The spectrophotometric measurements were carried out by using a UV–Vis spectrophotometer
(Quimis, model Q-798U2VS, São Paulo-SP, Brazil). All samples were analyzed in a 1 cm length glassy
cell at room temperature.

The chromatographic assays were performed in a Shimadzu HPLC system (Shimadzu, Kyoto,
Japan) consisting of an LC-20AT pump, DGU-20A5 degasser, SPD-M20A PDA detector, CTO-20A
column oven, and SIL-20A autosampler. The column oven temperature was set to 30 ◦C. The separation
of the analytes was carried out using stainless steel ACE column packed with C18 (250 × 4.6 mm,
5 µm size particle). The mobile phase was a mixture of 50 mmol L−1 potassium phosphate buffer
(pH 3.0) solution and methanol 80:20 v/v. The mobile phase was previously filtered before use through
a 0.45 µm membrane (Millipore, Milford, MA, USA) and degassed in an ultrasonic bath (Unique
USC-2800) for 20 min. The flow rate was of 1.0 mL min−1. The detection was performed at a specific
wavelength of 275 nm and the data obtained for external standards and samples were processed and
compared by LC Solutions software. In these conditions, the retention time of DIC was 9.2 min.

4. Conclusions

CB+IL/PGE compared to other sensors and assessment methods offers a satisfactory analytical
performance for DIC determination in different pharmaceutical samples. Such a feature, when
associated with low cost, easy access, quick, and efficient cleaning of the electrode area, indicates that
PGE may be a useful tool for DIC analysis. Moreover, both PGE and its modified counterpart exhibit
satisfactory detection and recovery, although standard deviation values were slightly higher than most
of the sensors and methods applied. Nevertheless, results are in accordance with the specifications for
such analysis.

CB+IL/PGE evidenced superior signal in comparison with bare PGE. The overall analytical
performance and the low material cost associated with the prompt analysis provided by both
electrodes consistently justifies the choice of these analytical devices as alternative approaches for drug
quality control.
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