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Abstract: Antimicrobial peptides (AMPs) have been identified as a potentially new class of antibiotics
to combat bacterial resistance to conventional drugs. The design of de novo AMPs with high
therapeutic indexes, low cost of synthesis, high resistance to proteases and high bioavailability
remains a challenge. Such design requires computational modeling of antimicrobial properties.
Currently, most computational methods cannot accurately calculate antimicrobial potency against
particular strains of bacterial pathogens. We developed a tool for AMP prediction (Special Prediction
(SP) tool) and made it available on our Web site (https://dbaasp.org/prediction). Based on this tool,
a simple algorithm for the design of de novo AMPs (DSP) was created. We used DSP to design
short peptides with high therapeutic indexes against gram-negative bacteria. The predicted peptides
have been synthesized and tested in vitro against a panel of gram-negative bacteria, including drug
resistant ones. Predicted activity against Escherichia coli ATCC 25922 was experimentally confirmed
for 14 out of 15 peptides. Further improvements for designed peptides included the synthesis of
D-enantiomers, which are traditionally used to increase resistance against proteases. One synthetic
D-peptide (SP15D) possesses one of the lowest values of minimum inhibitory concentration (MIC)
among all DBAASP database short peptides at the time of the submission of this article, while being
highly stable against proteases and having a high therapeutic index. The mode of anti-bacterial action,
assessed by fluorescence microscopy, shows that SP15D acts similarly to cell penetrating peptides.
SP15D can be considered a promising candidate for the development of peptide antibiotics. We plan
further exploratory studies with the SP tool, aiming at finding peptides which are active against other
pathogenic organisms.

Keywords: antimicrobial peptides; predictive models; drug design

1. Introduction

The solution to the problem of bacterial resistance to antibiotics is one of the most pressing tasks
in microbiology. Bacterial infections caused by multidrug-resistant (MDR) strains represent a new
threat to public health around the world. Gram-negative bacteria cause dangerous diseases such
as pneumonia, meningitis, and many others. Lipopolysaccharides, which are highly abundant in
the outer membrane of gram-negative bacteria, can play a role in the reduced effectiveness of many
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antibiotics [1]. The fact that AMPs’ modes of action include interaction with many different targets on
the microbial envelope makes the development of resistance against them complicated. Therefore,
AMPs are considered as a convenient base from which to design new antibiotics in order to combat
resistance. Currently, antimicrobial peptides are being actively studied. This is shown, for example, by
the fact that during the last year, the number of entries in the DBAASP database [2] increased by 1500.

Despite this, antimicrobial peptides are quite poorly used in clinical practice. There are three main
reasons that prevent their active use as antibiotics. First, before they can express their full potential
antimicrobial activity, peptides can be degraded by proteases (either host or microbial). Secondly,
many AMPs are toxic to mammalian cells; finally, they are expensive to produce.

Although AMPs stand in front of the aforementioned issues, their design, synthesis, and attempts
to use them as antibiotics continue: more than 75% of peptides in DBAASP are synthetic, and in the
last years, the number of peptides which are at different stages of clinical trials has also increased [3].

Various methods have been used to design new AMPs with high antimicrobial activity, resistance
to proteolysis, and low toxicity [4]. These approaches include experimental and computational methods
such as mutation-based empirical methods [5,6], statistically-based bioinformatics methods [7–10], and
mechanism-based methods, which include MD simulations [11–14] and biophysical experiments such
as NMR [15–17]. One of the best approaches to designing new AMPs is to use bioinformatics methods
which are simple, fast, and cost effective. Many of them are based on prediction models (tools) which
have been constructed on the basis of the statistical processing of data obtained from different AMP
databases. These tools employ different machine learning and data analysis approaches [18–43].

Despite the large number of methods, one of the main obstacles in the design of new peptides is
the lack of effective predictive models which are capable of showing high performance when designing
new amino acid sequences with high therapeutic effects against particular bacterial strains [44,45].

We developed a tool for AMP prediction, entitled Special Prediction (SP) (https://dbaasp.org/

prediction). SP predicts antimicrobial activity based on the mechanisms of action of AMPs against
a particular strain, and makes it possible to design and synthesize certain types of peptides with
specific properties (for instance, without hemolytic or cytotoxic activity, etc.). Initially, the predictive
model was developed for anti-Escherichia coli ATCC 25,922 peptides [44]. Recently, predictive models
for peptides showing potency against Staphylococcus aureus ATCC 25923, Bacillus subtilis and red
blood cells (hemolytic activity) have also been developed (see special prediction page of DBAASP
https://dbaasp.org/prediction).

In this work, SP is used for the task-oriented design of new AMPs with high therapeutic indexes,
meaning that the peptides having high antimicrobial activity against Escherichia coli ATCC 25922, should
also have low hemolytic activity. (We define therapeutic index here as selectivity index (SI), which was
calculated as LC10/MIC.) The corresponding peptides were synthesized and tested in vitro for activity
against Escherichia coli ATCC 25922, for hemolytic and cytotoxic activity, and for proteolytic stability.
Several peptides were also tested against other gram-negative bacteria (including drug-resistant strains).
In order to investigate the mechanisms of action of two special peptides, fluorescence microscopy was
also carried out in order to assess their bacterial membrane penetrative properties. The results gained
from susceptibility testing have justified the use of the SP tool in the design of new AMPs.

2. Results

2.1. Selecting the Length for De Novo Design

At the first stage, only short peptides with lengths of 13 aa were designed. There are several
reasons for this.

Firstly, short peptides have a lower cost, which is important, since high cost is one of the factors
that prevents the use of AMPs in clinical practice. Secondly, the length of 13 amino acids (aa) was
chosen on the basis of the fact that most short, natural (ribosomal) peptides have a length of 13aa. This
is evident from the distribution of peptide lengths which are active against Escherichia coli ATCC 25922
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in the DBAASP database (see Figure 1). Thirdly, 13 aa long peptides have enough resources to adopt
the alpha-helical structure, which is crucial for the activity of many AMPs.
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2.2. SP Models Used for the Design of Peptides

The SP tool predicts whether peptides are active against certain bacterial strains, and whether
they have hemolytic activity. The prediction is made on the basis of the clustering of physico-chemical
characteristics of peptides, using a semi-supervised machine-learning approach. Algorithm description
and a predictive model for anti—Escherichia coli ATCC 25922 peptides were previously described
in [44]. The following 9 characteristics were used: Normalized Hydrophobic moment (M), Normalized
Hydrophobicity (H), Charge (C), Isoelectric Point (I), Penetration Depth (D), Orientation of Peptides
relative to the surface of membrane (Tilt angle) (O), Propensity to Disordering (R), Linear Moment (L),
and In vitro aggregation (A) [46]. Three clusters of peptides with similar characteristics (E1, E2 and E3)
were revealed by clustering process on the training set of AMPs. The predictive model was established
based on the obtained clusters. The overall results of the prediction on the test set, performed on the
basis of a developed predictive model, were: sensitivity (SN) = 0.74, specificity (SP) = 0.85, accuracy
(AC) = 0.79, positive predictive value (PPV) = 0.83. It is worth noting that from 140 peptides of positive
training set, 85 were grouped into cluster E1, 15 peptides into E2 and 17 into E3, while for the test set,
the number of peptides appearing in the E2 and E3 was dramatically less. Consequently, we can say
that there is not enough data to correctly assess the PPV of prediction for the models relying on the
clusters E2 and E3. This means the predictions on the basis of cluster E1 can be considered reliable,
while assessments of reliability of predictions on the basis of E2 and E3 require additional data. For
details of the prediction results for Escherichia coli ATCC 25922, we recommend consulting research
paper [44].

A predictive model for the hemolytic activity of peptides was developed by the same algorithm [44].
The mean values and standard deviations of computed parameters for optimized clusters are given in
Table 1. The results of in silico predictions of hemolytic potency of peptides are presented in Table 2.
Figure 2 shows how peptides which are active against Escherichia coli ATCC 25922 are distributed by
clusters, which are revealed for non-hemolytic peptides.



Pharmaceuticals 2019, 12, 82 4 of 17

Table 1. Average values and standard deviation of 9 physico-chemical characteristics for optimized
clusters for 10-16 aa long peptides non-active against Human erythrocytes.

Mean Values ± SD of
Attributes

Cluster H1
(MHCIORLS a) Cluster H2 (MA a) Cluster H3 (MCIA a)

M ± σ 1.42 ± 0.37 0.33 ± 0.13 1.07 ± 0.24

H ± σ 0.09 ± 0.56 −0.14 ± 0.73 −0.71 ± 0.31

C ± σ 6.9 ± 1.93 3.87 ± 3.12 2.64 ± 0.79

I ± σ 13.75 ± 0.58 10.73 ± 2.51 10.81 ± 0.48

D ± σ 16.74 ± 4.2 23.9 ± 6.39 15 ± 4.79

O ± σ 100.76 ± 26.29 82.42 ± 43.36 95.96 ± 28.04

R ± σ −0.32 ± 0.29 −0.26 ± 0.24 0.19 ± 0.22

L ± σ 0.31 ± 0.08 0.34 ± 0.1 0.32 ± 0.08

A ± σ 2.25 ± 10.54 2.68 ± 7.27 13.05 ± 16.16

S ± σ 13.84 ± 3.35 17.39 ± 6.09 16.72 ± 4
a Attributes, which characterize space where cluster was formed. Mean and SD of these attributes are marked
in bold.

Table 2. Results of not hemolytic peptide prediction on the training and test sets.

TP TP + FN FP TN + FP Sn Sp AC PPV

Training Set

Cluster H1 50 120 13 120 0.79
Cluster H2 31 120 4 120 0.89
Cluster H3 25 120 8 120 0.76

All Clusters 106 120 25 120 0.88 0.79 0.84 0.81
Cluster H1 14 43 2 43 0.88

Test Set
Cluster H2 11 43 3 43 0.79
Cluster H3 7 43 5 43 0.58

All Clusters 32 43 10 43 0.74 0.77 0.76 0.75Pharmaceuticals 2019, 12, x FOR PEER REVIEW 5 of 19 
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Figure 2. Distribution of peptides, active against Escherichia coli ATCC 25922 by clusters established for
non-hemolytic peptides. E1, E2, and E3—clusters revealed for peptides, active against Escherichia coli
ATCC 25922; H1, H2, H3—clusters revealed for non-hemolytic peptides; HA—array of peptides which
do not belong to the non-hemolytic clusters.

2.3. Peptide Design

The aim of this work is to design peptides with high antimicrobial activity and low hemolytic
activity with the help of SP tools. SP algorithm [44] separates peptides into clusters according to their
physico-chemical features, and the necessary requirement for these clusters is to be representative
and statistically significant. This might be hard to achieve, due to the paucity of experimental data
for some pathogenic organisms. In our studies, novel peptide sequences were generated only for
clusters having the most reliable assessments, i.e., for E1. In physicochemical spaces E1 and H1, the
most overlapping clusters occur (Figure 2). The value of PPV for Clusters E1 and H1 for test sets is
quite high (0.88 for both clusters); therefore, we can state that the data from the Clusters E1 and H1
are appropriate to design non-hemolytic peptides active against Escherichia coli ATCC 25922. With
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the currently available information, we were able to design a predictive model of activity against
Escherichia coli ATCC 25922 bacteria, with additional requirement for low hemolytic activity. A simple
algorithm (DSP) was developed for the design of de novo AMPs according to the suggested model
(see Methods section for details). Based on DSP, 14 novel peptides were designed and tested. Using
the results of experimental testing of these peptides, an additional 3 peptides were manually designed
and tested (see below).

2.4. Hemolytic Activity of the Designed Peptides

The results of hemolytic activity experiments show that all peptides have hemolytic activity
below 10% at a concentration of 50 µg/mL, and most peptides do not have a hemolytic activity at
a concentration of 100 µg/mL. Peptide SP 14 has high antimicrobial activity, but hemolytic activity
at a concentration of >50 µg/mL is higher than 10%. We suspected that this was due to SP14 high
hydrophobicity, and it is known that hydrophobicity in peptides can correlate with hemolytic activity.
We decided to remove C-terminal isoleucine residue in order to decrease the overall hydrophobicity of
the peptide, and we repeated in vitro testing of the remaining 12 residue peptide (SP15 in Table 3. This
strategy worked, as the peptide SP15 retained antimicrobial activity, while not exhibiting hemolytic
activity at a concentration of 100 µg/mL.

Table 3. Assessments of susceptibility of Escherichia coli ATCC 25922 (MIC), hemolytic activity (LC10)
proteolytic stability (STP) and therapeutic index (TI) for the designed peptides.

Name Sequence

MIC (µg/mL) STP
(Peptide/Protease M Ratio)

LC10
(µg/mL) TI **

At NaCl Without
NaCl

Proteinase K α-chymotrypsin

1000:1
Ratio

500:1
Ratio

1000:1
Ratio

500:1
Ratio

SP1 AIKIRKLFKKLLR 12.5–25 3.125–6.25 D NT D NT >100 >16
SP2 GIKIRKLFKKLLR 6.25–12.5 3.125–6.25 D NT D NT >100 >16
SP3 GWAKLITKAIKKI 25–50 12.5–25 PD PD D NT 50–100 4
SP4 GIKFFLKKLKKHI 25–50 6.25–12.5 PD PD D NT >100 >8
SP5 IRPAKLRWFKKIK >100 12.5–25 D NT D NT >100 >4
SP6 RLFIKKLKFITRR 25–50 3.125–6.25 PD D D NT >100 >16
SP7 NAMRGAKRVWRHI >100 50–100 PD PD D NT >100 >1
SP8 KFRKFGKQVWVRL 12.5–25 3.125–6.25 PD D D NT >100 >16

SP1D * aikirklfkkllr 12.5–25 3.125–6.25 ND ND ND ND 25–50 4–8
SP9 KVWSRLRKIFSTR 6.25–12.5 3.125–6.25 D NT D NT 50–100 8–16
SP10 AKVLKISRRAFRK >100 25–50 D NT D NT >100 >2
SP11 IRRWRLHWFRRAI 12.5–25 3.125–6.25 PD D D NT >100 >16
SP12 IRRRIRLIVRRQI 12.5–25 1.56–3.125 ND PD D NT >100 >32
SP13 HFKIRKRFVKKLV >100 6.25–12.5 PD D D NT >100 >16
SP14 RWIRWVWRKKLRI 12.5–25 3.125–6.25 PD D D NT 50–100 8–16

SP15 * RWIRWVWRKKLR 3.125–6.25 0.78–1.56 PD PD PD PD >100 >64
SP15D * rwirwvwrkklr 0.78–1.56 0.39–0.78 ND ND ND ND >100 >128

D—Digested; NT—not tested (if a peptide digested by a protease in a lower concentration of the protease, the
experiment for the higher concentration was not carried out); PD—Partially digested; ND—not digested; LC10
(µg/mL) is a concentration required for 10% hemolysis; STP—Stability Towards Proteases at Peptide to Protease
Molar ratio;* peptides, which sequences were manually changed from de novo designed sequences generated by
DSP;** TI= LC10/max(MICwithout NaCl).

2.5. Analysis of the Results of In Vitro Tested Peptides

The data for the development of the predictive model were obtained from susceptibility test
experiments where bacterial growth was performed in a broth poor with salt (NaCl).

At the same time, there are data suggesting that MICs for cationic peptides depend on NaCl
concentrations [20], so we decided to test peptides in two different mediums: in Luria Bertani (LB)
medium supplemented with NaCl and in LB medium, not supplemented with NaCl (Table 3). From
15 peptides predicted by the SP tool as being active against Escherichia coli ATCC 25922 and tested
in vitro in LB medium without NaCl, 14 were active (MIC < 50), meaning that the SP tool correctly
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predicted biological activity in 93% of cases. In a LB medium containing NaCl, 12 peptides showed
antimicrobial potency, corresponding to 80% correct predictions.

The peptides SP1-SP4 were tested against 16 other gram-negative bacterial strains in the
Departments of Pathology Medicine/Infectious Diseases, University of Texas Health Science Center, at
San Antonio. These results are presented in Table 4. All peptides demonstrated high antimicrobial
activity against 8 strains from the 16 tested. As the control, Meropenem, which is one of the most
effective antibiotics, especially against Gram-negative organisms [47], was used. Importantly, our
peptides were active even against drug-resistant P. aeruginosa J4228 (Meropenem Resistant), A. baumannii
Josh 28, and Escherichia coli ARLG-1012 (NDM Resistant).

Table 4. In vitro testing of the peptides SP1–SP4 against different gram-negative bacterial strains.

Isolate # Organism ID Phenotype
MIC

(µg/mL)
Meropenem

MIC
(µg/mL)

SP1

MIC
(µg/mL)

SP1

MIC
(µg/mL)

SP3

MIC
(µg/mL)

SP4

ATCC 27853 P. aeruginosa CLSI Control 1 4 4 8 8
J4228 P. aeruginosa R: Meropenem >64 8 8 16 16

BB2013-100 P. aeruginosa FQR 1 32 32 32 32
Josh 28 A. baumannii Susceptible 32 4 4 4 2

Josh 230 A. baumannii OXA-48 1 16 16 16 4
BB2012-181 E. cloacae R: Meropenem 16 >32 32 16 >32
BB2013-32 E. cloacae FQR 0.5 >32 >32 16 16

St. L P63 E. aerogenes NDM-1 16 >32 32 16 16
St. L P23 E. asburiae/cloacae NDM-1 16 >32 >32 32 >32

BB2009-209 K. pneumoniae KPC-2 32 >32 >32 >32 >32
J3702 K. pneumoniae Susceptible ≤0.125 >32 >32 16 32

Oschner KP-1 K. pneumoniae KPC-3 16 >32 >32 >32 >32

BW25113 (7636) E. coli WT, Tol parent
strain ≤0.125 8 8 4 8

JW55034 (11430) E. coli Tol neg ≤0.125 8 8 4 8
BB2013-30 E. coli R:carbapenem 1 16 16 8 16

ARLG-1012 E. coli NDM 64 8 8 4 8

2.6. Cytotoxicity of the Designed AMPs

Cytotoxicity of in silico designed peptides was measured against Log phase Hepa 1-6 cells using
the 3-(4, 5-dimethylthiazol-2-yl)-2, 5- diphenyltetrazolium bromide (MTT) assay. The corresponding
results show that for all peptides, the viability of a cell is high at peptide concentrations close to MIC
(Figure 3).Pharmaceuticals 2019, 12, x FOR PEER REVIEW 8 of 19 
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2.7. The Proteolytic Stability of the Synthesized AMPs

As mentioned above, AMPs may be digested by the microbial or host proteases. Resistance
of peptides to proteases is an essential requirement for peptide-based drug design. To assess the
resistance of peptides against proteases, peptides were exposed to Proteinase K and α-chymotrypsin.
It can be seen that all tested L-peptides are fully or partially digested by the proteases (Table 3). It
is known that the proteolytic stability of the peptide may be increased if modified amino acids are
used; for example, D-amino acids instead of L-. For this purpose, 2 peptides were synthesized with
the D-amino acids – SP1D and SP15D. These peptides were tested for antimicrobial activity against
Escherichia coli ATCC 25922, hemolytic activity and proteolytic stability. The results show that peptides
consisting of D-amino acids are not digested by proteases. The antimicrobial activity of peptides
SP1D and SP1 towards Escherichia coli ATCC 25,922 are almost the same; however, peptide SP15D
has higher antimicrobial activity than its enantiomer (SP15). In addition, the SP1D peptide exhibits a
certain hemolytic activity at concentration of 50 µg/mL (15% hemolysis), while SP15D does not show
hemolytic activity at 100 µg/mL. We must also note that SP15D has one of the lowest values of MIC
among all 1333 short (<17aa) anti—Escherichia coli ATCC 25922 peptides obtained from DBAASP at
the time of the article submission (Figure S1). It must be noted that this peptide, as well as the other
designed peptides, is unique and cannot be found in any peptide database. So, we can consider this
peptide as a suitable candidate for further design to create new antimicrobial drugs.

2.8. Investigation of Permeability of the Bacterial Membrane for FITC Dye by Fluorescence Microscopy

The mechanisms of action of AMPs are still being studied. It is known that most AMPs act
on the envelope of bacteria, but it is not fully understood how they interact with the cytoplasmic
membranes. We decided to study the permeability of the membrane after interaction with de
novo designed peptides by staining them with FITC. It should be emphasized that FITC is unable
to traverse the intact cytoplasmic membrane, but if the peptide has affected the membrane, the
permeability of the latter should be increased. On the other hand, for peptides with high penetration
abilities, acting inside the cytoplasmic membrane, we expected no changes in the permeability of
membrane. We selected two peptides from the designed peptide set, with the highest (SP15) and lowest
(SP4) value of their penetration abilities, which were determined according to CPPpred predictions
(http://distilldeep.ucd.ie/CPPpred/) [48]. Bacterial cells were exposed to FITC after their treatment with
the peptides at two concentrations: 100 µg/mL and 3.125 µg/mL for SP15, and 100 and 12.5 µg/mL for
SP4. The fluorescence was compared with untreated bacterial cells. (Figures 4 and 5).

After the addition of the PFA to the cells treated by peptides at a concentration of 100 µg/mL, the
permeability of the membrane for FITC increased, as compared to the control. But, at the concentrations
close to MIC, bacteria treated with SP15 did not show any visible differences in FITC fluorescence
from control. Despite this, for SP4, at MIC concentration (25 µg/mL), low FITC fluorescence is visible.
We concluded that at a concentration of 100 µg/mL, both peptides make significant changes in the
membrane structure, and that the membrane becomes permeable for FITC. At the same time, at
concentrations close to MIC (3.125 µg/mL), SP15 does not change the membrane structure (it doesn’t
make it permeable for FITC), while SP4 changes it and makes it FITC- permeable. Therefore, we suggest
that SP15 acts differently at close to MIC and higher concentrations: at MIC it penetrates the membrane
without disrupting it and apparently acts on intracellular targets, while at higher concentrations, it
causes significant changes in the membrane structure. It should be noted that FITC fluorescence is
visible only after fixation of bacterial cells with PFA. So, the corresponding changes in the membrane
structure are likely to be dynamic and can be restored (see Section 5.10).

http://distilldeep.ucd.ie/CPPpred/
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3. Discussion

We developed and experimentally-tested a new predictive tool (SP) to design novel bioactive
peptides with a high therapeutic index. SP predictions are based on user-driven analyses of known
peptides possessing biological activity against a chosen class of bacterial pathogens. The biological
activity of peptides is predicted based on their calculated physicochemical features. Clustering of
the peptides active against a particular organism (strain) allows us to assume that peptides, having
similar physico-chemical properties and united into the same clusters, have similar mechanisms of
actions against the target organism. So, we hoped to be able to predic, with the SP tool, not only the
antimicrobial potency of peptides, but also the mechanism of their action, and accordingly, to gain the
ability to design peptides with certain mechanisms of actions. Although there are various data about
the mechanisms of action of antimicrobial peptides, many aspects of the mechanisms are not known.
According to the Shai-Matsuzaki-Huang (SMH) model [49–51], most AMPs interact with the membrane,
causing morphological changes in the membrane structure. Most known mechanisms of action of
antimicrobial peptides can be attributed to three types: 1) peptides that interact with bacterial membrane
and destroy it [52–54]; 2) peptides altering the structure of the local microdomains of the membrane,
thus causing disturbances of the metabolic processes associated with it; 3) peptides penetrating
the membrane and acting on intracellular targets (inhibiting the synthesis of macromolecules, the
metabolic/enzymatic functions [55] and a cell-wall/membrane formation [56]). Peptides of the first
type can act by the barrel-stave [57], carpet [58], toroidal pore or wormhole [59] and the aggregation
mechanism models [60]. Antimicrobial peptides with different known mechanisms of action were
clustered into 3 groups (P1, P2, P3) [61]. Peptides falling into the the P1 and P3 groups are pore-forming
(interacting with the membrane and destroying it). Peptides from P2 penetrate the membrane without
destroying it. Consequently, according to the results of interactions with the membrane, we revealed
two types of peptides: membrane destroying (P1 and P3) and cell penetrating (P2). It is worth
noting that most peptides from the P2 group contain a large amount of Pro and Arg, and sometimes
aromatic amino acids, especially Trp. Taking into consideration the recent data, the last classification
could be considered as conditional. The recent data show that the same peptide can act by different
mechanisms depending on the time of its action [62]. The authors of [62] show that the synthetic
peptide PuroA (Arg and Trp rich peptide) first penetrates the membrane and binds to nuclear acids
without disrupting the cell membrane integrity, and after 40-45 min, creates membrane pores. We
have compared the results of clustering, obtained by us, to the grouping of AMP according to [61].
This comparison shows that both cell-penetrating and pore-forming peptides fall into the E1 cluster.
If we suggested that Puro A’s features are shared features of AMP, our results adequately reflect the
reality. But it is more reasonable to think that there are purely penetrating or pore-forming peptides, as
well as peptides like Puro A. If this is true, we can say that at approximation, when physico-chemical
properties of peptides are described by characteristics relying on hydrophobicity and charge, it is not
possible to reveal any essential differences between cell penetrating and pore-forming peptides. In
any case, it is possible to look for the characteristics which can discriminate pore-forming peptides
from penetrating, especially if we take into consideration a well-defined peculiarity of the amino
acid composition of cell-penetrating peptides. So, the physico-chemical properties used in this work
characterize shared features of active peptides and reveal a group of peptides with particular features
requires taking additional characteristics into consideration. So, the search for new characteristics
should be the task of future work. For example, as mentioned, cell penetrating peptides are rich in Arg,
Trp and Pro. It is supposed that cation-π interactions make a major contribution to the penetration
capabilities of peptides [63]. Our description of the physico-chemical features of peptides did not take
into consideration differences in the side chains of Arg and Lys and specificities of their interactions
with Trp. So, we suppose that if we take into account cation-π interactions, the discrimination of cell
penetrating peptides from pore-forming will become possible.

It is worth noting that the degree of total effect of AMPs on the membrane structure depends on the
concentration of the peptide; therefore, peptides can act by different mechanisms depending on their
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concentration [64]. Our results of fluorescence microscopy studies of bacterial membrane permeability
are in agreement with these suggestions. Our data on the investigation of FITC penetration into
Escherichia coli ATCC 25,922 bacterial cells, treated by SP15, show that at the MIC concentration, the
peptide does not disrupt the membrane, but at high concentrations, FITC penetration rises as a result
of the membrane disruption.

Thus, it can be said that the existing features of the AMPs complicate the possibility of predicting the
mechanisms of their action on the basis of sequence-dependent characteristics such as hydrophobicity
and charge. Nevertheless, the further development of a SP tool will make it possible to predict
the mechanisms of action for at least some groups of antimicrobial peptides which may act by
single mechanisms.

4. Conclusions

Seventeen peptides were predicted to have antimicrobial activity against Escherichia coli ATCC
25922. After in vitro testing, it was demonstrated that almost all of the peptides had high antimicrobial
potency against Escherichia coli ATCC 25922, and did not exhibit hemolytic and cytotoxic effects.
However, these peptides can still be digested by the proteases. Replacement L- to D- amino acids in
case of 2 peptides (SP1D and SP15D) greatly increased the stability of peptides to the protease digestion.
One of these peptides, SP15D, has one of the lowest MICs among all known short (less than 17 residues)
anti Escherichia coli ATCC 25,922 peptides. An assessment of the membrane penetrative ability of de
novo designed SP4 and SP15 peptides allowed us to conclude that at high concentrations, both peptides
change membrane morphology, but at concentrations close to MIC, they behave differently: SP4
significantly affects membrane structure, while SP15 does not. Susceptibility testing against a panel of
gram-negative bacteria (including drug-resistant strains) for de novo designed peptides demonstrated
high antimicrobial potency against clinically important P. aerogenosa and A. baumannii pathogens.

5. Methods

5.1. Predictive Models

Peptide design was carried out on the basis of predictive models of the activity of peptides against
Escherichia coli ATCC 25922 and human erythrocytes. The algorithm for predictive model development
is described in detail in [44]. The model is based on the clustering of physico-chemical characteristics
of peptides using a semi-supervised machine-learning approach, relying on density-based clustering
algorithm DBSCAN [65]. The following 9 features were used in the QSAR study: Normalized
Hydrophobic moment (M), Normalized Hydrophobicity (H), Charge (C), Isoelectric Point (I),
Penetration Depth (D), Orientation of Peptides relative to the surface of membrane (Tilt angle)
(O), Propensity to Disordering (R), Linear Moment (L), and In vitro aggregation (A). Hydrophobic
scale, described by Moon and Fleming [66], was used for the definition of Hydrophobic moment,
Hydrophobicity and Linear Moment. Penetration Depth and Tilt angle was defined by the method
described in the paper [67]. Propensity to Disordering was calculated by Uversky’s formula [68].
The detailed definitions of these characteristics can be found in the paper of Vishnepolsky and
Pirtskhalava [46]. Due to the presence of the structure-dependent peptide characteristics (Hydrophobic
moment, Penetration Depth, Tilt angle), these characteristics were calculated in the α-helical
approximation, energetically the most favorable conformation in the membrane environment [69].

To generate a training and test set for the development of predictive models of non-hemolytically
active peptides, 10–35 residue long sequences were used. This is an optimal length interval for
which a statistically reliable model might be built. But in this case, the problem was the correct
assessment of hydrophobic moments for the peptides with lengths longer than 24 residues. To
calculate the hydrophobic moment of the peptides with length >24 aa, a sliding window was used.
Twenty-four aa was selected as an optimal window length [46]. The fragment with a maximum
value of the hydrophobic moment was characterized a whole peptide. The same fragment was
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used to calculate other structure-dependent characteristics such as Penetration Depth and Tilt angle.
Non-structure-dependent characteristics were assessed for the full sequence of peptides.

A positive set corresponded to the peptides that were not-active against human erythrocytes,
while a negative set corresponded to hemolytic peptides. A peptide was defined as hemolytic if, at
the concentration <40 µg/mL of this peptides, a lysis of >40% of erythrocytes was detected. Peptides,
defined as non-active in the DBAASP were included in the positive set. After satisfying the conditions
of non-redundancy and excluding peptides with D-amino acids, the positive and negative training sets
contained 120 sequences each, whilst positive and negative test sets had 43 sequences each.

5.2. Evaluation of the Quality of the Prediction and Definition of the Therapeutic Index

The following equations were used to evaluate the quality of the prediction:

SN = TP/(TP + FN)

SP = TN/(TN + FP)

AC = (TP + TN)/(TP + FN + TN + FP)

BAC = (SP+ SN)/2

PPV = TP/(TP + FP)

where SN is sensitivity, SP is specificity, AC is accuracy, BAC is balance accuracy, PPV is positive
predictive value, TP is true positive, TN is true negative, FP is false positive, and FN is true negative

Therapeutic index (TI) is defined as selectivity index (SI), and it is calculated as follows:

TI(SI) = LC10/MIC

where LC10 is Lethal Concentration of the AMPs which kills 10% of the human erythrocytes, MIC is
minimum inhibitory concentration.

5.3. Peptide Design

The most statistically reliable clusters were used to generate new amino acid sequences for in vitro
testing against gram-negative bacteria.

A simple algorithm named DSP, based on the SP model of prediction, was developed for the
design of de novo AMPs. According to the algorithm, four steps of action are suggested to create new
sequences with antimicrobial potency while also being non-toxic to red blood cells. In the first stage,
13 aa long sequences were generated using a random number generator. Amino acid frequencies used
for sequence generation correspond to frequencies in the set of linear, ribosomal AMPs. The set was
formed on the basis of DBAASP data (https://dbaasp.org/statistics), and frequencies are given in the
Table S1. In the second stage, from among randomly generated sequences were selected those that were
active against Escherichia coli ATCC 25922 according to SP. At the third stage, from among sequences
active against Escherichia coli were chosen non-toxic (not active against Human Erythrocytes) ones,
again using SP algorithm. At the end (fourth stage), the sequences selected in the previous three
steps were checked in the following databases: Uniprot [70], DBAASP [2], APD [71], CAMP [72],
DRAMP [73]). It was interesting to know which part of the randomly-generated sequences met
the aforementioned requirements. Consequently, 5 105 sequences were generated at the first stage,
and 48 121 sequences remained after the fourth stage. Fourteen sequences were randomly selected
from the remaining sequences to perform in vitro testing of the SP prediction model. On the basis of
these sequences, 14 peptides were synthesized and tested in vitro on Escherichia coli ATCC 25922
susceptibility, on hemolytic/Cytotoxic activity, and stability against proteases. Using the results of the
experimental testing of these 14 peptides, an additional 3 peptides were manually designed and tested
(see Sections 2.4 and 2.7).

https://dbaasp.org/statistics
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5.4. Peptide Synthesis

The designed peptides were synthesized by LifeTein® LLC (South Plainfield, NJ, USA) using
PeptideSynTM technology. All peptides have C-terminal amides. Peptides were delivered as salts of
hydrochloride. The purity of the peptides was determined by high-performance liquid chromatography
(HPLC) and was >98%.

5.5. Susceptibility Testing against Escherichia coli ATCC 25922

The MICs of the designed cationic peptides against Escherichia coli ATCC 25,922 strains were
determined by the broth microdilution method, as described by Hancock et al. [74]. All MIC evaluations
were performed using Luria Bertani (LB) medium. Briefly, a range of each peptide concentrations
(100 µg/mL, 50 µg/mL, 25 µg/mL, 12.5 µg/mL, 6.25 µg/mL, 3.125 µg/mL) was prepared by serial dilution
in NaCl-depleted LB medium and added to an equal volume (250 µl) of exponentially grown bacterial
culture, so that final bacterial suspension contained 5 × 105 CFU/mL. The samples were incubated
in 2 mL polypropylene microtubes at 37 ◦C overnight at 300 rpm. The MIC was defined as the
concentration at which no microbial growth was detected spectrophotometrically, via readings of
optical density (OD) at 600 nm (Biotek ELX800 microplate reader). Growth medium containing only
bacterial cells was used as a negative control. Each MIC test was carried out in two replicates and
repeated three times.

5.6. Susceptibility Testing against other Different Gram-Negative Bacterial Strains

The following strains were used: P. aeruginosa (ATCC 27,853 and resistant strains: J4228 (R:
Meropenem), BB2013-100 (FQR)); A. baumannii (Josh 28 and resistant strain Josh 230 (OXA-48); E. cloacae
(resistant strains: BB2012-181(R: Meropenem), BB2013-32 (FQR)); E. aerogenes (resistant strain St. L
P63 (NDM-1), E. asburiae/cloacae (resistant strain St. L P23 (NDM-1), K. pneumonia (J3702 and resistant
strains: BB2009-209 (KPC-2), Oschner KP-1), Escherichia coli (BW25113 (7636) and resistant strains:
JW55034 (11430) (Tol neg), BB2013-30 (R:carbapenem), ARLG-1012 (NDM)). Susceptibility testing
was performed using non-cation adjusted MHB broth and polypropylene plates. Testing was also
done in the presence and absence of acetic acid and BSA. For comparisons, meropenem (class of
carbapenems), which is more effective against Gram-negative organisms [47], and the standard CLSI
method, were used.

5.7. Hemolytic Activity Assessment

Fresh Human Blood (500 µl) was collected into 2 mL microcentrifuge tubes containing heparin
(30 units) and immediately centrifuged at 3700× g rpm for 5 min at room temperature. The pellet
containing erythrocytes was washed 3 × 5 min in 1x PBS at 3700 rpm, RT. Finally, the pellet containing
red blood cells (RBC) was diluted with 1x PBS to obtain 2% RBC suspension and added to an equal
amount (250 µL) of serially-diluted (100 µg/mL, 50 µg/mL, 25 µg/mL, 12.5 µg/mL, 6.25 µg/mL) AMPs
to be tested. The microtubes were incubated at 37 ◦C for 1 h. The samples were centrifuged at 3700× g
rpm for 5 min and the supernatant (200 µL) was taken from each microtube and added to a LC6-well
microplate for the absorption analysis on microplate reader at 450 nm. The positive control (100%
hemolysis) consisted of 0.1% Triton x-100 in 1xPBS (pH 7.4), while 1xPBS served as a negative control
(0% hemolysis). Each hemolysis activity assessment test was carried out in two replicates and repeated
three times.

5.8. Cytotoxicity Assay of the Antimicrobial Peptides

Cytotoxicity of in silico designed LCAPs was measured using the 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide (MTT) assay. Log phase Hepa 1–6 cells were seeded onto a 96-well
cell-culture plate at 10 × 105 per well. The cells were incubated for 24 h at 37 ◦C under 5% CO2.
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A solution of peptides in DMEM was added to the wells at final concentrations of 100, 50, 25, 12.5,
6.25 and 3.125 µg/mL. The cells were incubated for 24 h at 37 ◦C under 5% CO2. After removal of
the medium, a solution of 0.5 mg/mL MTT (100 µL/well) was added for an additional 4 h incubation,
allowing viable cells to reduce the yellow tetrazolium salt (MTT) into dark-blue formazan crystals.
After removal of the medium, formazan extraction was performed with 100 µL DMSO, and the amount
of formazan was determined to measure the absorbance value (OD490) in a plate reader (BioTek
ELx800). The following formula was used to calculate cell viability: Viability (%) = (mean Absorbance
value of treatment group/mean Absorbance value of control) × 100.

5.9. The Proteolytic Stability towards α-Chymotrypsin and Proteinase K Digestion

To test whether the peptides were digested by proteases, 10 µg of each peptide was incubated
with, α-chymotrypsin or Proteinase K at a molar ratio of 1000:1, 500:1 (peptide:enzyme), respectively, in
the digestion buffer (50 mM Tris–HCl, pH 7.4, 5 mM CaCl2) at 37 ◦C for 16 h. The reaction was stopped
by incubating the samples at 95 ◦C for 3 min. The digestion mixture was sampled and analyzed by
16.5% Tris-Tricine–SDS–PAGE. The gels were stained with 0.15% Coomassie Brilliant Blue G 250.

Peptide degradation was considered positive if the peptide bands disappeared from the gel after
protease treatment.

5.10. Assessment of Membrane Penetrating Properties of Antimicrobial Peptides by Fluorescence Microscopy

Permeabilization of the membrane of Escherichia coli ATCC 25922, induced by the antimicrobial
peptide, was visualized by green fluorescent dye FITC, which is unable to traverse the cytoplasmic
membrane of cells unless it has been permeabilized by a peptide. The O/N culture of Escherichia coli
ATCC 25922 (approximately 4 × 107 cells in 100 mL) were exposed to antimicrobial peptides at a
final concentration of 100 mg/mL, at 37 ◦C for 60 min. After incubation, peptides were removed by
centrifugation at 5500× g rpm for 5 min and bacterial cells were fixed with 4% PFA at 37 ◦C for 20 min.
To remove PFA, the samples were washed twice with 10 mM sodium phosphate buffer, (NaPB) pH 7.4.
Only after treating with PFA was it revealed that at a certain concentration of peptides, membranes
became permeable for FITC. As an explanation for this fact, we suggest that destructive peptides form
temporary defects in the membrane; if not fixed, this defect can be repaired. Thus, in order to assess
whether the peptides have damaged the bacterial membrane, it is necessary to fix bacterial cells by PFA.

Finally, the pellet was resuspended in 10 mM NaPB containing FITC (6 µg/mL) and incubated
at RT for 25 min. To remove FITC, the samples were washed twice with 10 mM (NaPB) and the
pellets were resuspended in DAPI (5 µg/mL)/10 mM NaPB and left for incubation at RT for 15 min.
The samples were washed with 10 mM NaPB and the pellet was resuspended in 10 mM NaPB. The
cell suspension was poured on to poly(L-lysine)-coated coverslips placed in petri dishes and kept
at 30 ◦C for 45 min to allow adhesion to the glass slides to occur. After incubation, coverslips were
placed onto microscope slides and sealed with nail polish. The slides were then examined under BX 41
Olimpus fluorescence microscope, equipped with an oil-immersion objective (×100) and captured with
an Olimpus Q-Color5 CCD camera.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8247/12/2/82/s1.
Figure S1: Screenshot of DBAASP Ranking Search Page. Table S1: Amino acid distribution used in the sequence
generation algorithm
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