Supporting information: CONTENTS
Improved Syntheses of mGlu ${ }_{5}$ Antagonists MMPEP and MTEP Using Sonogashira Cross-CouplingBoshuai Mu, Linjing Mu, Roger Schibli, Simon M. Ametamey and Selena Milicevic
Sephton*
Experimental procedures S2-S20
General techniques S2
compound S1 S3
compound 5A S4
compound 2, MMPEP S5
compound $\mathbf{2} \cdot \mathbf{H C l}$ S6
compound $\mathbf{8}$ S6/S7
compound 9 S7
compound 3, MTEP S8/S12/S16/S17
compound 17 S9
compound 19 S10
compound 20 S11
compound 10 S11/S12/S15
compound $\mathbf{3} \cdot \mathbf{H C l}$ S13
compound S2 S13/S14
compound 6 S14/S15
References S17
${ }^{1}$ H NMR Spectra S18-S31
Computational evaluation S32-S43
compound 4 S33
compound 21 S34
compound 11 S35
compound 7A S36
compound 8 S37
compound 5A S38
compound 6 S39
compound 9 S40
compound 10 S41
compound 15 S42
compound 22 S43

Supporting Information: Experimental Procedures
 Improved Syntheses of mGlu 5 Antagonists MMPEP and MTEP Using Sonogashira Cross-Coupling

Boshuai Mu, Linjing Mu, Roger Schibli, Simon M. Ametamey and Selena Milicevic Sephton*

Experimental procedures

General techniques: All reactions requiring anhydrous conditions were conducted in flamedried glass apparatus under an atmosphere of inert gas. All chemicals and anhydrous solvents were purchased from Aldrich or ABCR and used as received unless otherwise noted. Reported density values are for ambient temperature.

Preparative chromatographic separations were performed on Aldrich Science silica gel 60 $(35-75 \mu \mathrm{~m})$ and reactions followed by TLC analysis using Sigma-Aldrich silica gel 60 plates (2-25 $\mu \mathrm{m}$) with fluorescent indicator (254 nm) and visualized with UV or potassium permanganate.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in Fourier transform mode at the field strength specified on Bruker Avance FT-NMR spectrometers. Spectra were obtained from the specified deuterated solvents in 5 mm diameter tubes. Chemical shift in ppm is quoted relative to residual solvent signals calibrated as follows: $\mathbf{C D C l}_{3} \delta_{\mathrm{H}}\left(\mathrm{CHCl}_{3}\right)=7.26 \mathrm{ppm}, \delta_{\mathrm{C}}=$ 77.2 ppm . Multiplicities in the ${ }^{1} \mathrm{H}$ NMR spectra are described as: $\mathrm{s}=\operatorname{singlet}, \mathrm{d}=\operatorname{doublet}, \mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, quint. = quintet, $\mathrm{m}=$ multiplet, $\mathrm{b}=$ broad; coupling constants are reported in Hz .

1-(2,2-Dibromovinyl)-3-methoxybenzene (S1)

One neck round bottom flask was charged with triphenylphosphine ($10.5 \mathrm{~g}, 40 \mathrm{mmol}, 4 \mathrm{eq}$), then carbontetrabromide ($6.63 \mathrm{~g}, 20 \mathrm{mmol}, 2 \mathrm{eq}$) and the yellow solid mixture was carefully dissolved in anhydrous dichloromethane (36 mL ; CAUTION: vigorous reaction!) and the resulting orange mixture was allowed to cool to $0^{\circ} \mathrm{C}$ (the ice bath). The heterogeneous and red in colour mixture was allowed to stir and then treated with m-anisaldehyde ($1.2 \mathrm{~mL}, 1.36$ $\mathrm{g}, 10 \mathrm{mmol}, 1 \mathrm{eq}, \mathrm{d}=1.119$) dropwise over 1 min and the resulting dark orange mixture was allowed to stir at $0{ }^{\circ} \mathrm{C}$ for 30 min and then the cooling bath was removed and stirring continued at ambient temperature for 38 min . After this time the crude mixture was quenched with ice cold $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL})$ and diluted with hexanes $(25 \mathrm{~mL})$ and the two layers were well shaken and separated. The aqueous phase was extracted with hexanes ($5 \times 25 \mathrm{~mL}$). The combined organic extracts were concentrated in vacuo and the crude mixture was purified by chromatography on a silica gel column (eluting with 100% hexanes) to afford the title compound ($2.88 \mathrm{~g}, 9.9 \mathrm{mmol}, 99 \%$): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46(\mathrm{bs}, 1 \mathrm{H}), 7.29(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{tm}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{ddt}, J=7.7,1.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{ddd}, J=8.3$, $2.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$. The compound was in complete agreement with previously reported data. ${ }^{1,2}$

1-Ethynyl-3-methoxybenzene (5A)

One neck round bottom flask was charged with a solution of 1-(2,2-dibromovinyl)-3methoxybenzene ($2.88 \mathrm{~g}, 9.9 \mathrm{mmol}$, 1eq) in anhydrous tetrahydrofuran (30 mL) and the resulting pale yellow solution was allowed to cool to $-78{ }^{\circ} \mathrm{C}$ (dry ice/acetone bath) and the mixture was then treated with n-butyllithium ($15 \mathrm{~mL}, 21.9 \mathrm{mmol}, 2.2 \mathrm{eq}, \mathrm{c}=1.47 \mathrm{M}$) dropwise over 13 min during which time mixture turned brighter yellow, red and finally purple. The mixture was allowed to further stir at $-78{ }^{\circ} \mathrm{C}$ over 1.5 h . After this time the cooling bath was removed and mixture allowed to stir at ambient temperature for 1.8 h . After this time brown homogeneous mixture was quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ and the mixture was further diluted with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ and the two layers were well shaken and separated. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 50 \mathrm{~mL})$. The combined organic extracts were washed with brine (40 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo to give dark yellow oily residue. The residue was purified by chromatography on a silica gel column (eluting with 100% hexanes) to afford the title compound ($884 \mathrm{mg}, 6.7 \mathrm{mmol}, 67 \%$): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.23$ (ddm, $\left.J=7.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.09$ (ddd, $\left.J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.02$ (dd, $J=2.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 6.91 (ddd, $J=8.3,2.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.80(\mathrm{~s}, 3 \mathrm{H}), 3.06(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm}$. The compound was in complete agreement with previously reported data. ${ }^{1,3}$

2-((3-Methoxyphenyl)ethynyl)-6-methylpyridine (2)

Two neck round bottom flask was evacuated and backfilled with inert atmosphere and then charged with anhydrous N, N^{\prime}-dimethylformamide (7 mL) and 2-bromo-6-methylpyridine $(0.66 \mathrm{~mL}, 998 \mathrm{mg}, 5.8 \mathrm{mmol}, 1 \mathrm{eq}, \mathrm{d}=1.512)$ was added and colourless solution was treated with tetrakis(triphenylphosphine)palladium(0) ($201 \mathrm{mg}, 0.174 \mathrm{mmol}, 0.3 \mathrm{eq}$) in one portion and the resulting yellow heterogeneous mixture was allowed to stir at ambient temperature over 13 min . After this time triethylamine ($2.42 \mathrm{~mL}, 1.76 \mathrm{~g}, 17.4 \mathrm{mmol}, 3 \mathrm{eq}, \mathrm{d}=0.726$) was added and mixture further allowed to stir for 14 min . During this time mixture became completely homogeneous and pale yellow and it was further treated with copper(I)iodide $(110 \mathrm{mg}, 0.58 \mathrm{mmol}, 0.1 \mathrm{eq})$ and then a solution of m-ethynylanisole ($766 \mathrm{mg}, 5.80 \mathrm{mmol}, 1$ eq) in anhydrous N, N^{\prime}-dimethylformamide (7 mL) was added and the resulting green-brown mixture was allowed to stir at ambient temperature over 47.5 h . After this time the mixture was quenched with saturated aq $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})$ and then diluted with EtOAc $(150 \mathrm{~mL})$ and the two layers were well shaken and separated. The aqueous phase was extracted with EtOAc $(2 \times 150 \mathrm{~mL})$. The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 110 \mathrm{~mL})$, brine (120 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The crude reaction mixture was purified by chromatography on a silica gel column (eluting with a gradient 10% to $20 \% \mathrm{EtOAc} /$ pentane) to afford the title compound ($1.2 \mathrm{~g}, 5.4 \mathrm{mmol}, 93 \%$) : ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.57$ (dd, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{dm}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{dd}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{ddd}, J=7.6,1.3$ $\mathrm{Hz}, 1 \mathrm{H}$, some roofing observed), $7.14(\mathrm{dd}, J=2.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{dm}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 6.92 (ddd, $J=8.1,2.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$. The compound was in complete agreement with previously published data. ${ }^{4}$

2-((3-Methoxyphenyl)ethynyl)-6-methylpyridine hydrochloride salt (2•HCl)

One neck round bottom flask was charged with 2-((3-methoxyphenyl)ethynyl)-6methylpyridine ($108 \mathrm{mg}, 0.48 \mathrm{mmol}, 1 \mathrm{eq}$) and ethanol (1 mL) was added and pale yellow solution was allowed to cool to $0{ }^{\circ} \mathrm{C}$ (the ice bath) and it was then treated with ethanolic solution of HCl dopwise over 1 min and the resulting bright yellow solution was allowed to stir at $0{ }^{\circ} \mathrm{C}$ for 1 h . After this time the cooling bath was removed and bright yellow mixture was concentrated in vacuo to give crude mixture which was further recrystallized from ${ }^{i} \operatorname{PrOH}: E t O H 2: 1$ to afford the title compound ($110 \mathrm{mg}, 0.42 \mathrm{mmol}, 87 \%$): ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.12(\mathrm{dd}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{dm}, J=7.85 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.45(\mathrm{~m}, 2 \mathrm{H})$, 7.43 (ddd, $J=7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}$, some roofing observed), 7.31 (ddm, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.02$ (ddd, $J=8.4,2.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.05(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$. The compound was in complete agreement with previously published data. ${ }^{4}$

S2
$\mathrm{C}_{3} \mathrm{HBr}_{2} \mathrm{NS}$
(242.92)

$-78{ }^{\circ} \mathrm{C}, 53 \%$

8
$\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{BrNS}$
(178.05)

4-Bromo-2-methylthiazole (8)

A flame dried flask was charged with 2,4-dibromothiazole ($500 \mathrm{mg}, 2.1 \mathrm{mmol}, 1 \mathrm{eq}$) and anhydrous diethylether was added (12 mL) and the colourless solution was allowed to cool to $-78^{\circ} \mathrm{C}$ (dry ice/acetone bath) and it was then treated with n-butyl lithium ($1.6 \mathrm{~mL}, 2.3 \mathrm{mmol}$, $1.1 \mathrm{eq}, \mathrm{c}=1.47 \mathrm{M}$) dropwise over 1 min . The mixture turned pale yellow and it was allowed to stir at $-78^{\circ} \mathrm{C}$ over 79 min . After this time the mixture a solution of dimethylsulfate (0.6 mL , $779 \mathrm{mg}, 6.2 \mathrm{mmol}, 3$ eq, $\mathrm{d}=1.33$) in anhydrous diethylether $(0.5 \mathrm{~mL})$ was added dropwise over 4 min and the resulting mixture allowed to stir at $-78{ }^{\circ} \mathrm{C}$ over 4 h and then warm to
ambient temperature and stir under N_{2} over 15 h . After this time the crude mixture (red in colour) was quenched with saturated $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ and then diluted with $\mathrm{H}_{2} \mathrm{O}(8 \mathrm{~mL})$ and EtOAc (20 mL). The two layers were well shaken and separated and the aqueous phase was extracted with EtOAc ($2 \times 20 \mathrm{~mL}$). The combined organic extracts were washed brine (20 $\mathrm{mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo to give crude mixture. The crude mixture was purified by chromatography on a silica gel column (eluting with $10 \% \mathrm{EtOAc} /$ pentane) to give the title compound ($194.3 \mathrm{mg}, 1.09 \mathrm{mmol}, 53 \%$): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.06(\mathrm{~s}, 1 \mathrm{H})$, $2.73(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$. The compound was in complete agreement with previously published data. ${ }^{5}$

3-Ethynylpyridine (9)

One neck round bottom flask was charged with 3-((trimethylsilyl)ethynyl)pyridine (44 mg , $0.25 \mathrm{mmol}, 1 \mathrm{eq})$, and anhydrous N, N^{\prime}-dimethylformamide (1 mL) was added and the clear homogeneous solution was further treated with tetrabutylammonium fluoride solution in tetrahydrofuran ($0.5 \mathrm{~mL}, 0.5 \mathrm{mmol}, 2 \mathrm{eq}, \mathrm{c}=1 \mathrm{M}$) dropwise ($<1 \mathrm{~min}$) and the resulting brown mixture was allowed to stir at ambient temperature under nitrogen atmosphere over 14 min . This material without work-up or purification was used for the next step.

8
$\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{BrN}_{2} \mathrm{~S}$
(281.17)

$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ Cul, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMF}$

59\%

(200.26)

2-Methyl-4-(pyridin-3-ylethynyl)thiazole (3)

A two neck round bottom flask was evacuated and then backfilled with nitrogen atmosphere and this was repeated two more times. This flask was then charged with a solution of 4-bromo-2-methylthiazole ($194 \mathrm{mg}, 1.09 \mathrm{mmol}, 1 \mathrm{eq}$) in anhydrous N, N^{\prime}-dimethylformamide $(1.5 \mathrm{~mL})$ prepared in separate flame dried flask under inert atmosphere. To this solution was then added tetrakis(triphenylphosphine)palladium (0) ($38 \mathrm{mg}, 0.033 \mathrm{mmol}, 0.03 \mathrm{eq}$) in one portion and brown mixture was allowed to stir for 9 min . After this time triethylamine (0.45 $\mathrm{mL}, 330 \mathrm{mg}, 3.27 \mathrm{mmol}, 3 \mathrm{eq}, \mathrm{d}=0.726$) was added and mixture allowed to stir further over 12 min . After this time, still heterogeneous mixture, was treated with copper(I)iodide (21 mg , $0.11 \mathrm{mmol}, 0.1 \mathrm{eq})$ after which it turned dark brown. Finally, a solution of 3-ethynylpyridine $(112 \mathrm{mg}, 1.09 \mathrm{mmol}, 1 \mathrm{eq})$ in anhydrous N, N^{\prime}-dimethylformamide (1.5 mL) was added and the mixture allowed to stir at ambient temperature over 25 h . After this time the reaction mixture was quenched with saturated aq, $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ and diluted with $\mathrm{EtOAc}(30 \mathrm{~mL})$ and the two layers were well shaken and separated. The aqueous phase was extracted with EtOAc ($3 \times 30 \mathrm{~mL}$). The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 25 \mathrm{~mL})$, brine $(25 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The crude mixture was purified by chromatography on a silica gel column (eluting with gradient 10% EtOAc/pentane to 100% EtOAc) to afford the inseparable mixture (59 mg ,). The NMR analysis revealed 8% conversion to the title compound.

Note: When the reaction was repeated it failed to yield desired product.
LiHMDS

9
$\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{~N}$
(103.12)

17
$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NSi}$
(175.731)

3-((Trimethylsilyl)ethynyl)pyridine (17)

One neck round bottom flask was charged with 3-ethynylpyridine ($150 \mathrm{mg}, 1.46 \mathrm{mmol}, 1 \mathrm{eq}$) and anhydrous tetrahydrofuran $(4.8 \mathrm{~mL})$ was added and pale brown solution was allowed to cool to $-78{ }^{\circ} \mathrm{C}$ (dry ice/acetone bath) and it was then treated with a solution of lithiumhexamethyldisilazide ($2 \mathrm{~mL}, 1.9 \mathrm{mmol}, 1.3 \mathrm{eq}, \mathrm{c}=1 \mathrm{M}$) dropwise over 2 min during which time the mixture turned orange and it was allowed to stir at $-78^{\circ} \mathrm{C}$ for 1 h . After this time orange mixture was treated with trimethylchlorosilane $(0.27 \mathrm{~mL}, 238 \mathrm{mg}, 2.19 \mathrm{mmol}$, $1.5 \mathrm{eq}, \mathrm{d}=0.856$) and the mixture was allowed to slowly warm to ambient temperature and further stir over 17.5 h . After this time the crude mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and then diluted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ and the two layers were well shaken and separated. The aqueous phase was further extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$. The combined organic extracts were washed with brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The crude mixture was purified by chromatography on a silica gel column (eluting with 5% $\mathrm{EtOAc} /$ pentane) to afford the title compound ($56.1 \mathrm{mg}, 0.32 \mathrm{mmol}, 22 \%$): ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.69(\mathrm{dd}, J=2.0,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.52(\mathrm{dd}, J=4.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.74$ (ddd, $J=$ $7.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.23 (ddd, $J=7.9,4.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.26(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$. The compound was also available from commercial sources and the spectral data were in complete agreement.

1-Chloro-4-(trimethylsilyl)but-3-yn-2-one (19)

One neck round bottom flask was charged with aluminium trichloride ($5.5 \mathrm{~g}, 42 \mathrm{mmol}, 1.3$ eq) and anhydrous dichloromethane (63 mL) was added and the resulting yellow suspension was allowed to cool to $0{ }^{\circ} \mathrm{C}$ (the ice bath). The mixture was then treated with a solution of chloroacetylchloride ($2.6 \mathrm{~mL}, 3.65 \mathrm{~g}, 32.3 \mathrm{mmol}, 1 \mathrm{eq}, \mathrm{d}=1.417$) and bis(trimethylsilyl)acetylene ($6.6 \mathrm{~mL}, 5 \mathrm{~g}, 29.34 \mathrm{mmol}, 0.9 \mathrm{eq}, \mathrm{d}=0.752$) in anhydrous dichloromethane (38 mL) dropwise over 50 min during which time mixture turned darker yellow and finally brown and it was allowed to stir at $0^{\circ} \mathrm{C}$ over 1 h . The cooling bath was then removed and the stirring continued at ambient temperature over 65 min . After this time the mixture was allowed to cool to $0^{\circ} \mathrm{C}$ (the ice bath) and it was carefully quenched with 1 M aq. $\mathrm{HCl}(65 \mathrm{~mL})$. The two layers were well shaken and separated. The aqueous phase was further extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 125 \mathrm{~mL})$. The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}(125 \mathrm{~mL})$, saturated aq. $\mathrm{NaHCO}_{3}(125 \mathrm{~mL})$, brine (125 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo to give brown reside. The crude mixture was purified via Kugelrorh distillation (temperature: $75{ }^{\circ} \mathrm{C}$) at $2 \times 10^{-2} \mathrm{kPa}$ to afford the title compound ($4.33 \mathrm{~g}, 24.8$ $\mathrm{mmol}, 77 \%):{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.23(\mathrm{~s}, 2 \mathrm{H}), 0.26(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$. The compound was in complete agreement with previously published data. ${ }^{6}$

19
$\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{ClOSi}$
(174.70)

99\%

20
$\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{NSSi}$
(195.36)

2-Methyl-4-((trimethylsilyl)ethynyl)thiazole (20)

One neck round bottom flaks was charged with 1-chloro-4-(trimethylsilyl)-3-butyn-2-one $(4.3 \mathrm{~g}, 24.6 \mathrm{mmol}, 1 \mathrm{eq})$ and anhydrous N, N^{\prime}-dimethylformamide (43 mL) was added and the clear yellow solution was treated with thioacetamide ($2.4 \mathrm{~g}, 31.8 \mathrm{mmol}, 1.3 \mathrm{eq}$) in one portion and the resulting yellow homogeneous mixture was allowed to stir at ambient temperature over 17 h . After this time the crude mixture was diluted with EtOAc (200 mL) and the organic phase was washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 150 \mathrm{~mL})$, brine $(150 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo to give brown oily residue. The crude mixture was purified by chromatography on a silica gel column (eluting with gradient 2% to $4 \% \mathrm{EtOAc} /$ hexanes) to afford the title compound ($4.75 \mathrm{~g}, 24.3 \mathrm{mmol}, 99 \%$): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32$ (s, $1 \mathrm{H}), 2.70(\mathrm{~s}, 3 \mathrm{H}), 0.24(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$. The compound was in complete agreement with previously published data. ${ }^{6}$

4-Ethynyl-2-methylthiazole (10)

One neck round bottom flask was charged with 2-methyl-4-((trimethylsilyl)ethynyl)thiazole ($400 \mathrm{mg}, 2.05 \mathrm{mmol}, 1 \mathrm{eq}$) and methanol $(0.5 \mathrm{~mL})$ was added and the red mixture was further treated with a solution of potassium hydroxide ($230 \mathrm{mg}, 4.1 \mathrm{mmol}, 2 \mathrm{eq}$) in methanol (4.8 mL) in one portion and the resulting dark brown mixture was allowed to stir over 3.5 h . After this time the mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and diluted with EtOAc $(10 \mathrm{~mL})$ and the two layers were well shaken and separated. The aqueous phase was extracted with EtOAc
$(3 \times 8 \mathrm{~mL})$. The combined organic extracts were washed with brine (8 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo to give crude mixture. The crude mixture was purified by chromatography on a silica gel column (eluting with gradient 5% to $10 \% \mathrm{EtOAc} /$ pentane) to afford the title compound ($172.6 \mathrm{mg}, 1.40 \mathrm{mmol}, 68 \%$): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37$ $(\mathrm{s}, 1 \mathrm{H}), 3.09(\mathrm{~s}, 1 \mathrm{H}), 2.71(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$. The compound was also available from commercial sources and the spectral data were in complete agreement.

20
$\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{NSSi}$ (195.36)

52\%

3, MTEP
$\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{~S}$
(200.26)

2-Methyl-4-(pyridin-3-ylethynyl)thiazole (3)

One neck round bottom flask was charged with 2-methyl-4-[(trimethylsilyl)ethynyl]-1,3thiazole ($3.84 \mathrm{~g}, 19.7 \mathrm{mmol}, 1 \mathrm{eq}$) and 3-bromopyridine ($2.1 \mathrm{~mL}, 3.42 \mathrm{~g}, 21.6 \mathrm{mmol}, 1.1 \mathrm{eq}$, $\mathrm{d}=1.64$) was added in one portion and then 1,2-dimethoxyethane (50 mL) was added and the resulting brown heterogeneous mixture was treated with triethylamine $(5.5 \mathrm{~mL}, 3.98 \mathrm{~g}, 39.4$ $\mathrm{mmol}, 2 \mathrm{eq}$) in one portion and the mixture was sparged with N_{2} and the flask was allowed to heat (temperature of preheated oil bath: $70{ }^{\circ} \mathrm{C}$). Immediately upon heating tetrakis(triphenylphosphine)palladium (0) ($446 \mathrm{mg}, 0.39 \mathrm{mmol}, 0.02 \mathrm{eq}$) was added and sparging continued for another 14 min . After this time sparging was discontinued and the mixture treated with a solution of tetrabutylammonium fluoride ($25 \mathrm{~mL}, 25.4 \mathrm{mmol}, 1.3 \mathrm{eq}$, $\mathrm{c}=1 \mathrm{M}$) in tetrahydrofuran was added via syringe pump ($5 \mathrm{~mL} /$ hour in 20 mL syringe) whilst the mixture was heated over 20 h . The crude mixture was concentrated in vacuo and the residue dissolved in EtOAc $(400 \mathrm{~mL})$ and the organic phase washed with $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo to give brown oily residue. The crude reaction mixture was purified by chromatography on a silica gel column (eluting with gradient 30% to $50 \% \mathrm{EtOAc} /$ hexanes) to give the title compound ($2.06 \mathrm{~g}, 10.3 \mathrm{mmol}, 52 \%$). The material was then recrystallized from hot EtOAc layered with cold hexanes to afford yellow needles ($1.32 \mathrm{~g}, 6.6 \mathrm{mmol}, 33 \%$): ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.79(\mathrm{bd}, J=1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 8.57$ (dd, $J=4.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.83$ (ddd, $J=7.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.43$ (s, 1H), 7.29 (ddd, J $=7.8,4.9,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$. The compound was in complete agreement with previously published data. ${ }^{6,7}$

2-Methyl-4-(pyridin-3-ylethynyl)thiazole hydrochloride salt (3•HCl)

One neck round bottom flask was charged with 2-methyl-4-(pyridin-3-ylethynyl)thiazole $(214 \mathrm{mg}, 1.07 \mathrm{mmol}, 1 \mathrm{eq})$ and ethanolic solution of hydrochloric acid ($1.1 \mathrm{~mL}, 1.07 \mathrm{mmol}, 1$ eq, $\mathrm{c}=1 \mathrm{M}$) was added but material did not completely dissolve and additional EtOH (1 mL) was added and the resulting heterogeneous mixture allowed to stir at ambient temperature over 30 min . After this time the mixture was concentrated in vacuo and the residue recrystallized from ${ }^{i} \mathrm{PrOH}$ to yield the title compound ($168.3 \mathrm{mg}, 0.71 \mathrm{mmol}, 66 \%$): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.87(\mathrm{bs}, 1 \mathrm{H}), 8.74(\mathrm{bd}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.46$ (bddd, $J=8.1,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.92$ (bdd, $J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~s}, 1 \mathrm{H}), 2.77(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$. The compound was also available from commercial sources and the spectral data were in complete agreement.

4
$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{BrN}$
(172.02)

70\%

S2
$\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NSi}$
(189.33)

2-Methyl-6-((trimethylsilyl)ethynyl)pyridine (S2)

A solution of 2-bromo-6-methylpyridine ($700 \mathrm{mg}, 4.06 \mathrm{mmol}, 1 \mathrm{eq}$) in triethylamine (degassed, 11.7 mL) was at ambient temperature treated with trimethylsilylacetylene (0.63 $\mathrm{mL}, 438 \mathrm{mg}, 4.47 \mathrm{mmol}, 1.1 \mathrm{eq}, \mathrm{d}=0.709$), copper(I)iodide ($76 \mathrm{mg}, 0.4 \mathrm{mmol}, 0.1 \mathrm{eq}$) and trans-dichlorobis(triphenylphospine)palladium ($280 \mathrm{mg}, 0.4 \mathrm{mmol}, 0.1 \mathrm{eq}$). The resulting
solution was allowed to stir at ambient temperature over 17 h . After this time the crude mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(8 \mathrm{~mL})$ and further extracted with EtOAc (3 x 10 mL). The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo and the crude mixture was purified by chromatography on a silica gel column (eluting with 5% $\mathrm{Et}_{2} \mathrm{O} /$ pentane $)$ to afford the title compound ($537 \mathrm{mg}, 2.84 \mathrm{mmol}, 70 \%$): ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.52(\mathrm{dd}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{dm}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{dm}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.55(\mathrm{~s}, 3 \mathrm{H}), 0.26(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$. The compound was in complete agreement with previously published data. ${ }^{4}$

S2
$\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NSi}$
(189.33)
$\mathrm{KOH}, \mathrm{MeOH}$
60\%

6
$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~N}$
(117.15)

2-Ethynyl-6-methylpyridine (6)

A yellow solution of 2-methyl-6-((trimethylsilyl)ethynyl)pyridine ($226 \mathrm{mg}, 1.19 \mathrm{mmol}, 1 \mathrm{eq}$) in methanol $(0.3 \mathrm{~mL})$ was treated with the solution of potassium hydroxide $(134 \mathrm{mg}, 2.39$ $\mathrm{mmol}, 2 \mathrm{eq})$ in methanol (2.5 mL) and the resulting colourless solution was allowed to stir at ambient temperature over 2.5 h . After this time the crude mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$ (6 mL) and diluted with EtOAc (5 mL) and the two layers were well shaken and separated. The aqueous phase was extracted with EtOAc ($3 \times 5 \mathrm{~mL}$). The combined organic extracts were washed with brine (3 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The crude reaction mixture was purified by chromatography on a silica gel column (eluting with gradient 5% to $10 \% \mathrm{EtOAc} /$ pentane) to afford the title compound ($84 \mathrm{mg}, 0.72 \mathrm{mmol}, 60 \%$): ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.54(\mathrm{dd}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{dm}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{dm}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.12(\mathrm{~s}, 1 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$. The compound was in complete agreement with previously published data. ${ }^{4}$

S2
$\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NSi}$
(189.33)

6
$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~N}$
(117.15)

2-Ethynyl-6-methylpyridine (6)

One neck round bottom flask was charged with 2-methyl-6-((trimethylsilyl)ethynyl)pyridine ($100 \mathrm{mg}, 0.53 \mathrm{mmol}, 1 \mathrm{eq}$), and anhydrous N, N^{\prime}-dimethylformamide (2 mL) was added and the clear homogeneous solution was further treated with tetrabutylammonium fluoride solution in tetrahydrofuran ($1.0 \mathrm{~mL}, 1.05 \mathrm{mmol}, 2 \mathrm{eq}, \mathrm{c}=1 \mathrm{M}$) dropwise ($<1 \mathrm{~min}$) and the resulting dark brown mixture was allowed to stir at ambient temperature under nitrogen atmosphere over 16 min . This material without work-up or purification was used for the next step.

4-Ethynyl-2-methylthiazole (10)

One neck round bottom flask was charged with 2-methyl-4-((trimethylsilyl)ethynyl)thiazole ($103 \mathrm{mg}, 0.53 \mathrm{mmol}, 1 \mathrm{eq}$), and anhydrous N, N^{\prime}-dimethylformamide (2 mL) was added and the clear brown homogeneous solution was further treated with tetrabutylammonium fluoride solution in tetrahydrofuran ($1.0 \mathrm{~mL}, 1.06 \mathrm{mmol}, 2 \mathrm{eq}, \mathrm{c}=1 \mathrm{M}$) dropwise ($<1 \mathrm{~min}$) and the resulting dark brown mixture was allowed to stir at ambient temperature under nitrogen atmosphere over 14 min . This material without work-up or purification was used for the next step.

10
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NS}$
(123.17)

< 1%

3, MTEP
$\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{~S}$
(200.26)

2-Methyl-4-(pyridin-3-ylethynyl)thiazole (3)

Reaction done with the in situ formed alkyne
Two neck flask was evacuated and backfilled with nitrogen atmosphere and this was repeated three more times. This flask was charged with anhydrous N, N^{\prime}-dimethylformamide (3.5 mL) and 3-bromopyridine ($51 \mu \mathrm{~L}, 84 \mathrm{mg}, 0.53 \mathrm{mmol}, 1 \mathrm{eq}, \mathrm{d}=1.64$) was added followed by tetrakis(triphenylphosphine)palladium(0) ($18 \mathrm{mg}, 0.016 \mathrm{mmol}, 0.03 \mathrm{eq}$) in one portion and the bright yellow solution was allowed to stir for 10 min . After this time triethylamine (0.22 $\mathrm{mL}, 161 \mathrm{mg}, 1.59 \mathrm{mmol}, 3 \mathrm{eq}, \mathrm{d}=0.726$) was added in one portion and the mixture further stirred over 12 min . After this time copper(I)iodide ($10 \mathrm{mg}, 0.053 \mathrm{mmol}, 0.1 \mathrm{eq}$) was added in one portion and the purple mixture was further treated with a solution of crude mixture of 4-ethynyl-2-methylthiazole ($65 \mathrm{mg}, 0.53 \mathrm{mmol}, 1 \mathrm{eq}$) in N, N^{\prime}-dimethylformamide (2 mL) and the resulting clear brown mixture was allowed to stir at ambient temperature over 23 h . After this time the crude mixture was quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}(15 \mathrm{~mL})$ and the mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and $\mathrm{EtOAc}(30 \mathrm{~mL})$ and the two layers were well shaken and separated. The aqueous phase was extracted with EtOAc ($3 \times 30 \mathrm{~mL}$). The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 25 \mathrm{~mL})$, brine (30 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to afford crude mixture as brown oily residue. ${ }^{1} \mathrm{H}$ NMR and LRMS showed trace amounts of product. Due to small amount material was not further purified.

Reaction done with alkyne as isolated material

Two neck flask was evacuated and backfilled with nitrogen atmosphere and this was repeated three more times. This flask was charged with 3-bromopyridine ($78 \mu \mathrm{~L}, 128 \mathrm{mg}, 0.81 \mathrm{mmol}$, $1 \mathrm{eq}, \mathrm{d}=1.64$) and anhydrous N, N^{\prime}-dimethylformamide (1 mL) and was added followed by tetrakis(triphenylphosphine)palladium(0) $(28 \mathrm{mg}, 0.02 \mathrm{mmol}, 0.03 \mathrm{eq})$ in one portion and the bright yellow solution was allowed to stir for 12 min . After this time triethylamine $(0.34 \mathrm{~mL}$, $245 \mathrm{mg}, 2.43 \mathrm{mmol}, 3 \mathrm{eq}, \mathrm{d}=0.726$) was added in one portion and the mixture further stirred over 17 min . After this time copper(I)iodide ($15 \mathrm{mg}, 0.08 \mathrm{mmol}, 0.1 \mathrm{eq}$) was added in one portion and the mixture was further treated with a solution of 4-ethynyl-2-methylthiazole ($100 \mathrm{mg}, 0.81 \mathrm{mmol}, 1 \mathrm{eq}$) in N, N^{\prime}-dimethylformamide (1 mL) and the resulting red/brown mixture was allowed to stir at ambient temperature over 23 h . After this time the crude
mixture was quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and the mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and EtOAc $(25 \mathrm{~mL})$ and the two layers were well shaken and separated. The aqueous phase was extracted with EtOAc (2 x 25 mL). The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$, brine $(20 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo to afford crude mixture as brown oily residue. ${ }^{1} \mathrm{H}$ NMR and LRMS showed trace amounts of product. Due to small amount material was not further purified.

References

(1) Khan, Z. A.; Wirth, T. Synthesis of Indene Derivatives via Electrophilic Cyclization. Org. Lett. 2009, 11 (1), 229-231.
(2) Ding, Y.; Green, J. R. Benzocycloheptynedicobalt Complexes by Intramolecular Nicholas Reactions. Synlett 2005, 2005 (2), 271-274.
(3) Ding, C.; Babu, G.; Orita, A.; Hirate, T.; Otera, J. Synthesis and Photoluminescence Studies of Siloles with Arylene Ethynylene Strands. Synlett 2007, 2007 (16), 25592563.
(4) Alagille, D.; Baldwin, R. M.; Roth, B. L.; Wroblewski, J. T.; Grajkowska, E.; Tamagnan, G. D. Synthesis and Receptor Assay of Aromatic-ethynyl-aromatic Derivatives with Potent mGluR5 Antagonist Activity. Bioorg. Med. Chem. 2005, 13 (1), 197-209.
(5) Karama, U.; Höfle, G. Synthesis of Epothilone 16,17-Alkyne Analogs by Replacement of the C13-C15(O)-Ring Segment of Natural Epothilone C. European J. Org. Chem. 2003, 2003 (6), 1042-1049.
(6) Cosford, N. D. P.; Tehrani, L.; Roppe, J.; Schweiger, E.; Smith, N. D.; Anderson, J.; Bristow, L.; Brodkin, J.; Jiang, X.; McDonald, I.; Rao, S.; Washburn, M.; Varney, M. A. 3-[(2-Methyl-1,3-Thiazol-4-Yl)ethynyl]-Pyridine: A Potent and Highly Selective Metabotropic Glutamate Subtype 5 Receptor Antagonist with Anxiolytic Activity. J. Med. Chem. 2003, 46 (2), 204-206.
(7) Iso, Y.; Grajkowska, E.; Wroblewski, J. T.; Davis, J.; Goeders, N. E.; Johnson, K. M.; Sanker, S.; Roth, B. L.; Tueckmantel, W.; Kozikowski, A. P. Synthesis and StructureActivity Relationships of 3-[(2-Methyl-1,3-Thiazol-4-Yl)ethynyl]pyridine Analogues as Potent, Noncompetitive Metabotropic Glutamate Receptor Subtype 5 Antagonists; Search for Cocaine Medications. J. Med. Chem. 2006, 49 (3), 1080-1100.

Supporting Information: ${ }^{1} \mathrm{H}$ NMR Spectra

Improved Syntheses of mGlu ${ }_{5}$ Antagonists MMPEP and MTEP Using Sonogashira Cross-Coupling

Boshuai Mu, Linjing Mu, Roger Schibli, Simon M. Ametamey and Selena Milicevic Sephton*

${ }^{1}$ H NMR spectra were recorded in Fourier transform mode at the field strength specified using standard 5 mm diameter tubes. Chemical shifts in ppm is quoted relative to residual solvent signals calibrated as follows: $\mathrm{CDCl}_{3} \delta_{\mathrm{H}}\left(\mathrm{CHCl}_{3}\right)=7.26 \mathrm{ppm}$. Spectra were collected at ambient temperature.

Compound	${ }^{1} \mathrm{H}$ NMR	page
S1	$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$	S19
5A	$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$	S20
2, MMPEP	$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$	S21
2. HCl	$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$	S22
8	$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$	S23
17	$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$	S24
19	$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$	S25

Compound	${ }^{1} \mathrm{H}$ NMR	page
20	$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$	S26
10	$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$	S27
3, MTEP	$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$	S28
3. HCl	$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$	S29
S2	$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$	S30
6	$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$	S31

SDM-IV-045CHA, CDCl3, 400MHz, 06.09.2011.

SDM-IV-047CHB, CDCl3, 400MHz, 08.09.2011.

SDM-IV-049CHA, CDCl3, 400MHz, 13.09.2011.

SDM-IV-055CS, CDCl3, 400MHz, 04.10.2011.

SDM-III-096CHA, CDCl3, 400MHz, 23.03.2011.

$$
\begin{aligned}
& \begin{array}{c}
\text { n } \\
\cdots \\
0 \\
0 \\
0 \\
0 \\
- \\
1
\end{array} \\
& 8 \\
& \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{BrNS} \\
& \text { (178.05) }
\end{aligned}
$$

SDM_V_088CHA, CDCl3, $400 \mathrm{MHz}, 31.07 .2013$.

SDM-IV-080D, CDCl3, 400MHz, 10.12.2011.

SDM-IV-082CHB, CDCl3, 400MHz, 11.12.2011.

SDM_V_087CHA, CDCl3, $400 \mathrm{MHz}, 31.07 .2013$.

> 10
> $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NS}$
> (123.17)

SDM-IV-083CS1, CDCl3, 400MHz, 14.12.2011.

SDM-IV-086CS, CDCl3, 400MHz, 14.12.2011.

BM-I-016CH FLASK B CDCl3 400M 31-07-2013

BM-I-021CH CDCl3 400M 06-08-2013

Supporting Information: Computational Data
 Scope of Sonogashira Cross-Coupling in the Syntheses of mGlu ${ }_{5}$ Antagonists MMPEP and MTEP

Boshuai Mu, Linjing Mu, Roger Schibli, Simon M. Ametamey and Selena Milicevic Sephton*

All calculations were performed using Density Functional Theory (DFT) from the chemistry program Spartan' 14 version 1.1, Wavefunction, Inc., Irvine, CA. Optimisation of structures was performed using B3LYP method and the $6-311++G(2 D F, 2 P)$ basis set and the use of molecular symmetry was disabled. HOMO and LUMO energy calculations and electronic potential maps were obtained and Cartesian coordinates of all structures are provided below.

Compound	page
$\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	
$\mathbf{4}$	S 33
$\mathbf{2 1}$	S 34
$\mathbf{1 1}$	S 35
$\mathbf{7 A}$	S 36
$\mathbf{8}$	S 37
$\mathbf{5 A}$	S 38

Compound	page
$\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	
$\mathbf{6}$	S 39
$\mathbf{9}$	S 40
$\mathbf{1 0}$	S 41
15	S 42
$\mathbf{2 2}$	S 43

Table S1. Data and Cartesian co-ordinates (\AA) for computed ground state of 4, GS (DFT)

Atom	X	Y	
H1	-1.8005580	-2.9084962	0.0000000
C1	-1.4887097	-1.8723108	0.0000000
N1	-0.6935035	0.7748375	0.0000000
C2	-0.1375418	-1.5545515	0.0000000
C6	-2.4311948	-0.8544818	0.0000000
C5	-1.9997689	0.4717103	0.0000000
C3	0.1819949	-0.2032852	0.0000000
H2	0.6298099	-2.3129427	0.0000000
H6	-3.4887741	-1.0804975	0.0000000
C4	-2.9699334	1.6197954	0.0000000
H4	-3.6160671	1.5858407	-0.8789308
H5	-2.4293136	2.5622798	0.0000000
H7	-3.6160671	1.5858407	0.8789308
Br1	2.0354630	0.3031045	0.0000000

Table S2. Data and Cartesian co-ordinates (\AA) for computed ground state of 21, GS (DFT)

Atom	X	Y	Z
H 1	2.7350154	-2.1119914	0.0000000
C 1	2.1782164	-1.1845019	0.0000000
N 1	0.7352298	1.1869129	0.0000000
C 2	0.7924962	-1.2082516	0.0000000
C 6	2.8374027	0.0405589	0.0000000
C 5	2.0730250	1.1972574	0.0000000
C 3	0.1359402	0.0197778	0.0000000
H 2	0.2383708	-2.1341270	0.0000000
H 6	3.9164633	0.0982451	0.0000000
H 5	2.5394845	2.1747945	0.0000000
Br 1	-1.7841417	0.0290215	0.0000000

Table S3. Data and Cartesian co-ordinates (\AA) for computed ground state of 11, GS (DFT)

11

Atom	X	Y	Z
H1	-0.2793235	-2.1539397	0.0000000
C1	-0.8064348	-1.2107856	0.0000000
N1	-2.1479741	1.2346275	0.0000000
C2	-2.1939772	-1.1592548	0.0000000
C6	-0.1151632	-0.0098235	0.0000000
C5	-0.8175289	1.1907710	0.0000000
C3	-2.8180981	0.0823303	0.0000000
H2	-2.7795757	-2.0681669	0.0000000
H5	-0.2911057	2.1370426	0.0000000
H3	-3.8989686	0.1561599	0.0000000
Br1	1.7909140	0.0088110	0.0000000

Table S4. Data and Cartesian co-ordinates (\AA) for computed ground state of 7A, GS (DFT)

Atom	X	Y	Z
H1	-0.2092829	-1.7367731	0.0000000
C1	-0.3935625	-0.6732766	0.0000000
C4	-0.9064370	2.0539827	0.0000000
C2	-1.7134231	-0.2109048	0.0000000
C6	0.6402990	0.2420032	0.0000000
C5	0.4086564	1.6140180	0.0000000
C3	-1.9731142	1.1589052	0.0000000
H5	1.2312139	2.3130109	0.0000000
H3	-2.9842741	1.5350451	0.0000000
H4	-1.1093677	3.1165988	0.0000000
O1	-2.6682060	-1.1774579	0.0000000
H2	-4.0334762	-0.7906720	0.8919467
H7	-4.6046923	-0.2113732	0.0000000
H8	-4.2836669	-0.2113732	-0.8919467
Br1	2.4409083	-0.4017815	0.0000000

Table S5. Data and Cartesian co-ordinates (\AA) for computed ground state of 8, GS (DFT)

Atom	X	Y	Z
C1	1.8415491	-0.5348636	0.0000000
S1	2.0062596	1.2019413	0.0000000
N1	0.6050826	-0.9403460	0.0000000
C2	3.0224558	-1.4488875	0.0000000
H2	2.6678914	-2.4767164	0.0000000
H4	3.6465875	-1.2930880	0.8807579
H5	3.6465875	-1.2930880	-0.8807579
C3	-0.2551400	0.1149015	0.0000000
C4	0.2928439	1.3570848	0.0000000
H7	-0.2002546	2.3120337	0.0000000
Br1	-2.1190627	-0.2144465	0.0000000

Table S6. Data and Cartesian co-ordinates (\AA) for computed ground state of 5A, GS (DFT)

Atom	X	Y	
H1	-0.3574975	-1.8774180	0.0000000
C1	-0.2596710	-0.8017051	0.0000000
C4	0.0333773	1.9566694	0.0000000
C2	1.0166731	-0.2394670	0.0000000
C6	-1.3906702	0.0142175	0.0000000
C5	-1.2375742	1.4107822	0.0000000
C3	1.1679819	1.1467996	0.0000000
H5	-2.1129641	2.0433317	0.0000000
H3	2.1472828	1.5996453	0.0000000
H4	0.1543368	3.0316126	0.0000000
C7	-2.6930444	-0.5682511	0.0000000
H6	-4.7619218	-1.4857473	0.0000000
C8	-3.7919177	-1.0544288	0.0000000
O1	2.0489021	-1.1266297	0.0000000
C9	3.3764936	-0.6282271	0.0000000
H2	3.5785634	-0.0296710	-0.8917927
H7	4.0226982	-1.5013310	0.0000000
H8	3.5785634	-0.0296710	0.8917927

Table S7. Data and Cartesian co-ordinates (\AA) for computed ground state of $\mathbf{6}$, GS (DFT)

$$
\begin{aligned}
& \mathrm{E}=-22.83 \cdot 10^{4} \mathrm{kcalmol}^{-1} \\
& \mathrm{E}_{\text {номо }}=-6.83 \mathrm{eV} \\
& \mathrm{E}_{\text {LUмо }}=-1.55 \mathrm{eV} \\
& \text { point group }=\mathrm{C}_{\mathrm{S}}
\end{aligned}
$$

6

Atom	X	Y	Z
H1	-0.9530907	-2.8930859	0.0000000
C1	-0.7023899	-1.8405829	0.0000000
N1	-0.0698152	0.8666410	0.0000000
C2	0.6244011	-1.4363660	0.0000000
C6	-1.6990702	-0.8799360	0.0000000
C5	-1.3433078	0.4737667	0.0000000
C3	0.8974561	-0.0668448	0.0000000
H2	1.4349753	-2.1502421	0.0000000
H6	-2.7424554	-1.1660453	0.0000000
C4	2.2524722	0.3952916	0.0000000
H3	4.4062380	1.0877023	0.0000000
C7	3.3973511	0.7567511	0.0000000
C8	-2.3947314	1.5505804	0.0000000
H4	-3.0368077	1.4696555	-0.8789227
H5	-1.9223220	2.5290181	0.0000000
H7	-3.0368077	1.4696555	0.8789227

Table S8. Data and Cartesian co-ordinates (\AA) for computed ground state of $\mathbf{9}$, GS (DFT)

Atom	X	Y	Z
H1	0.3679461	-2.1641032	0.0000000
C1	-0.1521298	-1.2163922	0.0000000
N1	-1.4774717	1.2376392	0.0000000
C2	-1.5355996	-1.1582240	0.0000000
C6	0.5755639	-0.0218995	0.0000000
C5	-0.1506550	1.1795574	0.0000000
C3	-2.1534938	0.0874439	0.0000000
H2	-2.1295522	-2.0615360	0.0000000
H5	0.3799905	2.1241872	0.0000000
H3	-3.2342960	0.1663858	0.0000000
C7	1.9986976	-0.0128309	0.0000000
H6	4.2618698	0.0095992	0.0000000
C8	3.2000961	-0.0013769	0.0000000

Table S9. Data and Cartesian co-ordinates (\AA) for computed ground state of 10, GS (DFT)

Table S10. Data and Cartesian co-ordinates (\AA) for computed ground state of 15, GS (DFT)

Atom	X	Y	Z
C3	1.4572945	0.6941839	-0.0098083
C5	-0.8932438	1.5422410	0.3253112
C4	0.4191348	1.7324101	-0.4384035
C9	-1.4141014	0.1401142	0.1354908
H6	1.8480207	0.9343151	0.9850729
H10	-0.7168474	1.7081816	1.3934267
H7	0.2304954	1.6333675	-1.5102147
H5	2.3183759	0.7071718	-0.6793379
H9	-1.6528384	2.2558174	0.0111232
H8	0.8082272	2.7381107	-0.2757158
C1	0.8826295	-0.7077756	0.0289907
C2	-0.4469394	-0.9422486	0.0714276
H1	-0.8180391	-1.9553599	0.0676400
C7	1.8117132	-1.7821483	0.0202329
H2	3.3510979	-3.4433383	0.0035711
C8	2.6362726	-2.6582512	0.0112559
N1	-2.6884501	0.0033754	0.0640769
O1	-3.0873179	-1.3357284	-0.0895489
H12	-4.0454842	-1.2644386	-0.1145908

Note: During the revision process the data for compound 15 were recalculated using Spartan'16 version 2.0.9, Wavefunction, Inc., Irvine, CA. While the numerical data remain the same, the nature of HOMO orbital was different to that calculated using Spartan'14.

Table S11. Data and Cartesian co-ordinates (\AA) for computed ground state of 22, GS (DFT)

24

Atom	X	Y	Z
H1	-2.9667267	0.7243992	0.9952595
C1	-2.1183094	0.8114307	0.3159482
C3	0.2233971	1.7107898	0.1091569
C9	0.7425173	0.2991301	0.0534411
C2	-1.0792553	1.7812825	0.8833829
H3	-0.8640854	1.5303416	1.9250187
H2	-2.5222763	1.1988589	-0.6235651
H5	0.9880126	2.3706728	0.5142539
H4	-1.4584914	2.8031823	0.8662696
C5	-0.2161154	-0.7825441	-0.0506448
H10	0.1597044	-1.7793345	-0.2214261
C6	-1.5452715	-0.5646876	0.0537779
C7	-2.4727154	-1.6288597	-0.0967775
H9	-4.0098239	-3.2753347	-0.3324700
C8	-3.2951402	-2.4983079	-0.2189323
N1	2.0230865	0.1857211	0.1002299
O1	2.4569296	-1.1264418	0.0388992
C4	3.8812831	-1.1591944	0.0701227
H7	4.2982459	-0.6261745	-0.7846541
H8	4.1502625	-2.2114870	0.0208064
H11	4.2564499	-0.7208160	0.9954012
F1	-0.0273775	2.1484239	-1.2095855

