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Abstract: It is well known that unmethylated 2′-deoxycytidine-phosphate-2′-guanine (CpG)
sequences alone or in longer DNA and RNA oligonucleotides can act like pathogen-associated
molecular patterns (PAMPs) and trigger the innate immune response leading to deleterious cytokine
production via Toll-like receptors (TLRs). Clearly, such CpG or CpG-containing sequences in
aptamers intended for therapy could present very damaging side effects to patients. Previous
antisense oligonucleotide developers were faced with the same basic CpG dilemma and devised
not only avoidance, but other effective strategies from which current aptamer developers can learn
to ameliorate or eliminate damaging CpG effects. These strategies include obvious methylation of
cytosines in the aptamer structure, as long as it does not affect aptamer binding in vivo, truncation of
the aptamer to its essential binding site, backbone modifications, co-administration of antagonistic or
suppressive oligonucleotides, or other novel drugs under development to lessen the toxic CpG effect
on innate immunity.
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1. Introduction and Background

By virtue of being composed of DNA or RNA, aptamers have basically been considered
nonimmunogenic in the sense that they generally do not induce strong antibody production [1].
While quite complex and not yet totally understood, it has long been known that other potentially
therapeutic oligodeoxynucleotides (ODN) including antisense ODNs containing the unmethylated
dinucleotide sequence 2′-deoxycytidine-phosphate-2′-guanine (CpG), as shown in Figure 1, could
stimulate the innate immune system via several of the Toll-like receptors (TLRs) including TLR3, 7,
8, and 9 in endosomes, because unmethylated CpG suggests the presence of invading bacterial or
viral nucleic acids [2–7]. In effect then, CpG sequences alone or in the midst of other longer sequences
represent potential pathogen-associated molecular patterns (PAMPs) similar to lipopolysaccharides
or other bacterial- and viral-associated molecules. The endocytosis of CpG or other oligonucleotides
containing CpG in B lymphocytes as well as monocytes, macrophages, dendritic, and other immune
cells can trigger several key cytokines [2–7], which may be deleterious (Figure 1) and, therefore,
counterproductive to the intent of the therapeutic aptamer or antisense ODN. CpG immunostimulation
can be so strong that CpG alone and in other ODNs have been investigated as possible vaccine
adjuvants with promising results [7–9].

To be clear, the use of the abbreviation CpG throughout this review will generally indicate the
2′-deoxyribose or DNA version of the nucleoside tandem, although the 2′-oxy or ribose-containing
RNA version of CpG (Figure 1) can also stimulate the innate immune system [6]. To make matters
more complex and bewildering, the context of surrounding nucleotides in which CpG motifs reside
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is important for determining the level of innate immune system stimulation, with G-rich or GC-rich
regions being far less stimulatory for the innate immune system [2,5,7]. Various host species (e.g.,
murine, human, etc.) are also differently affected by different CpG-containing sequences [10] as one
might expect due to their genetic differences.

One might reasonably wonder as well if orientation of the CpG motif can impact its ability to
stimulate host innate immune systems. The answer appears to be that, yes, orientation is important
because 5′-CpG-3′ stimulates cytokine production, but the reverse (5′-GpC-3′) by itself or in the context
of other nucleotides does not appear to activate innate immunity [10,11]. While the rich, but often
bewildering, CpG immune response literature is fascinating on its own, it is not the subject of this brief
review. Rather, for the aptamer developer, avoiding CpG sequences or developing countermeasures
much as antisense developers as has been previously done [12–14], is the subject of this review.

While much of this review is focused on how to avoid or lessen the toxic effects of CpG sequences
in aptamers, one should first empirically determine if there is actually innate immune system activation
by a particular aptamer before undertaking the more complicated molecular engineering approaches
outlined herein. Outside of animal testing models, to aid in empirical testing of aptamer TLR or
other innate immune system activation, several in vitro systems have been developed and published.
Avci-Adali et al. [15,16] have developed in vitro systems to assess cytokine production levels in
response to particular aptamers. Other researchers have utilized green fluorescent protein (GFP)-linked
reporter systems in macrophages [4,5] and other immune cells to indicate TLR activation by ODNs
such as aptamers.
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Figure 1. Left—2013 molecular structure of 2′-deoxycytidine-phosphate-2′-guanine (CpG) showing 
several potential remedies for CpG toxicity in red text such as methylation at the 5 position of cytosine, 
phosphorothioate (S or sulfur for oxygen) substitution in the phosphate linkage and 2′ fluoro (F) or 2′ 
O-methyl (O-CH3) modifications. Right—schematic illustration of the possible in vivo toxicity 
mechanism caused by CpG segments in aptamers upon entry to endosomes where CpG segments can 
bind the Toll-like receptors (TLRs) 3, 7, 8, and 9 to induce cytokine (e.g., interferons  (IFN) alpha and 
gamma, interleukins (IL) 2, 6, and 10) production and antibody secretion, potentially leading to 
unintended tissue damage. 

2. CpG Toxicity Based on Route of Administration and Molecular Context  

The only FDA-approved aptamer on the market is Macugen® (pegaptanib) for treatment of age-
related macular degeneration. Macugen is administered by intraocular (vitreous humor) injection, 
which may in part account for the minimal cytokine production and negligible side effects of 
Macugen. Other injection sites beside the eye or other routes of administration (i.e., intramuscular or 

Figure 1. Left—2013 molecular structure of 2′-deoxycytidine-phosphate-2′-guanine (CpG) showing
several potential remedies for CpG toxicity in red text such as methylation at the 5 position of cytosine,
phosphorothioate (S or sulfur for oxygen) substitution in the phosphate linkage and 2′ fluoro (F) or
2′ O-methyl (O-CH3) modifications. Right—schematic illustration of the possible in vivo toxicity
mechanism caused by CpG segments in aptamers upon entry to endosomes where CpG segments
can bind the Toll-like receptors (TLRs) 3, 7, 8, and 9 to induce cytokine (e.g., interferons (IFN) alpha
and gamma, interleukins (IL) 2, 6, and 10) production and antibody secretion, potentially leading to
unintended tissue damage.

2. CpG Toxicity Based on Route of Administration and Molecular Context

The only FDA-approved aptamer on the market is Macugen® (pegaptanib) for treatment of
age-related macular degeneration. Macugen is administered by intraocular (vitreous humor) injection,
which may in part account for the minimal cytokine production and negligible side effects of
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Macugen. Other injection sites beside the eye or other routes of administration (i.e., intramuscular or
intravenous, etc.) might be expected to encounter more immune cells and lead to a proportionately
greater innate immune response. Interestingly, Macugen contains two CpG sequences [17]. However,
Macugen’s two CpG sequences are hydrogen bonded to one another in a very stable double-stranded
stem region of the aptamer according to computer-generated stem-loop models of Macugen [17],
thereby possibly neutralizing their ability to bind TLRs or trigger innate immunity. In addition,
Macugen contains 2′-O-methyl and 2′-fluoro modifications [17] (Figure 1) shown to confer nuclease
resistance and ameliorate TLR activation [14,17,18].

While 2-dimensional aptamer models can be useful, in the study of CpG accessibility to TLRs,
3-dimensional (3-D) topology models are even more useful (e.g., Figure 1) for determining if a CpG
region is theoretically accessible or resides in an invaginated pocket (tucked up inside) of an aptamer
tertiary structure. Accurate protein or other macromolecular 3-D structure prediction is complex
and ranks among the most difficult problems in mathematics [19] whether analyzed in vacuo or in
the more realistic hydrated state with physiologic ion concentrations. In addition, most of the 3-D
computer programs for macromolecular folding are designed for proteins. Thus, in the past, accurate
3-D aptamer modeling and docking analyses were expensive tasks [20]. However, if one is willing to
accept a little less accurate model for rough determination of CpG accessibility, then less expensive
and even free web-based software such as YASARA can be used or linked together to produce 3-D
surface models such as those depicted in Figure 2 [21–24]. Figure 2 also illustrates how a second
generation truncated derivative aptamer consisting of a minimum essential binding site that retains its
original tertiary shape might be synthesized to eliminate one or more toxic CpG segments. Of course,
the lighter second generation derivative aptamer (binding site) may require increased weight in the
form of polyethylene glycol (PEG) or protein attachment to aid in slowing kidney clearance and
enhancing aptamer half-life in vivo [1].
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Figure 2. Three-dimensional (3-D) space-filling models of one of the author’s developed aptamers using
YASARA [21] to analyze the accessibility of potentially inflammatory CpG sequences and alterations to
the 3-D structure of the putative binding site (left) once it is excised from the complete aptamer (right).
The figure also summarizes a list of approaches to evaluating and rectifying potential CpG toxicity
problems. PEG = polyethylene glycol.

On a simpler level, molecular context can also imply the effects of bases flanking a CpG sequence.
As aforementioned, a CpG segment in G-rich or GC-rich regions of an ODN are not inflammatory
or not nearly as inflammatory as in other regions [2,5,7], and GC-rich regions are characteristic of
aptamer binding sites because they lend 3-D stability to the binding pockets. Particular examples of
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short ODNs (hexamers to octamers especially) containing CpG segments and their level of innate
immune system activation are described in many places in the literature [2,5,7]. Again, it probably
behooves the aptamer developer to test a given aptamer’s level of innate immune system activation
empirically [5,15,16].

3. Corrective Strategies

Assuming that an aptamer developer cannot excise a toxic CpG-containing segment from
a candidate aptamer, other corrective strategies can be attempted. Perhaps, the most obvious and
effective strategy is to methylate the culpable cytosine in CpG (Figure 1) with CpG methylase or
methyltransferase [5] as long as this does not affect aptamer binding affinity or specificity for its cognate
target. To avoid this potential post-SELEX modification binding problem, one could consider SELEX
with 5-methylcytosine incorporation originally to guarantee target binding and proper methylation.
This would require a more permissive or promiscuous form of Taq polymerase such as Deep Vent®

exo-DNA polymerase [25] to incorporate 5-methylcytosines into the aptamer. Deep Vent exo- has been
shown to incorporate even fluorophore-labeled nucleotides into aptamers or other ODNs [26,27], thus,
incorporation of methylated cytosines should not be problematic during SELEX aptamer development.

If methylation does not completely eliminate a CpG toxicity issue, aptamer developers can
also modify aptamer backbones since 2′-O-methyl groups [14] and 2′-fluoro [18] groups on the
sugar moieties of nucleic acids have been shown to lessen the innate immune response. Although
more controversial [2], phosphorothioate backbones may also decrease the innate response of CpG
sequences [28]. Another approach is to add a second material to bind or mask the CpG segments of an
aptamer. Sullenger’s laboratory at Duke University Medical Center experimented with various
polycationic materials such as poly-L-lysine, third generation (G3) polyamidoamine (PAMAM)
dendrimer derivatives, and other such compounds as general charge-based electrostatic binding
agents to bind and mask the polyanionic phosphate backbone of nucleic acids in circulation [29]. Of
course, this rather nonspecific masking approach assumes that the aptamer will have a greater affinity
for its cognate target than the polycationic masking agent, thereby allowing the aptamer to dissociate
from the masking agent and associate with its cognate target, which is most often thermodynamically
favorable and, therefore, theoretically a rather safe bet in most cases.

Another class of somewhat more specific competitive agents for co-administration with
a potentially inflammatory aptamer is that of “suppressive” oligonucleotides. As previously
discussed, there are G-rich or GC-rich suppressive ODNs [30,31], RNA oligonucleotides [32], or
other TLR-suppressive drugs in the development pipeline [33–35] to antagonize TLRs and ameliorate
their deleterious effects. Again, aptamers are often G- or GC-rich in their stabilized binding sites, so
that if a CpG segment exists in the binding pocket, it may be cancelled out by TLR-suppressive G- or
GC-rich regions in proximity to the CpG locus.

4. Conclusions

Although some critics continue to question the future of aptamers, especially as pharmaceuticals,
the future of aptamers still appears bright due to the advantages of aptamers over antibodies such
as obviating host animals during development and production to reduce overall costs and greater
batch to batch reproducibility and facile post-production modifications to “fine tune” performance [36].
There are so many promising applications for aptamers in the areas of enhanced drug delivery [37],
therapy of antibiotic-resistant bacteria [38–40], deadly viruses [41–43], and cancers [44,45], inhibition of
venoms [46] and biotoxins [47], regulation of blood clotting [48], drug transport across the blood-brain
barrier [49], and stem cell differentiation or transdifferentiation induction [36,49], just to name a few
potential uses. With so much promise in so many areas of critical medical need, the aptamer community
cannot let CpG toxicity inhibit aptamer development progress. Of course, even the most innocuous
portions of therapeutic conjugates such as PEG can lead to adverse reactions and even death due
to pre-existing or induced antibodies or other immune mechanisms in a very small percentage of
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patients [50]. However, where there is a will, there is a way to overcome such problems, including
substitution of PEG adjuncts with common blood proteins such as serum albumins to protect the 3′ end
and add weight [37–39], thereby slowing kidney clearance (Figure 1). By analogy, and hopefully, this
mini-review will raise awareness of potential CpG toxicity and provide some pragmatic approaches
to avoiding or ameliorating potential activation of the innate TLR-pathways that lead to undesired
inflammatory responses, thus giving aptamers a better chance for future United States FDA and other
worldwide medical approvals.
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