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Abstract: Schistosomiasis is a major neglected tropical disease. Control of schistosomiasis currently
relies on a single drug, praziquantel, and despite its efficacy against the all schistosome species that
parasitize humans, it displays some problematic drawbacks and alone is ineffective in counteracting
adverse pathologies associated with infection. Moreover, due to the development of the potential
emergence of PZQ-resistant strains, the search for additional or alternative antischistosomal drugs
have become a public health priority. The current drug discovery for schistosomiasis has been
slow and uninspiring. By contrast, repurposing of existing approved drugs may offer a safe, rapid
and cost-effective alternative. Combined treatment with PZQ and other drugs with different mode
of action, i.e., antimalarials, shows promise results. In addition, a combination of anthelminthic
drugs with antioxidant might be advantageous for modulating oxidative processes associated with
schistosomiasis. Herein, we review studies dealing with combination therapies that involve PZQ
and other anthelminthic drugs and/or antioxidant agents in treatment of schistosomiasis. Whereas
PZQ combined with antioxidant agents might or might not interfere with anthelminthic efficacy,
combinations may nonetheless ameliorate tissue damage and infection-associated complications.
In fact, alone or combine with other drugs, antioxidants might be a valuable adjuvant to reduce
morbidity and mortality of schistosomiasis. Therefore, attempting new combinations of anthelmintic
drugs with other biomolecules such as antioxidants provides new avenues for discovery of
alternatives to PZQ.
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1. Introduction

The Tropical Diseases Research arm of the World Health Organization classifies schistosomiasis
as one of the major neglected tropical diseases. It is considered the most important of the helminthoses
of humanity in terms of mortality and morbidity [1,2]. Schistosomiasis is endemic in 70 countries
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worldwide, affecting >250 million people [3–5]; yet this number likely is an underestimate, with recent
studies documenting infection of 391–597 million people, with 800 million, mostly children, at risk of
infection [6,7], and people are infected during domestic, recreational and occupational water [8,9].

The infectious agents of human schistosomiasis include three major species; Schistosoma mansoni
and S. japonicum which cause hepato-intestinal schistosomiasis in Africa, the Middle East, South
America and the Caribbean whereas S. haematobium, endemic in Africa and the Middle East and is
responsible for urogenital schistosomiasis (UGS) [10,11]. Infection with S. haematobium also is classified
as a group I carcinogen; UGS often leads to squamous cell carcinoma of the bladder [12]. Although
schistosomiasis is generally restricted to the tropics and sub-tropics, a recent outbreak in Corsica
demonstrates the potential for reemergence of this infectious disease in new, economically developed
regions in southern Europe [13].

Infection follows exposure to freshwater containing free-swimming larval forms of the parasite
(this larva is termed the cercaria). Cercariae penetrate intact human skin, where the larva sheds its
tail and which the larva, now termed the schistosomulum, enters the bloodstream which travels via
pulmonary artery to the lungs. After exiting the lungs, schistosomula re-enter the venous circulation
and circulates for several weeks, until the adult schistosomes take up residence within the mesenteric
veins (S. mansoni and S. japonicum) or the vesical plexus and veins that drain the ureter and nearby
pelvic organs (S. haematobium) [3] where the worms mate, and commence egg laying about 5–7 weeks
post-infection [3,14,15]. Schistosomes are long lived in these sites, often for decades, and they shed
large numbers of the eggs each day. The eggs must transverse the walls of the blood vessels with the
goal of reaching the lumen of the intestine or bladder to be excreted or evacuated in urine or feces,
respectively [3]. However, many eggs become entrapped in the tissues and organs including the walls
of the bladder, bowel, and in the liver which comes with blood of return to this organ [14,15]. The
developmental cycle of the parasite is completed when eggs reach freshwater, hatch, and release the
miracidium, a ciliated larva, which seeks out the aquatic snail. Following infection of the snail, the
miracidium transforms into the sporocyst stage of the schistosome. The cercariae develop within
the two generation of sporocyst (I and II), and are eventually released from the snail into the water,
completing the developmental cycle [3].

Control strategies employ approaches to block transmission and reduce the disease burden
including mass and targeted chemotherapy, and absence of safe water and sanitation facilities,
modification of the environment, and use of molluscides [3]. The goal of these approaches includes
mitigating the burden of disease, by reducing morbidity [16] at both the individual and community
levels [17]. This review presents and discusses a new perspective of current approaches for treatment
of schistosomiasis. Combination treatments with PZQ and other anthelminthic drugs as well as
administration of antioxidant agents alone or as adjuvant in treatment of schistosomiasis are addressed
and reviewed.

2. Praziquantel: Mainstay Chemotherapy against Schistosomiasis

The pyrazino-isoquinolone compound praziquantel (PZQ, Figure 1) is widely accepted and
used for the treatment of all forms of schistosomiasis and, indeed, infections with most flatworm
parasites [18,19]. PZQ is effective against all schistosome species and generally causes only mild and
transient side effects [17]. Since 2006, many millions of doses of PZQ have been consumed, mostly in
Sub-Saharan Africa; and it has been estimated that by 2018 as many as 235 million people will have been
treated with PZQ [20]. Nonetheless, PZQ presents some drawbacks such as is distributed as racemate
that includes equivalent proportions of biologically active R-PZQ and inactive S-PZQ enantiomers
(Figure 1), consequently half of PZQ dose is pharmacology inactive; low solubility and passes through
extensive metabolism via hydroxylation of the absorbed drugs to inactive metabolites [21,22]. The
presence of S-PZQ, the inactive diastereosisomer, both contribute to the large size of the tablet and
its bitter taste, which impedes compliance by patients, especially children [21,23,24]. Another major
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drawback of PZQ is its inefficacy against juvenile stages relative to mature worms, thus complete cure
is unusual with a single dose of PZQ [22,25,26].
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Figure 1. Chemical structures and characteristics of praziquantel and its enantiomers, R-PZQ and
S-PZQ.

In spite of the comprehensive use of PZQ, the model of action against schistosomes and targets
molecules of PZQ in schistosomes remain to be elucidated. Substantial evidence implicates calcium
channels as targets because schistosomes display marked fluxes in calcium ion (Ca2+) following
exposure to PZQ [27], that leads to tetany of the musculature [28] accompanies by damage to the
tegument [29]. The hypothesis that PZQ perturbs Ca2+ channels is supported by findings of studies
that employed calcium-channels blockers and cytochalasin D [30]. More recently, was demonstrated
that PZQ is a GPCR ligand, with R-PZQ acting as an agonist at human 5-HT2B receptor [31].

Reliance for many decades on singular drug has obviously raised legitimate concerns about
PZQ-resistance [32]. Whereas widespread drug resistance to PZQ has not arisen, field and experimental
isolates that exhibit significantly reduce susceptibility have been described, which foreshadows for
emergence of resistance against parasites [33–35].

Despite the efficacy of PZQ in reducing morbidity, the reliance of treatment and control on this
drug and the concerning with emergence of resistance, prompt the search for additional therapeutics or
other control strategies [35–38]. Continuous efforts have been made in order to circumvent reliance on
a single medicine through synthesis of derivatives of PZQ and investigation of their antischistosomal
activity [39,40]. Unfortunately, however, these derivatives have generally not achieved improved
activity compared to that of the parental drug. In most cases, the promising in vitro activity of candidate
drugs cannot be extrapolated to accept in vivo activity, likely related to pharmacokinetics and metabolic
profiles, the key determinants of in vivo efficacy [32]. Several morbidity control strategies are often
combined, but they need to be improved for comprehensive integrated control programs. In addition,
given the reliance on PZQ, it is necessary optimize the useful life span of PZQ, through investigation
of the potential for administration of combined PZQ therapies, avoiding the emergence and evolution
of drug resistance. Over the years, it has been emphasized that this strategy would reveal synergistic
effects and therefore might improve the treatment of helminth infections.
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3. Treatment of Schistosomiasis: Anthelminthic Drugs Alone or Combined

Rational combination chemotherapy was developed for tuberculosis and other bacterial
infections [41]. It is used for chemotherapy of cancer and acquired immune deficiency syndrome
(AIDS) [42], and for malaria [43,44]. The main aims of this therapeutic strategy are to achieve
additive/synergistic therapeutic effect and to minimize or delay the appearance of drug
resistance [41–43]. When synergism/additive effect is exhibited, achieving similar or even enhanced
efficacy at lower doses can be expected, along with reduction in side effects [42]. In the case
of schistosomiasis, ideally the associated drugs would exhibit divergent mechanism of action to
PZQ and/or target the immature schistosomes to enhance cure and egg reduction rates, as well as
pathologies associated with infection. Herein, we summarize the evidence from experimental studies,
in vitro and in vivo, as well as human clinical trials involving combination of different anthelmintic
drugs against schistosomiasis. Initially, we start to introduce the drugs used against the disease and
their combination in experimental studies (in vitro and in vivo) as well human clinical trials.

3.1. Oxamniquine

Until recently, oxamniquine (OXA) (Figure 2) was the drug of choice for Schistosomiasis mansoni
for many decades in Brazil [45].
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Schistosomiasis mansoni.

The efficacy of OXA is confined to S. mansoni, unlike PZQ which is active against all schistosomes.
However, like PZQ, OXA is more active against adult worms than the juvenile stages; and males are
considerably more susceptible than females [46]. OXA induces less specific morphological alterations
on parasite, and its hepatic shift occurs much more slowly post treatment. It has been considered that
mode of action of OXA is related to inhibition of the nucleic acid metabolism. The hypothesis relies
on activation of OXA by a single step, in which a schistosome enzyme converts the drug into ester
that spontaneously dissociates, resulting in electrophilic reactants capable of alkylation of schistosome
DNA [16]. This drug is also converted to a reactive sulfate ester and the activating enzyme is a
sulfotransferase [47]. Resistance in S. mansoni to OXA is controlled by a single autosomal recessive
gene. Anderson coworkers demonstrated, using two strains of S. mansoni from Brazil that differed
500-fold in sensitivity to OXA, and by Mendelian-type genetic crosses followed by linkage mapping,
genomic sequencing and X-ray crystallography that a schistosome gene that encodes a sulfotransferase
responsible for activating the prodrug to its active form, which in turn intercalates into the genome
and interrupts nucleic acid synthesis [48].

As PZQ, OXA is safe and side effects are limited to mild but transient dizziness [49]. Although, low
cure rates obtained for S. mansoni-infected patients treated with OXA have been described repeatedly,
thus far, these do not constitute a significant concern for public health [15].

Combination therapy with OXA and PZQ have been used since 1980s, both in the laboratory
and the clinic. However, findings with this combination are not clear, and would benefit with further
investigation and stricter criteria [50]. In 1983, Shaw and Brammer investigated combinations of PZQ
and OXA in adult S. mansoni in mice [51]. The findings were encouraging with respect to enhanced
antischistosomal effects, more marked than either drug alone [51]. This combination regimen of low
doses (1/3 curative doses of both drugs) was more effective four hours post-infection (p.i.), while
administration at 5 weeks p.i. resulted in more marked worm burden reduction than PZQ and OXA
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monotherapy [52]. These results might be related to an early effect on the developing gonads of the
schistosomula when mice were treated with OXA 4 h p.i. and interference with copulation when PZQ
was given 5 weeks p.i. [52]. In a different study, low dose combinations of OXA-PZQ were active on
different strains of S. mansoni—Venezuelan YT and SM and Brazilian BH, Complete elimination of all
three strains was accomplished. When given alone, high doses of OXA or PZQ were required to obtain
similar efficacy obtained with combined low-dose formulations. From these reports, it is reasonable to
conclude that a combination of OXA-PZQ acts through synergism [53].

Human clinical trials were undertaken to evaluate efficacy of this combination during combination
treatment in 158 schoolchildren aged 6–20 infected with S. mansoni in Malawi [54]. Findings from
102 children with S. mansoni infection and 56 children with S. haematobium infection were reported.
Significant egg reduction (93–99%) was observed in S. mansoni-infected children treated with PZQ
(15 to 20 mg/kg) and OXA (7.5 to 10 mg/kg). Combined treatment also markedly reduced numbers of
eggs of S. haematobium passed in urine (97–99.2%), somewhat unexpectedly since OXA is generally
considered not active against this schistosome species [54]. Some authors considered that several
aspects of this trial may have influenced these unusual findings including (1) small number of
individuals in the treatment groups; (2) co-infection with both parasites of half the participants;
(3) the use of only egg counts as the only end point; (4) high infection intensities in the population, and
(5) the collection of only one stool or urine sample specimen at one month post-treatment [15].

A similar clinical trial was conducted in children in Zimbabwe, which included 58 school age
participants who were infected with S. mansoni and S. haematobium. PZQ (20 mg/kg) and OXA
(10 mg/kg) achieved a cure rate of 89% for the S. mansoni infections [55]. Here the PZQ-OXA
combination failed to cure S. haematobium infections with high egg count reduction found for both
parasite species being attributed to PZQ in cases of S. haematobium infections [55]. The study design
exhibited limitations (small sample size, among others) similar to those carried out in Malawi, although
the study end points included both cure and egg reduction rates. In addition, multiple samples of
feces and urine was examined in order to assess therapeutic efficacy [54], and accordingly the findings
may be more solid than those from the clinical trial in Malawi.

3.2. Antimalarials

Antimalarials have been tested against schistosomiasis either alone or combined. Figure 3 depicts
the chemical struct of some of these compounds.
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Figure 3. Antimalarials studied alone or in combined regimen on experimental infections and clinical
trials. PA1647 and SynriamTM are trioxaquines and trioxalanes respectively. Note that PA1647 contain
two antimalarial pharmacophores: a 4-aminoquinolone and a 1,2,4-trioxane.
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3.2.1. Artemisinins Derivatives

In searching for alternatives to PZQ, studies have been undertaken with semi-synthetic derivatives
of the sesquiterpene lactone, artemisinins, including artemether (ART) and artesunate (AS) (Figure 3)
which possess activity against the human schistosomes [15]. Dissimilar to PZQ and OXA, ART and
AS exhibits high levels of activity against juveniles while the invasive stages and adult worm are less
susceptible. Moreover, unlike OXA, adult female worms are somewhat more susceptible to ART than
male worms [55]. Although the exact mechanism of action of artemisinin against schistosome remains
elusive, evidence suggests that ART alters glycogen content in schistosomes [56], accompanied by
morphological alterations similar to those induced by PZQ [55]. Exposure of schistosomes in medium
containing ART plus hemin kills the worms while exposure of compounds alone does not. Hence, ART
might be activated by hemin which subsequently cleaves an endoperoxidase bridge to liberate free
radicals which, in turn, form covalently bind to schistosome proteins [57]. Also, hemin enhances in vivo
efficacy of ART against S. mansoni [58]. Artemisinins are not only safe [59], but also possess a discrete
mode of action of PZQ [60]. In fact, in a recent meta-analysis it was confirmed that artemisinins used
in combination with PZQ have the potential to increase the cure rates in schistosomiasis treatment [61].

Arthemeter

Efficacy of PZQ-ART combinations were assessed in performed in different host-parasite
models [62,63]. The reports revealed consistently higher worm burden reductions following treatment
with combined regimen compared to PZQ or ART alone. In rabbits infected with juvenile and
adult S. japonicum, treatment with 50 mg/kg of PZQ and 10 mg/kg of ART with one day apart
significantly reduced worm burden (82%) compared with PZQ and ART monotherapies (66% and 44%,
respectively) [62]. Similar results were seen with rabbits infected only with adult S. japonicum [63].
Hamsters infected with juvenile and adult S. mansoni were simultaneously treated with 75 mg/kg
of PZQ and 150 mg/kg of ART. Administration of the combined regimen reduced worm burden
by 77% which was significantly higher than 2% reduction achieved with PZQ monotherapy, but,
it was not significantly different from 66% reduction obtain with ART alone [64]. Mahmoud and
Botros [64] investigated the therapeutic effect of PZQ-ART combination in mice infected with
S. mansoni in differential developmental stages. The antischistosomal effect of a single dose of ART
was similar for adult and juvenile S. mansoni. Histopathological changes were evaluated. In contrast to
results observed in hamsters, administration of PZQ-ART combination led to >90% worm reduction
which was not statistically significant when compared with 95% achieved with PZQ monotherapy.
Nonetheless, the impact of combined treatment regimen on S. mansoni eggs was impressive, with
complete absence of eggs from tissues with minor histopathological changes in the liver. Although
the few residual worms recovered from groups receiving the PZQ-ART combination were almost
sterile and incapable of oviposition, this evidence alone might not explain the complete absence of
eggs and granulomas from tissues [64]. Free radical liberation plays a role in drug induced-immune
responses [64].

The safety and efficacy of ART-PZQ in different regimens for treating schistosomiasis japonica
was assessed on a randomized double-blind, placebo controlled clinical trial in 196 Chinese patients
for a 45-day period [65]. Administration of PZQ either or without ART during acute schistosomiasis
was highly efficacious. Two end-points were included in trial, infection status (determined by stool
examination) and blood chemistry. The combination of PZQ-ART in two distinct dosages (60 mg/kg
and 120 mg/kg of PZQ plus 6 mg/kg ART) achieved parasitological cure rates of 98.0% and 97.7%
(p > 0.05), respectively. Nonetheless, these results were not statistically different from those obtained in
control group (PZQ/placebo, 96.4% and 95.7%, p > 0.05) [65]. Apparently, in contrast to laboratory
findings with rodents, the combination of ART-PZQ did not improve the efficacy in infected people,
when compared to PZQ alone.
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Artesunate

Although AS caused a significant reduction from egg tissue in comparison to PZQ, curiously,
AS did not markedly reduce numbers of female parasites. AS appeared to impair fecundity of the
adult females rendering them sterile rather than limited release of eggs [66]. Administration AS-PZQ
to mice infected with S. mansoni significantly reduced in total worm count with complete eradication
of female worms and tissue egg count in comparison to monotherapy with PZQ or AS. The action of
the AS-PZQ combination may relate to the effect of AS in adult females, leading to a reduction of eggs
with efficacy of PZQ against adult worms that results in elimination of the worms. In addition, Abdin
and co-authors investigated effects of AS-PZQ on schistosome thioredoxin glutathione reductase (TGR)
and cytochrome c peroxidase (CcP). They suggested that AS activity might be mediated by expression
of these genes; by contrast, PZQ failed to influence expression of these genes. The loss of these two
defensive enzymes likely renders the parasite vulnerable during its different stages to reactive oxygen
species (ROS) [66]. Although CcP, a mitochondrial enzyme expressed in adult schistosomes that
protects against endogenous and exogenous H2O2, it is unlikely that CcP exerts a general effect on
peroxidation outside the mitochondrion [66]. Both CcP and TGR might be developed as drug targets
since TGR especially displays functional and biochemical differences between redox metabolism and
the human host [66,67].

Efficacy of a AS-PZQ combination was evaluated in a non-blinded open-label trial in Senegal
that enrolled 110 local residents who were stool-positive for S. mansoni infection, aged 1 to 60 years.
These participants were assigned groups that received either a single oral dose of PZQ (40 mg/kg),
the recommended dose regimen of AS (4 mg/kg followed by four daily doses of 2 mg/kg), or a
combined treatment. Parasitological parameters including cure and egg reduction rates were evaluated
at 5, 12 and 24 weeks following treatment using two Kato-Katz thick smears taken from the same,
single stool specimen. Since Senegal is an area of intense transmission of S. mansoni, reinfections occur
frequently and quickly. In this regard, the therapeutic efficacy during first 5 weeks will be discussed
here. Despite treatment with AS-PZQ resulting in cure and reduced numbers of eggs higher (69% and
89%, respectively) than with monotherapy, the egg reduction rate was similar to PZQ alone (84%),
however, it was higher than AS alone (59%) [68]. AS also failed to affect the number of eggs.

A combination of AS-PZQ was evaluated in a double-blind, randomized, placebo-controlled
study in Gabon that enrolled 296 children aged 5 to 13 infected with S. haematobium. By 8 weeks
post-treatment, egg numbers in urine in two consecutive urine samples were ascertained. A cure rate
of 81% (95% confidence interval, CI) was observed in the group treated with combined AS-PZQ which
is not significant when compared to the cure rate for PZQ monotherapy (73%, 95% CI). In addition,
the cure rate of 27% (95% CI) obtained in the AS monotherapy group was also not significantly different
to the placebo (20%, 95% CI), which was attributed to day-a-day variation in numbers of eggs in the
urine [69].

Administration of AS-PZQ was assessed in the treatment of urogenital schistosomiasis (UGS)
in several villages of Nigeria [70,71]. Inyang-Etoh and colleagues enrolled 312 randomly selected
schoolchildren aged 4 to 20 years. Groups were treated with PZQ-placebo, AS-placebo, PZQ (40 mg/kg),
AS (4 mg/kg), or a combination of PZQ (40 mg/kg) and AS (4 mg/kg) [70]. Cure and egg rate were
assessed by examination of urine for schistosome eggs. As observed in Gabon [69], high cure and
mean ova reduction (88.6% and 93.6%) rates were obtained with the combination of drugs while
PZQ achieve a cure rate 72.7% and AS 70.5%. However, significant differences were not apparent
among cure rate with AS-PZQ, and PZQ with or without placebo. These results reinforce that PZQ
is maximally active again adult schistosomes. The differences between cure rates with PZQ-AS
compared to the AS-placebo support the notion that AS has fewer schistosomicidal activity against
adult schistosomes [70]. Similar findings were seen in a nearby village among 70 children diagnosed
with UGS following administration of the AS-PZQ combination, where treatment with a combination
of AS (4 mg/kg/day over 3 days) plus PZQ (40 mg/kg once) and single oral dose of PZQ (40 mg/kg).
Number of eggs in urine one month following drug administration were ascertained. The AS-PZQ
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combination lead to significantly higher cure (85.7%, 95% CI) compared to monotherapy with PZQ
(51.4%, 95% CI). These results are consistent with those described above and might be attributed to
a synergistic effect of these two drugs, but using a different mode of action [71]. Cure rates with the
same combined therapy differed among villages, which may have reflected divergent susceptibility
profiles of parasite genotypes across the endemic range of schistosomiasis.

Artesunate Combined with Sulfamethoxypyrazine/Pyrimethamine

The antischistosomal activity of a new combination therapy AS-sulfamethoxy-pyrazine/
pyrimethamine (AS-SMP) was evaluated among 800 school-aged children infected with S. haematobium [72].
Children were allocated into groups and treated with PZQ alone and AS-SMP, and urine samples were
examined on days−1, 0, 28 and 29. A higher cure rate was achieved with PZQ group (53%), suggesting
that AS-SMP (43.9%, p = 0.011) is not effective at least against adult worms or even with this schistosome
species. A moderate enhancement of egg reduction was seen in PZQ groups (95.6%) in comparison to
AS-SMP (92.8%, p = 0.096) [72]. This might relate to the fact of the dose administered corresponded
to doses used for malaria. Additionally, the study revealed that safety and tolerability profiles of this
combination were similar to PZQ [72]. It will be necessary assess if increasing the dose would enhance
the antischistosomal efficacy and retain safety and tolerability. Efficacy and safety of AS-SMP should be
evaluated for the other schistosome species [72].

Artemisinin and Naphthoquine Phosphate

A novel oral antimalarial drug, naphthoquine consisting in a combination of naphthoquine
phosphate and artemisinin (Co-ArNp) (Figure 3) exhibits activity against S. mansoni in vivo [73].
The nature of the specific pharmacodynamic interaction between artemisinin and naphthoquine
phosphate in the formulation was not clear, however co-administration of both drugs induced
significant synergistic interaction [73]. Oral administration of Co-ArNp in a single dose of 400 mg/kg
in mice infected with S. mansoni (Egyptian strain) on day 7 p.i. reduced the worm burden by 95%.
Increasing the oral dose up to 600 mg/kg on day 21 p.i. resulted in an elimination of all female
worms before they commenced laying eggs. In addition, the combined regimen provided significant
reductions in the hepatic and intestinal tissue egg loads, and induced significant alterations in oogram
pattern. These alterations might be attributed to the activity of artemisinin, which might be augmented
by co-administration with napthoquine phosphate harming the female worms and oviposition [74].
Despite these promising findings in mice, it was necessary to study the toxicity of this combination.
Clinical trials will be required to determine whether artemisinin/PZQ combination therapy offers
advantages and whether the inevitable higher cost of such a combined treatment makes it practicable,
and artemisinins (alone or in combination with PZQ) to treatment of schistosomiasis is the risk of
driving artemisinin resistance in malaria in areas where both diseases are endemic [75].

3.2.2. Mefloquine

Mefloquine (MFQ, Figure 3), an antimalarial agent, is considered one of the best antischistosomal
drugs [76]. Similar to artemisinin, MFQ is also active against developmental stages of schistosomes.
In adult worms, MFQ induced extensive, severe damage on tegument, musculature, digestive and
reproductive systems [76–78]. It was anticipated that combinations of MFQ with other drugs would
be more effective rather PZQ monotherapy. Therefore, evaluation of combine regimens of MFQ-PZQ
and MFQ-artemisinin derivatives against schistosomiasis have been performed both experimentally
(in vitro and in vivo) and in human clinical trials [79–84].

The efficacy of MFQ administered orally at single, multiple doses, or in combination with AS,
ART, or PZQ was assessed in the S. japonicum-mouse model at 4 weeks post-treatment. Administration
of MFQ (50 mg/kg or 100 mg/kg) in combination with ART or AS (100 mg/kg) totally eliminated
female worms, especially in mice treated with combination of MFQ-ART. The better results were
achieved using higher doses of 100 mg/kg. Elimination of females might be a valuable target since
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eggs are central of the pathogenesis of schistosomiasis [79]. Also, combined regimens achieved a
significant decrease of total worm burden (76.7% for MFQ-AS, 1:1, 100 mg/kg and MFQ-ART, 1:1,
100 mg/kg: 87.8%) compared to monotherapies (AS 100 mg/kg: 59.8% versus MFQ 100 mg/kg:
67.9% and ART 100 mg/kg: 55.6%). This outcome suggests a synergistic effect between MFQ and
artemisinin derivatives [79]. MFQ-PZQ was also evaluated in S. mansoni infected mice at the same
doses as above and also at 400 mg/kg each. Higher total and female worm burden reductions (86.0%
and 93.0%, respectively) were achieved only when either MFQ-PZQ at the highest dose were given
simultaneously or MFQ was given 24 h prior to PZQ. At the lower doses of 50 and 100 mg/kg,
combinations involving PZQ followed a day later with MFQ induced only moderate total worm
burden reductions, 47.8–54.7%. The most impressive outcome was seen when PZQ treatment were
followed by MFQ, which suggests that PZQ might play a role in the antagonistic effects when it
was administered before MFQ [80]. In mice simultaneously infected with S. mansoni 14-day-old
schistosomula and 49-day-old adult worms, administration of a daily dose of 100 mg/kg of PZQ and
MFQ for two consecutive days markedly reduced worm burdens of immature and adult schistosomes
(both >95%) as well as immature eggs in comparison to monotherapies (PZQ: 29.2% and 49.6%; MFQ:
41.9% and 67.4%, respectively). Additionally, histopathological examination on liver sections revealed
that the combined regimen significant reduced granuloma diameter in comparison to monotherapies.
Enhanced worm burden reduction might be correlated with healing of hepatic granulomatous lesion,
since eradication of females led to inhibition of oviposition [81]. Abdlel-Fattah and colleagues obtained
contradictory results from those described above. In S. mansoni infected mice treated 3 or 6 weeks with
curative (400 mg/kg MFQ and 500 mg/kg PZQ) or subcurative (200 mg/kg MFQ and 250 mg/kg PZQ)
doses, MFQ monotherapy was more potent than the combined regimen in full dose regimen and PZQ
monotherapy in its low regimen [82]. The authors attributed the additive/synergistic effect of PZQ
and MFQ, observed from other studies [80,81] to the simultaneous presence of juvenile and adult
worms, a difference that might explain the failure to achieve an additive effect in other studies [82].

MFQ-PZQ combinations were evaluated in clinical trials. A randomized, exploratory open-label
trial was carried out in Cote d’Ivoire where 83 schoolchildren infected with S. haematobium were
divided in four groups and treated with: (i) MFQ (single dose of 25 mg/kg); (ii) AS (4 mg/kg daily
for 3 days); (iii) MFQ-AS (single dose of 40 mg/kg) and iv) PZQ (single dose 40 mg/kg). PZQ
achieved highest cure rate (83%) followed by combine regimen (61%) while monotherapies of MFQ
and AS only resulted in lower cure rate (21% and 25%). In children, concurrently infected with
S. haematobium and S. mansoni, the treatment with PZQ and MFQ-AS resulted in high cure rates of 83%
and 75% and egg reduction rates, 97% and 96% respectively. Despite the higher cure rate with PZQ
monotherapy, the combination of MFQ-AS, administrated in accordance with currently recommended
malaria treatment, showed encouraging results in co-infected children [83]. Keiser et al. assessed the
efficacy and tolerability of similar treatment described, with the inclusion of MFQ-AS (3 × (100 mg/kg
AS + 250 mg/kg MFQ)) combined with PZQ (MFQ-AS-PZQ) [84]. Urine from 61 children was collected
before, and on days 21–22 and 78–79 after first dosage. Unexpectedly, on both follow up a marked
reduction in the intensity of infection with high egg reduction rates but low cure rates were recorded
in the three treatment groups [84]. The investigators suggested that the lower cure rates obtained with
PZQ might reflect that children treated with this drug had high infection intensities before the drug
administration. It was expected that combination regimens achieved higher cure rates since drugs
have antischistosomal activity and, moreover, act on different developmental stages. These results
might be explained by default of assessment of viability of excreted eggs since they did not count dead
eggs; thus, cure rates might underestimate the true situation. Notably, the findings contrast with those
from some other reports. From earlier reports with similar treatment schedules, it was expected that
higher cure rates combining antimalarial (AS, ART and MFQ) with PZQ would be obtained compared
to PZQ alone [73,74,81]. The authors observed on first follow up, a conclusion whether the addition of
MFQ and/or AS would expand the activity profile of PZQ targeting juvenile schistosomes could not
be made [84]. Overall, PZQ monotherapy was the best tolerated treatment, which might be explained
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by the only one type of drug administered. In groups treated with combination regimens, more than
90% of patients reported side effects, but it is unclear whether the adverse effects related to PZQ or
systemic exposure of the antimalarials [84].

The role of MFQ in combined regimens should be investigated further in order to elucidate effects
of these kind of combinations on acute schistosomiasis, and to characterize potential adverse effects of
combination regimen of PZQ and MFQ.

3.2.3. Trioxalanes/Trioxaquines

Synriam™

The piperaquine phosphate was recently developed as an antimalarial drug and manufactured by
Ranbaxy (Goregaon, India) as Synriam™ (SYN, Figure 3) [85]. Administration of SYN to mice infected
with S. mansoni significantly reduced worm burdens similarly to piperaquine phosphate (up to 80%)
while arterolane was less effective (31% reduction in worm burden). In addition, SYN, unlike PZQ
exhibited antischistosomal activity against schistosomula and juvenile stages, indicating a potential
for use in prophylaxis. Moreover, adult females are more susceptible to SYN than males that might be
related to higher levels of haem inside its gut since SYN, like artemisinins, seem to be activated by this
component. Moreover, administration of SYN in vivo led to general improvement in liver pathology
and smaller-sized granulomas that might be a consequence of failure of eggs to produce key antigen(s)
to stimulate dendritic cells/T cells [86]. It will be informative to assess the efficacy of SYN against the
other human schistosomes.

PA1647

Trioxaquines (TXO) were developed against malaria and was also reported a dual mode of action:
alkylation of heme by the trioxane entity and stacking of heme through aminoquinoline moiety leading
to the inhibition of hemozoin in vitro [87,88]. Mice infected with S. mansoni were treated in day 21 p.i.
with a combination PZQ and trioxaquine PA 1647 (Figure 3). In treatment with four oral doses of
25 mg/kg, the reduction of schistosomula burden was 73% while in PZQ and PA1647 monotherapy
were only 24% or 18%, respectively. The results suggested an additive or synergistic effect against
schistosomula. Due to this promising effect of PZQ and PA1647 against schistosomula, combinations of
these drugs should be considered for clinical trials and might be relevant for use as chemoprophylaxis
against schistosomiasis [89].

3.3. Other Combinations

The other combinations with nucleosides, acridine derivatives, anti-inflammatory agents,
edelfosine, dipeptides, antifibrotic agents among others (Figure 4), are discussed below.

3.3.1. Nucleosides

In late 1980’s, El-Kouni and colleagues [90–93] evaluated treatment of schistosomiasis by purine
analogues but using the combination with nucleoside transport inhibitors. This alternative strategy
emerges since unlike humans, schistosome lack de novo purine biosynthesis (required for synthesis of
DNA and RNA) and dependent on the salvage pathways for purine [94]. By blocking or interfering
with the parasite purine salvage pathway using purine analogues, schistosomes can be selectively
deprived of vital purines. Only a few analogues were tested since they are either not efficiently
metabolized to nucleotide level by parasite or are also toxic to mammals. Mice infected with S. mansoni
were injected with combined regimen of nitrobenzylthioinosine 5′-monophosphate (NBMPR-P, 25 mg/kg
per day for 4 days) and high doses of tubercidin (5 mg/kg per day for 4 days). Notably, these doses
were highly toxic to parasite but not to the mice. The treatment resulted in an impressive decrease in
the number and copulation of worms, which consequently decreased the number of eggs in the liver
and intestine. All eggs found were dead. Histopathological examination of livers showed lesions with
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dead worms and regeneration of normal tissue around old granulomas [89]. Similar results have been
achieved with this combined therapy against S. japonicum [91]. This combination was also assessed
on advanced stages of schistosomiasis by administration drug combination on 5, 6, 7 and 8 weeks p.i.
in heavily infected mice. In the long-term progress of the disease (22 weeks p.i.), the efficacy of
combination therapy was monitored. In this case, the reduction of number of worms and eggs in
liver and small intestine were less evident [91]. Additionally, the combined therapy was effective
in preventing the formation of novel egg granuloma although activity was not seen against existing
granuloma. In another study, the therapeutic efficacy of NBMPR-P in combination in mentioned dose
with potential antischistosomal purine analogues, nebularine (37 mg/kg/day), 9-deazaadenosine
(1 mg/kg/day), toyocamycin (1.6, 1.8, 2.0 and 2.2 mg/kg/day for 4 days) and dilazep (25 mg/kg/day)
was tested in S. mansoni infected mice. Administration of NBMPR-P combined with 9-deazaadenosine
did not affect the parasites. However, combinations of NBMPR-P or dialazep with tubercidin or
nebularine were highly toxic to schistosomes, achieving similar results as described above [93,94].

Despite these encouraging results in the laboratory, human trials with these drugs have not been
reported, likely reflected potential toxicity risks associated to with these nucleosides.
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3.3.2. Acridine Derivatives

Ro 15-5458 (Figure 4) is an acridine derivative from class 9-acridanone-hydrazones that have
been developed by Hoffman-La Roche (Basel, Switzerland) [95]. The possible synergistic and/or
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additive effect of PZQ with Ro 15-5458 was evaluated against two different strains of S. mansoni in
mice, i.e., CD-susceptible and SO4-resistant strains. The treatment with a single curative dose of PZQ
or Ro 15-5458 were also compared to those achieved by drugs in combination at doses corresponding
to one-third of the curative dose of PZQ and Ro 15-5458. Combination of PZQ and Ro 15-5458
demonstrated to be beneficial as regard the percentage of parasite reduction and hepatic worm shift
(99.4% to 100%, respectively in the CD-susceptible mouse strains, compared to 84.1% and 34.8% in the
SO4 resistant strains) [95]. Moreover, it was observed a decrease in the number and size of granulomata
with disappearance of pathological changes in hepatocytes. The authors considered that Ro 15-5458
has excellent antischistosomal properties and should be considered candidate for drug discovery
and development pipeline [95,96]. However, thus far, no further investigations in order to evaluate
mutagenicity and carcinogenicity of this compound as basis for possible clinical trials with humans.

3.3.3. Anti-Inflammatory Agents

The nonsteroidal anti-inflammatory drugs (NSAIDs) were found to suppress the inflammatory
process delaying hypersensitivity reaction in schistosomal hepatic granulomas and fibrosis [97].
Ibuprofen and naproxen (Figure 4) alone did not reduce significantly the worm distribution, egg
load or change the oogram pattern when compared with the infected control [98]. Nevertheless, when
administered in combination ibuprofen and naproxen with PZQ caused a slightly increase of percentage
of dead ova (96.1% and 97.3%, respectively) at 16 weeks p.i. with a marked reduction of mature ova
while PZQ alone reduce the number of worms to 95.6% [98]. These evidences demonstrated that they
do not possess any antischistosomal activity, although they play a role in amelioration of biochemical
and histopathological consequences related to intensity of infection [98]. Administration of these
NSAIDs alone (200 mg/kg for two weeks) significantly reduced the granuloma diameter while has no
effect on their type nor in serum levels of hepatic enzymes and circulating antigen. Treatment with
ibuprofen and naproxen combined with PZQ (2 × 500 mg/kg) improved the parameters mentioned
resulting in marked reduction in the mean granuloma diameter and circulating antigen which was
more pronounced with naproxen than ibuprofen. These evidences suggest a combined action of PZQ
in elimination of parasite and anti-inflammatory properties of ibuprofen and naproxen. Authors
considered that treatment with NSAIDs is not preferable without PZQ but may be used as adjuvant in
treatment of pathologies associated to infection [98].

3.3.4. Edelfosine

Yepes and co-workers [99] study antischistosomal activity in vitro of a synthetic lipid compound,
edelfosine (EDLF) (Figure 4), against schistosomula and its combination with PZQ in vivo. It has
been reported that EDLF display anti-inflammatory properties [96] and modulate cytokine production
such as interferon-γ (INF-γ), interleukin-2 (IL-2) and interleukin-10 (IL-10) [100,101]. This modulation
might be relevant since cytokine production by host blood cells after stimulation with parasite antigen
reflects a dominant T helper 1 (Th1) response during acute phase, producing interferon-γ (IFN-γ)
and IL-2. Following parasites maturate, mate and produce eggs was followed by a developing egg
antigen-induced regulatory T cell and T helper 2 (Th2) response, that downregulates the production and
effect functions of the pro-inflammatory Th1 mediators accompanied by granuloma formation [102,103].

In a preliminary experimentally studies EDLF induce interruption of oviposition in vitro as well as
significant reduction in worm burden in vivo being most effective against male worms [104]. Contrary
to PZQ, EDLF is active against schistosomula of S. mansoni. In addition, authors study the effects of the
combination of PZQ (100 mg/kg/day) plus EDLF (45 mg/kg/day) administered in S. mansoni infected
mice daily 3 days prior to infection until eight days p.i. Combine regimen not only acts on parasite
through the elimination of developmental stages; as well on histopathological parameters inducing
reduction of hepatomegaly, granuloma size and immunological effects downregulation of Th1, Th2
and Th17 responses reflecting in inhibition granuloma development and up and down-regulation of
IL-10 on early and late post-infection times, respectively. Consequently, this regulation potentiates
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anti-inflammatory actions and favoring resistance to re-infection. In addition, reduction in the number
of blood granulocytes in late post-infection in comparison to infected untreated animals [99]. Taken
these together it has been suggested that this combine regimen treatment may provide a promising
and effective strategy for a prophylactic treatment of schistosomiasis.

3.3.5. Antifibrotic Agent, β-Aminopropionitrile

The combination with non-schistosomal drugs such as β-aminopropionitrile-monofumarate salt
(Figure 4) with PZQ was evaluated by Egyptian researchers in mice infected with S. mansoni [105].
The findings reveal that the combined regimen reduced total worm burden reduction (100%) and
markedly reduced the egg load in the liver and intestines. Moreover, combination regimen revealed
the highest score of resistance to reinfection, compared to the other groups given each drug alone [105].
Similar results were achieved with combine regimen of PZQ and β-aminopropionitrile (BAPN) in
S. mansoni infected mice [106]. Modulation of granuloma formation by combined antifibrotic/PZQ
therapy significantly alters the process of egg granuloma formation and alleviates the host resistance
to challenge infection. Treatment results in relatively small sizes granuloma in comparison to large and
irregular form of granulomas detected in intestinal tissues on control mice. However, the mechanism by
BAPN reduces the number of liver granulomas is still unclear. In addition, treated mice with combine
regimen showed decreased liver and spleen weights and a significant reduction in the number of eggs
trapped in both liver (86%) and the intestine (99.1%), in comparison to untreated mice and those given
PZQ alone [106]. According to authors, these results suggested that administration of PZQ combine
with BAPN might also be useful as adjuvant in amelioration of pathologies associated to infection.

3.3.6. Adamatylamide Dipeptide

Botros et al. [107] investigate the possible use of adamantylamide dipeptide (AdDP) (Figure 4) as
adjuvant therapy to PZQ in mice infected with PZQ-insusceptible and susceptible S. mansoni isolate
in a trial to increase the susceptibility of this isolate to the drug. Seven weeks p.i., the experimental
group received AdDP (5 mg/kg) in addition to PZQ in reduced dose (3 × 100 mg/kg) and groups
received PZQ and AdDP alone. In mice infected with PZQ-susceptible and insusceptible S. mansoni
isolates, intraperitoneal injection of AdDP alone did not significantly reduce the total number of worms
suggesting that dipeptide did not present antischistosomal activity. Treatment with AdDP and PZQ
in reduced dose resulted in significantly higher antischistosomal efficacy than PZQ in reduced dose,
demonstrating that AdDP reduced the effective dose of PZQ. This efficacy obtained together with
granuloma diameter reduction and diminution in percentage of fibrotic areas was also comparable to
that observed in mice treated with full dose of PZQ. The results might be related to synergistic effect
of PZQ and AdDP when administered in combine regimes; in fact, AdDP enhance antischistosomal
activity and ameliorate the hepatic inflammatory reactions [107].

3.3.7. Atorvastatin and Medroxyprogesterone Acetate

Soliman and Ibrahim [108] conducted a study in order to evaluate the influence of long-term
administration of lipid lowering agent atorvastatin (AV, Figure 4) combined with injectable
contraceptive medroxyprogesterone acetate (MPA, Figure 4) on tegumental structure and survival of
S. haematobium worms. MPA was administered intramuscularly (0.1 mg/kg) at days 7 and 35 p.i.
followed by AV treatment regimen (0.9 mg/kg for 49 consecutive days) in S. haematobium-infected
hamsters. Long-term administration of AV induced mild to severe morphological alterations,
particularly in the tegument of schistosomes. Similarly, treatment with AV concurrently with MPA
significantly increased tegumental damage and significantly reduce the total numbers of S. haematobium
worms recovered from hamster infected (51.3%). No significant difference was found in both combine
regimen and AV monotherapy (46.2%). Female worms were less susceptible to both drug regimens
compared to males [108]. The investigators correlate significant reduction of the recovered worms as
result of both treatments with tegumental damages induced, in addition to the possible influence of
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AV on biochemical pathway of the parasite [108]. Furthermore, tissue egg load and oogram pattern
decreased in hamsters treated with the combination regimen which might be related not only to
reduction of recovered worms but also with suppression of egg production due to inhibitory influence
of AV on the enzyme 3-hydroxy-3-methoxyglutaryl-coenzyme A (HMG-CoA) reductase, which is
critical for regulation of egg production by the parasite. Inhibition of HMG-CoA should be investigated
since it might be considered as a potential drug target [108]. Studying schistosomal and mouse liver
HMG-CoA reductase activity was also observed elevated quantity in the liver but very reduced in the
parasite [109]. In other work, the parasite death by statins or specific RNAi of HMG-CoA is associated
with activation of apoptotic caspase activity [110].

4. Antioxidants: A New Chemotherapy against Schistosomiasis?

In recent times, studies evaluating efficacy of antioxidants, alone or concurrently with
antischistosomal drugs targeting not only parasite but also pathologies associated to infection have
been reported [111–140] (Table 1 and Figure 5).

Most antioxidants assessed have shown potential schistosomicidal activity both in vitro and
in vivo, against mature [111,113,116,124,127,129,130,132,134,135] as well as immature [112,118,130,131]
S. mansoni and S. japonicum [120] developmental stages, counteracting one of major drawback
of PZQ. Even though the exact mechanism of action remains unclear, some antioxidants
including pholoroglucinol derivatives and extracts of B. trimera affect motor activity of the worms
in vitro. This phenotype is an insightful indicator of schistosomicidal activity, since it reveals
perturbation/dysfunction of elements of the neuromuscular system [117]. In addition to movement,
schistosomes use their neuromuscular systems to control the muscles of the oral and ventral suckers,
which allow the worm attach to the host, musculature supporting internal organs including the
reproductive excretory and digest tract, and maintenance of the female within the gynecophoral canal
of the male [141,142].

Additionally, antioxidants such as limonin, phloroglucinol derivatives (Figure 6), and extracts of
B. trimera and A. sativum induce severe tegumental alterations [112,113,117,127] which is noteworthy
since the tegument plays a crucial role in host-parasite interactions, nutrient uptake for parasite growth
and development, and protection against host responses [143]. Furthermore, several antioxidants have
impaired worm coupling [112,130,132,137], a fundamental process for schistosome viability inside
the host human and for establishing the infection. During pairing, the female is maintained in the
gynecophoric canal in the male body for sexual maturation and egg production to occur.

The induction of separation of males and females by antioxidants reduce or even cease the release
or production of the eggs [111,117,120,123,127–129], which are the major cause for the formation
of inflammatory granuloma on target organs, and transmission of schistosomiasis [144]. In fact,
the pathology associated with schistosomiasis is largely attributed to the intense of granulomatous
inflammation and subsequent fibrosis induced by parasite eggs trapped in host organs such as
liver, intestine and bladder. The toxic products released from egg destroys the host tissue cells
and the antigenic material stimulates the development of larger inflammatory reactions leading to
formation of granulomas around eggs [145]. As presumed, in the presence of parasite, the host
immune system reacts in a manner that involves reactive oxygen species (ROS) leading to increase of
oxidative process during the course of infection [145]. For example, eosinophils, one of the components
of Schistosoma-induced hepatic granulomas, generate hydroxyl radical (OH) and the super oxide
anion (O2) [146,147]. Several host organs, especially the targets, are affected by increased eosinophil
peroxidase activity and imbalance in the antioxidant defense mechanism causing these organs to be
shifted to a pro-oxidant state [145]. The ultimate aim of ROS generation may be killing the parasite eggs;
yet, they alter liver homeostasis decreasing antioxidant defenses and increasing the liver enzymes such
alanine aminotransferase (ALT), aspartate aminotransferase (AST) and gamma-glutamyl transferase
(GGT) that are measures of liver affection [145].
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Table 1. Reports of antioxidant effects on developmental stages of schistosomes and infection in
murine models.

Compound Aim/Study Treatment Findings/Outcomes Ref.

M. armillaris

Antischistosomal and
antioxidant activity of
essential oil on normal
and infected S. mansoni
mice in comparison
to PZQ.

Oil 150 mg/kg orally
from second week p.i.,
twice week for 6 weeks;
PZQ 600 mg/kg, orally
for 2 consecutive days,
8 weeks p.i.

Administration of PZQ and M. armillaris
ameliorate the levels of GSH and lipid
peroxides (MDA); Restored the activities
of SOD and catalase; M. armillaris enhance
antioxidant defense system reducing
disease complications.

[111]

Limonin

Antischistosomal
activity in vitro and
in vivo harboring
juvenile and adult
S. mansoni worms.

Oral administration in a
single dose of 50 or
100 mg/kg on day 21 p.i.;
Same dose given on
56 p.i.

Limonin is more effective against
immature stages rather adult worms also
induce tegument alterations; Reduction of
worm burden: at day 21 p.i. 70.0% and
83.3%; and day 56 p.i. 41.09 and 60.27%.
Significant reduction in the hepatic (34.90%
and 47.16%) and intestinal (46.67% and
56.1%) tissue egg load associated the
oogram pattern with elevated dead egg
levels; Also, ameliorate hepatic pathology
with reduction in size and numbers
of granulomas.

[112]

Pholoro-
glucinol
derivatives

Evaluation in vitro
schistosomicidal
activity of aspidin
(AS), flavaspidic acid
(FAA), methylene-bis-
aspidinol (MbA) and
desaspidin (DA)
against S. mansoni
adult worms.

AP-25 to 100 µM
FAA-50 and 100 µM
MbA-100 µM
DA-25 to 100 µM

AP and FAA decrease motor activity with
tegumental alterations while MBA and DA
also decrease motor activity but without
tegumental alterations. At highest
concentrations viability of worms were
similar to positive controls (PZQ); Egg
production and the development of eggs
produced were inhibited; Probably,
in vitro activity is related to the inhibition
of oxidative phosphorylation pathways.

[113]

Hesperidin

Evaluation of
antischistosomal
activity in vitro and
in vivo and compared
to PZQ. Effect on
parasite antigens.
Treatments were
administered on
6th week p.i.

In vitro: 50, 100 and
200 µg/mL.
In vivo: Hesp-600 mg/kg
bw (6 injections,
2 injections per week for
3consecutive week);
PZQ (2 consecutive days
with 500 mg/kg bw.

In vitro: At highest concentration, all
males and females were dead while lower
concentration had moderate effect. No
activity on oogram pattern was seen.
In vivo: Reduction of numbers of males,
females and possibly worm pairs and total
worm burden counts (47.5%) but was not
higher than PZQ; significantly reduced
tissue egg load. Augmented the mouse
IgG response against soluble worm
antigen protein, soluble egg antigen and
cercarial preparation of S. mansoni.

[114]

α-Lipoic acid

Study combined effect
of ALA with PZQ on
liver fibrosis induced
by S. mansoni infection
in mice.

PZQ-500 mg/kg divided
into 2 doses 9 weeks p.i.:
PZQ (same described) +
ALA (single dose
30 mg/kg) daily
for two months.

Combine regimen results in reduction in
the worm burden (ALA: 7.63 ± 1.49; PZQ:
6.13 ± 1.89; PZQ + ALA: 36.50 ± 10.80),
egg count and granuloma size. Recovered
the level serum of ALT, AST and GGT and
increased the tissue level of GSH and
decreased MDA (biomarkers of antioxidant
function and stress oxidative, respectively).

[115]

Resveratrol

Investigate effect of
Resv on oxidative
stress imposed on
liver, lung, kidney,
brain and spleen of
S. mansoni-infected mice.

20 mg/kg once daily
for 2 weeks

Improvement of lipid metabolism and
antioxidant profile by Resv which were
not only restricted to liver but also other
vital organs. Specific biomarkers of lung
and brain homeostasis also showed
remarkable improvement.

[116]

B. trimera

Assessment of
antischistosomal
activity agaisnt
S. mansoni adult
worms in vitro.

4 concentrations of 24,
48, 91 and 130 µg/mL.

Antischistosomal activity at highest
concentrations with significant reductions
in motility; Total inhibition in egg laying
when parasites were exposure to sub-lethal
concentrations and separations of all
couples. Morphological changes on the
tegument of worm’s males and females.

[117]
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Table 1. Cont.

Compound Aim/Study Treatment Findings/Outcomes Ref.

In vitro and in vivo
efficacy of aqueous
fraction and
dichloromethane
extracts against
schistosomula,
juvenile and adult
worms of S. mansoni.

In vitro: Same as above
In vivo: Single doses
40 and 200 mg/kg of
B. trimera and PZQ 4
after 3 and 30 days p.i.
and 60 p.i.

In vitro: Similar results described.
In vivo: B. trimera exhibits major
schistosomicidal effects in vivo against
immature and adult worms (significantly
female worm, 68–75%, reduction and
number of eggs/g in faeces); Significant
reduction in relation to number and size of
granulomas.

[118]

Melatonin

Assessment protection
against oxidative stress
induced by
schistosomiasis
mansoni.

3.55 mg/kg daily for
30 consecutive days
starting from first
day p.i.

Decreased in total leukocyte count:
Markedly reduced the fibrotic areas, small
diameter of granuloma with few collagen
fiber depositions; ameliorate liver
architecture and glycogen content.

[119]

Establish an
immunization
program using
S. mansoni adult worm
antigen and cercarial
antigen alone or
concurrently with Mel
in attempt to enhance
efficacy against
infection in mice.

30 µg/mL CAP or SWAP
on first day and
20 µg/mL on 4th day p.i.;
On 7th day all hamsters
were infected. Mel same
regimen as above.

Mel alone did not result decrease of worm
burden reductions (CAP: 538%; CAP +
Mel: 67.01%; SWAP: 56.4% and SWAP +
Mel: 99.3%). Highly significant reductions
in egg load in liver and alteration of
oogram pattern: high percentage of
immature eggs and few dead eggs.
Improved the oxidative status in the
immunized groups. No antibody response
was observed in the groups immunized
with SWAP + Mel while low antibody
level was observed in CAP + Mel.

[120]

Investigate oxidative
processes in mice
infected with
S. mansoni

10 mg/kg, 2 weeks after
S. mansoni infection until
end of experiment; or
daily for 30 days

Mel did not restore glutathione levels
(although were tendencies for that);
Increase SOD activity (but not statistically
significant); Reduction of AST levels;
Reduction of granuloma formation and
highly protective against pathological
changes not only in liver but kidney; Mel
has multiple direct and indirect
antioxidant actions and its ability to
stimulate antioxidative enzymes and
mitochondrial oxidative phosphorylation.

[121]

4-Hydroxy-
quinolin-
2(1H)-one
(BDHQ)

Evaluation potential
activity on murine
schistosomiasis. For
that mice were
sacrificed on different
weeks p.i.: 3 (for
schistosomula) and
6 (for adult worms)

BDHQ: Lower dose—
10 mg/mL for
consecutive days; Higher
dose on same regimen;
PZQ: 2 times of
500 mg/kg 2 consecutive
days on different weeks.

Antischistosomal activity against
immature and mature worms; Destructive
effects on the female and male genital
systems; Antischistosomal activity may be
due to its mixed cellular and humoral
immunologic mechanisms, as
demonstrated by the significant increase of
serum levels of IgE and IFN-γ.

[122]

4-Hydroxy-
quinolin-
2(1H)-one
(BDHQ)

Evaluation of
antioxidant and
antigenotoxic effects
alone or combined
with PZQ.

PZQ, 0 or 500 mg/kg
BDHQ, 600 mg/kg
PZQ (250 mg/kg) +
BDHQ (300 mg/kg) for
2 consecutive days

BDHQ alone or combined resulted in
highly significant reduction in total worm
burden (7 weeks p.i. PZQ: 86.37%, BDHQ:
79.22%; PZQ + BDHQ: 91.84%; 9 weeks
PZQ: 94.72%, BDHQ: 92.32%; PZQ +
BDHQ: 95.54%), associated with
significant reduction in the hepatic tissue
egg load; Drugs alone reduced the
granuloma size and inflammatory cells.
These parameters were improved with
combine regimen; Significant decrease in
MDA level accompanied with highly
increase in NOx level with combine
regimen, in addition to increase in the
activities of both SOD and CAT;
Remarkable significant decrease in % DNA
fragmentation reaching a level close to
control; These suggest a synergistic action
attributed to different mechanism of action
of both drugs that achieved the same or
higher levels of efficacy using smaller
doses of either agent.

[123]
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Table 1. Cont.

Compound Aim/Study Treatment Findings/Outcomes Ref.

Sylimarin

Assessment of
parasitological and
biochemical
parameters on
S. mansoni infection
in mice.

10, 20 or 25 doses of
10 mg/kg Syl suspended
on carboxymethyl-
cellulose at 55 days p.i.

Did not show antischistosomal activity;
Reduced granulomatous and hepatic
fibrosis. At acute schistosomiasis may
result in a mild course of murine
schistosomiasis and minimize the
deleterious effects.

[124]

Anti-inflammatory/
antifibrotic effect alone
and combined
with PZQ.

Syl: —4th week p.i.
(3 weeks before
PZQ therapy)
—12th week p.i.
(5 weeks after PZQ);
PZQ (7th week p.i.)
Syl + PZQ

Syl alone: Partial decrease of worm burden
(26.55 and 39.39%) and decrease hepatic
tissue egg load with an increase in
percentage of dead ova; Modulation of
granuloma size and conservation of
hepatic GSH.
PZQ: Complete eradication of worm, egg and
alleviated liver inflammation and fibrosis;
Combine regime: Improvement of liver
function and histopathology whether
acute and chronic infection may due to a
combine action of anti-inflammatory,
anti-fibrotic actions, in addition to the
antioxidant properties of silymarin. Syl
did not interfere or affect the
antischistosomal activity of PZQ. Worm
burden reduction 97–100%.

[125]

A. sativum

Antischistosomal
activity against
S. japonicum cercariae
in vitro and in vivo.

In vitro: 10−2 to 10−6

(v/v) concentration.
In vivo: Pre-treated
with garlic, then mice
were infected.

Garlic oil displays marked activity agaisnts
S. japonicum cercariae and may be used as
agent to prevent S. japonicum (pre-exposure
garlic oil at 10−4 and high showed total
inhibition of infection).

[126]

A. sativum

Assess potency and the
immunomodulatory
response in enhancing
the host immune
system caused by
S. mansoni in mice at
different stages
of worm.

100 mg/kg body weight
from 1 to 7 days p.i., 14
to 21 or 1 to 42 days p.i.

Morphologic alterations in the parasite
tegument; significant decrease in worm
burden, hepatic and inestinal ova count.
Decline in granuloma number and
diameter; Reduction in serum TNF-α,
ICAM-1, IgG and IgM after 7 and 42 days
p.i.; garlic oil enhance host
immune system.

[127]

Ability of both oils to
offser infectivity as
well as metabolic
disturbances induced
by S. mansoni infection

5 mL/kg body daily
separately for 8 weeks
on healthy control and
infected groups. On
infected groups oil were
given 24 h p.i.

Reduced worm burden (garlic: 67.56% and
onion: 75.97%) and ova count; normalized
liver functions enzymes; effect may be
induced by improving the immunological
host immune system and their
antioxidant activities.

[128]

A. sativum+
A. cepa

Effect of both oils
alone and mixed or
concurrently with
PZQ on biochemical
parameters of
experimentally
infected
S. mansoni mice.

A. sativum or A. Cepa,
2 g/100 g body weight
daily for
45 consecutive days.
PZQ: 500 mg/kg bw on
2 successive days
45 days p.i.

Significant reduction in worm burden
(PZQ: 95.8%; onion: 66.29%; PZQ + onion:
99.1%; garlic: 73.41; garlic + PZQ: 99.3%;
garlic + onion: 74.63; garlic + onion + PZQ:
99.7%); Reduction hepatic and intestinal
eggs and oogram count; Suppression in
granuloma tissue formation and
diminutive histopathological changes;
Improvement of liver architecture and
attenuated the decrease of tissue
antioxidant enzymes

[129]

Antischistosomal
activity in vitro
against S. mansoni
miracidia, cercariae,
schistosomula and
adult worm. Effect
in vivo on lipid
peroxidase and
antioxidant enzymes.

In vitro: 0.5–5 ppm
In vivo: Same
described above.

Lethal effect of both antioxidant against all
developmental stages; Inhibition of
coupling; Powerful reducing capacity
demonstrated in DPHH radical
scavenging and NO; Both plants enhance
host antioxidant system indicated by
lowering in lipid peroxide and stimulation
of SOD, CAT, GR, TrxR and SDH enzyme
levels which could turn render
parasite vulnerable.

[130]
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Table 1. Cont.

Compound Aim/Study Treatment Findings/Outcomes Ref.

Antischistosomal
activity against
miracidia, cercariae
and adult worms
in vitro.
Effect on some
antioxidants enzymes.

In vitro: Serial
concentrations
(0.5–5 ppm) for miracidia
and cercariae. Adult
worms, 10–110 ppm.

Antischistosomal activity against miracida
and cercariae; Separation of coupled
worms; Inhibition of egg laying by adult
female worms; Significant inhibition of
parasitic antioxidant enzymes (SOD, GR
and GPX) and enzymes glucose
metabolism (HK and G-6-PDH), higher in
males than females.

[131]

Nigella sativa

Effect in protection
against oxidative stress
in experimentally
infected mice with
S. mansoni.

N. sativa oil (1.14 g/kg
orally) for 30 consecutive
days from first day p.i.

No suppressive effect on granuloma
formation in intestine; Did not improve
the liver architecture; Noticeable degree of
protection represented in less severe
pathological changes, particularly the
frequency of inflammatory reactions.

[126]

Study effect the oil on
liver functions and
antioxidant ability on
experimentally
infected mice with
S. mansoni.

2.5 and 5 mL/kg orally
either alone or in
combination with PZQ
(500 mg/kg for
2 consecutive days)

N. sativa alone: Reduce the number of
S. mansoni worms in the liver; Total worm
burden: 22% e 32%, respectively, while
PZQ: 98%; Decreased total number of ova
deposited; Increased the number of dead
ova; Reduced the granuloma markedly;
Partially correct alterations in serum levels
of ALT, GGT, activity as well as the Ab
content. Failed in the liver restore either
LPD and GSH content or LDH (lactate
dehydrogenase) and SOD activity to
normal level. N. sativa + PZQ: Improved
most parameters with most prominent
effect was further lowering in dead ova
number over that produced by PZQ. Total
worm burden: 98% and 99%.

[132]

Nigella sativa

Investigate immune
mechanism possibly
involved in the
amelioration of
histopathological
changes in liver of
S. mansoni infected
mice treated alone or
in combination with
ART or PZQ.

N. sativa: orally with
0.2 mg/kg of body
weight for 4 weeks
starting from 1st day p.i.
ART: intramuscularly
single dose of 300 mg/kg
of body weight after
49 days p.i. PZQ:
500 mg/kg for
2 consecutive days

N. sativa as well as the combination of ART
or PZQ resulted in significant increase in
IL-2, IL-12 and TNF-α activities in
S. mansoni infected mice as well as
treatment of NS in non-infected. N. sativa
in combination with ART or PZQ
accelerate healing pathological
granulomatous lesions of liver architecture
and improved host immunity by
stimulating cytokines.

[133]

Antischistosomal
activity and
antioxidant effects of
NS alone or combined
with garlic extracts on
experimentally
S. mansoni
infected mice.

Garlic extract 125 mg/kg
p.i. and NS oil
0.2 mg/kg alone or
combine for successive
28 days, starting
1st day p.i.

All treatment regimens significantly
affected oogram pattern: treatment with
compounds alone resulted in reduction of
percentage of mature eggs while combine
regimen resulted in increase of percentage
of dead eggs. Administration of garlic
extract prevent GSH depletion on infected
mice. Combine regimen had more
significant effect on serum enzymes (AST
and ALP).

[134]

Curcumin

Assess curative effect
of oil extract in liver
cells of S. mansoni
infected mice in
compaison to PZQ

PZQ: 500 mg/kg by
2 consecutive days
Extract: 300 mg/kg bw
after one month p.i.,
twice a week for
2 months

Curcumin normalize the concentration of
protein, glucose, AMP-deaminase and
adenosine deaminase which were altered
by infection Lowered pyruvate kinase
level while PZQ induce more elevation;
More potent rather PZQ in reducing egg
count but no lowering worm burden. Most
likely, antifecundity effect of curcumin
might be involve in impairment or
adult worms.

[135]

Evaluation of
schistosomicidal
activity in vivo and
immunomodulation of
granulomatous
inflammation and liver
pathology in acute
S. mansoni infection.

Total dose 400 mg/kg
bw divided into
16 injections (2 injections
per week for
8 consecutive weeks)
starting from the first
week of infection.

Effective in reducing worm (44.4%) and
tissue-egg burdens; Reduction granuloma
volume and liver collagen (79%); Restore
hepatic enzymes activities to normal levels
and enhanced catalase activity; Low serum
level of both IL-12 and TNF-α; Augmented
specific IgG and IgG1 responses against
both SWAP and SEA.; It modulates cellular
and humoral responses.

[136]
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Table 1. Cont.

Compound Aim/Study Treatment Findings/Outcomes Ref.

Evaluation its role on
induction of apoptosis
and oxidative stress in
couples of adult
S. mansoni worms
in vitro

1.56 to 100 µM incubated
for 6, 12 or 24 h.

Significantly decreases the viability of
adult female and male worms; Induce
separation of couples and morphological
alteration on mitochondria; Induce
formation of SOD and increase its activity
in adult worms; Alters several oxidative
stress parameters in adult worms such
decrease of GST, GR and GPX culminating
in the oxidation of protein: Generates
oxidative stress followed by an
apoptotic-like event in adult worms,
which ultimate leads to their dead.

[137]

β-carotene

Evaluation the
protective effect on
experimentally
S. mansoni infected
mice and on major
enzymes activities
involved in
liver redox.

PZQ, 7 weeks p.i.,
500 mg/kg (full dose) or
PZQ ED50 74.64 mg/kg
βC, 2.7 mg/kg, 1 week
before infection.
βC + PZQ ED50
as mentioned

Produced significant reduction in worm
burden (total number of worms: PZQ:
11.57 ± 0.59; PZQ (full dose): 0.46 ± 0.14;
βC: 17.64 ± 1.11; βC + PZQ: 8.38 ± 0.51)
accompanied with increase of dead ova
and decrease in percentage of mature ova;
reduced liver granuloma diameter.
Combined regimen improved these
parameters. Combined regimen improved
the effect of antioxidant enzymes (as GPX
and GST) and increase serum ALT and
GGT. βC has protective effects against
liver fibrosis which may be due to ability
to encounter or minimize the formation of
schistosomal products.

[138]

N-Acetyl-
cysteine

Study
immunopathological
changes in murine
schistosomiasis alone
or in combination
with PZQ.

NAC (200 mg/kg/day
on 1st day after infection
for acute phase; On 45th
for the intermediate;
59 and 75th for chronic
phases.
PZQ (100 mg/kg) from
45th to 49th day p.i.

NAC alone did not present any
schistosomicidal activity; animals treated
with NAC and/or PZQ showed a
reduction in the size of granulomas and
those treated with NAC exhibited a lower
degree of fibrosis. NAC functions as a
direct scavenger of NO and peroxinitrite
which are related to reductions of IFN-γ
levels and increasing of IL-10 synthesis;
Induce an immunomodulatory effect and
reduce liver damage during
granulomatous inflammation.

[139]

Investigate ability of
NAC to enhance
potential of ART
against adult
S. mansoni worms
and evaluates
protective role on
oxidative stress.

NAC-300 mg/kg 5 days
a week for 4 weeks
ART-300 mg/kg
7 weeks p.i.
NAC + ART
(as described)

Combine regimen approximately
recovered levels of serum enzymes,
content of GSH and activities. Decrease
the total number of worms and hepatic
ova count. ART alone produce valuable
modulations in the hepatic activities; NAC
may prevent experimental liver injury by
modulating and enhancing GSH content
and GSH-dependent antioxidant enzyme
activities. Total worms: ART: 7.6 ± 1.5;
NAC: 17.7 ± 1.5; NAC + ART: 3.3 ± 1.1.

[140]

PZQ: praziquantel; Resv-Resveratrol; Mel-melatonin; BDHQ: 4-hydroxy-quinolin-2(1H)-one; ART: artemether;
NS: Nigella sativa; βC: β-carotene; NAC: N-acetyl-cysteine; AS: aspidin; FAA: flavaspidic acid; MbA:
methylene-bis-aspidinol; DA: desaspidin; Syl: sylimarin; p.i.: post-infection bw: body weight; GSH: glutathione;
GR: glutathione reductase; SOD: superoxide dismutase; GGT: gamma-glutamyl transferase; CAT: catalase;
TrxR: thioredoxin reductase; SDH: succinate dehydrogenase; GPx: glutathione peroxidase; HK: hexokinase;
G-6-PDH: glucose-6-phosphate dehydrogenase; DPHH: 1,1-diphenyl-2-picrylhydrazyl; NOx: nitrogen oxide;
IgG: immunoglobin G; IgE: immunoglobin E; IgM: immunoglobin M; IL-2: interleukin-2; IL-10: interleukin-10;
IL-12: interleukin-12; IFN-γ: interferon gamma; TNF-α: tumor necrosis factor α; ICAM-1: intracellular adhesion
molecule; ALA: alanine aminotransferase; AST: aspartate transaminase; MDA: malondialdehyde; LPD: lipoamide
dehydrogenase; LDH: lactate dehydrogenase; ALP: alkaline phosphatase; AMP: adenosine monophosphate; SEA:
soluble egg antigen; CAP: cercarial antigen preparation; SWAP: soluble worm antigen preparation.
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Figure 6. (a) Phytochemical limonin is abundant in citrus fruit and displays several pharmacological
activities; (b) Phloroglucinol compounds, aspidin (APD), flavaspidin acid (FPA), methylene-bis-
aspidinol (MbA), desaspidin (DSP), desaspidinol (DSPL) with activity against adult S. mansoni worms,
they impede motor activity of the parasite [112].

Mammalian cells has adopted a chain of antioxidant system, either enzymatic or not, to limit the
overcome the harmful imposed by ROS. Enzymes such as superoxide dismutase (SOD), catalase (CAT)
and glutathione peroxidase (GPx) are key players in defense against ROS. The SOD hastens the speed
of dismutation of superoxide to hydrogen peroxide (H2O2). Afterwards, comes the action of catalase
which transform H2O2 into H2O and O2 and tackle the chains of unsaturated fatty acids present in
membranes and other macromolecules such as proteins. In cell, reduced glutathione (GSH) play a
role in many biological processes, including the synthesis of proteins, maintenance of cellular activity,
xenobiotics and reactive aldehydes detoxification (such as malonaldehyde, MDA), metabolism and
cell acting protections against free radicals [145]. Some studies have suggested that a direct link to
parasite load to intensity of inflammatory reaction and antioxidant activity, i.e., higher parasite load
leads to intense immune response and decrease of antioxidant activity [146,148]. In this regard, there
is a tendency to decrease the levels or even deplete GSH turning liver more vulnerable for adverse
effects of ROS and other parasitic metabolites in the course of infection [148]. It has been described that
patients treated with anthelmintic leading to eradication of worms are still unable to reverse hepatic
fibrosis. Since morbidity associated to schistosomiasis are mainly resulted of liver fibrosis most interest
has been focus on compounds that are capable to stimulate not only synthesis of antioxidant enzymes
as well as enzymes associated to liver function. Administration of antioxidants on experimentally
S. mansoni infected mice revealed that they are capable to restore activity of antioxidant and liver
enzymes nearly to levels detected on controls [111,115,116,120,121,125,128,135]. Generally, increasing
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of antioxidant enzymes activity is accompanied by reduction on granulomas size and number which
consequently improve liver architecture and functions [111,119,123,127,129,137,140]. The protective
effects of antioxidants in some subcellular compartments may be due to its indirect antioxidant actions,
e.g. stimulation of enzymes that promote the synthesis of other antioxidants or metabolize reactive
species to non-radical products. On the other hand, parasites have developed antioxidant enzyme
system, similar to humans, to defend themselves against ROS generated in immune host attack.
In S. mansoni SOD, GR, GPX, CAT, glutathione-s-transferase (GST), thioredoxin reductase (TrxR)
are major antioxidant enzymes that are involved in detoxification processes [149]. Therefore, the
antioxidant defense mechanism of adult worms may represent potentially good target chemotherapy.
It has been demonstrated that antioxidants, such as those present in extracts of N. sativa and curcumin
(Figure 7), are able to inhibit parasitic antioxidant enzymes as well enzymes related to glucose
metabolism (hexokinase, HK and glucose-6-phosphate, G-6-PDH) culminating in increase of oxidative
stress that could turn render the parasite vulnerable to damage by host immune attack [131,137].
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Curcumin is the principal curcuminoid of Curcuma longa. It is a diarylheptanoid, which is a natural
phenol that exists in enolic form in organic solvents and as a keto form in water.

Besides antischistosomal activity and ability to restore liver functions, antioxidants modulate and
immunomodulatory response promoting alteration in some cytokines [122,126,133,136,139]. Cytokines
play an important role in immunomodulation during schistosomiasis. There are several events that are
determined by a balance between different immune responses modulate by certain cytokines which
are directed both against larval and adult stages of the parasite, as well as parasite eggs trapped in the
tissues [150]. Eggs trapped in tissue secrete release antigens which are taken up by macrophages that
stimulate T helper cells to secrete tumor necrosis factor α (TNF-α), which in turn drive to cell-mediate
response attracting more immune cells around ova. As the granuloma becomes more organized,
the T helper cells, produce different interleukins (IL) completing granuloma maturation towards
the late stage of granuloma formation [150]. In case of murine schistosomiasis, TNF-α, IL-1, IL-2
and IL-12 are the causative IL in granuloma formation. In addition, granuloma cells comprise of
macrophages, lymphocytes, eosinophils and release of profibrotic lymphokines such as IL4 [151] that
stimulates fibroblasts to secrete collagen and other matrix proteins [152]. In experimentally S. mansoni
infected mice treated with antioxidants shown controversial results, while treatment with curcumin
resulted in low serum level of both IL-12 and TNF-α, N. sativa combined with ART or PZQ and
Allium sativum showed significant increase on IL-2, IL-12 and TNF-α [127,133,136]. The dissimilarity of
results obtained might be related to sampling time of experiment performed by Sheir and colleagues,
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which occurs after granuloma formation [131]. Moreover, treatment with N-acetylcysteine (NAC,
Figure 8) increase synthesis of IL-10 which regulates the synthesis of several pro-inflammatory
cytokines and is considered an efficient inhibitor of INF-γ, IL-12 and IL-4 [139].
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Therefore, these responses produced by antioxidants might explain their role in reduce size and
number of granuloma in infected host. Also, immunoglobins IgG and IgM have been shown to have
a pivotal role in humoral response to schistosomal infection being related to periportal fibrosis and
portal hypertension in patients with advanced schistosomiasis mansoni [153,154]. Administration of
antioxidants to S. mansoni infected mice reduce serum IgG and IgM which might be directly linked to
reduction of granulomas [127].

Since parasitic antigens induce a host immune response, diverse S. mansoni antigens
including adult worm antigen (SWAP), cercarial antigen (CAP) among other have been used to
immunized experimental animals against S. mansoni either alone, in combination or with adjuvants.
Unfortunately, most of studies have not achieved even a low significant protection against schistosome
infection [155–157]. Immunization using SWAP and CAP alone or concurrently with melatonin
(Figure 9) demonstrated that antioxidant enhanced SWAP efficacy which was confirmed by the absence
of significant antibody (Ab) response in group immunized with SWAP + melatonin [120]. In different
studies, it was also demonstrated that treatment with antioxidants augmented IgG response against
SWAP, CAP and soluble egg antigen (SEA) [114,135]. These findings indicate the early and continuous
antioxidant administration is responsible for the immunoprophylactic effect and may protect the liver
against infection by reducing worm burden leading to improvement of liver function.
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Figure 9. Melatonin (MEL) is a powerful antioxidant with a noteworthy protective action for nuclear
and mitochondrial DNA due to efficacy as a radical scavenger. MEL may also stimulate activity of
some key enzymes that participate in immunological functions.

Generally, administration of antioxidants mixed or combined with antischistosomal
drugs such as PZQ and ART, improved the parasitological and biochemical parameters
described [115,123,125,132,133,138–140]. Considering that compounds present different mode of
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action it is reasonable hypothesized that those improvements are related with synergistic and/or
cumulative effects of compounds when administrated in combination.

Remarkably, antioxidants present not only antischistosomal activity but also induce restoration of
organ target functions and improved host immunity, at least in animal model. Therefore, they should
be considered as adjuvants in combine treatment of schistosomiasis. Nevertheless, many studies
are required to fully understand the exact mechanism of antioxidants alone or combined against
schistosomiasis. Additionally, clinical trials are required in order to assess if these results in animal
model are reproduced in human host.

Interestingly, studies related to the effect of antioxidant against schistosomiasis haematobia
are scarce. Despite there is no reliable animal model for this infection, it is extremely important
conduct novel investigations of new therapeutic approaches against disease. S. haematobium is
considered a biological carcinogen and in fact, the most adverse pathology associated to infection
is bladder cancer [12]. Recently, it has been hypothesized about the role of parasitic reactive
electrophilic compounds, e.g., estrogen-like metabolites, on initiation of squamous cell carcinoma
(SCC) [10,158–160]. Possibly, these metabolites are capable to react with host DNA leading to formation
of DNA-adducts and liberation of ROS, triggering a cascade of events that ultimately leads to
development of SCC. Some evidences point out that antioxidants can prevent DNA damage [161] and
block-cancer initiating process in case of breast cancer [162]. Therefore, it should be informative to
assess their effect, alone or combine, in counteracting formation of these parasitic reactive metabolites.

5. Concluding Remarks

Nowadays, mass drug administration is main strategy for control of schistosomiasis but relies
on the effectiveness of a single drug, PZQ. Although PZQ is highly effective, given by mouth
and relatively inexpensive, PZQ has shortcomings that include lack of activity against immature
schistosomes [1,17,19]. Moreover, PZQ alone does not lead to resolution of the histopathological
damage characteristic of chronic schistosomiasis. Hence there is a need for new strategies, targeting
not only parasite but also infection-associated pathogenesis. For the last years several combinations
among different agents with PZQ and/or antimalarial and others are reported to represent encouraging
leads for treatment approaches to overcome limitations of PZQ monotherapy (Figure 10a). Whereas
PZQ combined with antioxidant agents (Figure 10) might or might not alter PZQ efficacy, combinations
may nonetheless ameliorate tissue damage and infection-associated complications. Even though some
antioxidants failed to inflict obvious harm to the schistosomes, they markedly reduced granulomatous
inflammatory reactions as well as improved antioxidant and immunological responses to the infection.
Alone or combined with other drugs, antioxidants might be valuable adjuvants to reduce morbidity
and mortality of schistosomiasis. Moreover, natural antioxidants are considered safe for human use.
Attempting new combinations of anthelmintic drugs with other biomolecules such as antioxidants
provides new avenues for discovery of alternatives to PZQ.
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