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Abstract: In this study, a hybridized neuro-genetic optimization methodology realized by 

embedding numerical simulations trained artificial neural networks (ANN) into a genetic 

algorithm (GA) is used to optimize the flow rectification efficiency of the diffuser element 

for a valveless diaphragm micropump application. A higher efficiency ratio of the diffuser 

element consequently yields a higher flow rate for the micropump. For that purpose, 

optimization of the diffuser element is essential to determine the maximum pumping rate 

that the micropump is able to generate. Numerical simulations are initially carried out using 

CoventorWare® to analyze the effects of varying parameters such as diffuser angle, 

Reynolds number and aspect ratio on the volumetric flow rate of the micropump. A limited 

range of simulation results will then be used to train the neural network via back-

propagation algorithm and optimization process commence subsequently by embedding the 

trained ANN results as a fitness function into GA. The objective of the optimization is to 

maximize the efficiency ratio of the diffuser element for the range of parameters 

investigated. The optimized efficiency ratio obtained from the neuro-genetic optimization is 

1.38, which is higher than any of the maximum efficiency ratio attained from the overall 

parametric studies, establishing the superiority of the optimization method.  

Keywords: optimization; artificial neural network; genetic algorithms; diffuser;  

valveless micropump 
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1. Introduction  

In recent developments, micropumps utilizing piezoelectric actuation have been commonly 

employed for directing the fluid purposes especially in BioMEMS and microfluidic systems [1–6]. 

One of the essential features of micropump is the ability to direct the fluid flow as to flow in only one 

direction and this could be enhanced with the introduction of a check valve. It has been shown that 

micropumps having the best performance in terms of pressure/flow characteristics are those utilizing 

passive-types of check valve [7] or those with valveless diffuser elements [8–11]. However, passive 

check valves incorporated in micropumps induce difficulties such as clogging and sedimentation  

and have a rather complicated design [7]. Therefore, they are mostly deemed unsuitable for  

miniaturization purposes. 

On the other hand, the earliest concept of valveless micropumps incorporating diffuser elements 

have been developed [8,9] with the hopes of eliminating the additional voltage requirement for 

operating the check valves while at the same time, improve the reliability aspect of the micropump 

since no mechanical moving parts are involved. Nevertheless, it was not until 1997 that the first 

valveless diffuser micropump in silicon was introduced by Olsson et al. [11], which subsequently led 

to great interest on diffuser elements for applications in micropumps.  

Generally, valveless diffuser micropumps are driven by a piezoelectric element bonded to a flexible 

diaphragm with no additional moving parts. Application of voltage on the piezoelectric element 

induces deformation on the diaphragm which creates displacement in the vertical direction (Figure 1) 

and generates pressure head inside the pump chamber. The ability of the micropump to direct the 

working fluid inside the chamber is based upon the flow resistance in the diffuser elements.  

The working principle of the diffuser elements in a valveless micropump is schematically shown in 

Figure 1. In the “suction mode”, the diaphragm moves vertically upwards increasing the chamber 

volume and causes reduction in the chamber pressure. Pressure difference between the pump chamber 

and inlet/outlet enables the working fluid to be sucked into the pump chamber from both the inlet and 

outlet. At this instance, fluid will enter the pump chamber from the inlet through the diffuser direction 

while at the outlet, fluid will enter through the diffuser element at the nozzle direction instead. For the 

“pumping mode”, the reverse phenomenon occurs. The rate of fluid flow entering/exiting the chamber 

from/to the inlet and outlet is dependent on the design of the diffuser element where the effectiveness 

of the flow rectification of the micropump can be gauged upon the net flow of the fluid from the inlet 

to the outlet (which is the desired flow direction) during pumping. Hence optimization for the design 

of the diffuser element is of extreme importance in order to develop micropumps capable of operating 

at maximum efficiency.  

Investigation on the effects of the diffuser element on the performance of valveless micropumps 

have been analyzed previously by simulating the diffuser model either by using commercially 

available numerical simulation software [12] or through analytical works [13–20]. However, none of 

these analyses focused on the design optimization of the diffuser element to generate micropump with 

the maximum net flow rate considering the working conditions or the required specifications of  

the micropump.  
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Figure 1. Working principle of a typical valveless micropump utilizing diffuser element 

during (a) suction mode (b) supply mode. 

 
 

The purpose of this paper will be to present a neuro-genetic methodology to simulate and optimize 

the performance of the diffuser elements for applications in valveless diaphragm micropumps. The 

optimization methodology begins by simulating the diffuser model using commercially available 

numerical simulation software package, CoventorWare® to study the performance of the diffuser 

element under different working conditions and geometrical parameters. The simulation results 

obtained will be utilized for training the artificial neural networks (ANN) model.  

An artificial neural network (ANN) is based on the working process of human brain in decision 

making. It is categorized as an artificial intelligence method and has been applied in many different 

fields such as control [21], finance, aerospace, industrial and manufacturing [22,23]. The typical neural 

network consists of sets of inputs, sets of outputs and weighting functions. By knowing the input 

values, the output can be predicted. In other words, the network is defined to correlate between input 

and output by training the network with available data, such as results from numerical simulations. 

Once trained, the network can then be fed with any unknown input and is expected to predict the 

output (in this work, the diffuser efficiency ratio) with a high level of accuracy.  

In order to perform optimization, direct associations between ANN and the optimization tool is 

required. Genetic algorithm (GA), which is also categorized as an artificial intelligence method, offers 

compatibility with ANN since GA would be able to find the global optimum in the local parametric 

search space provided by ANN. In view of that, the trained ANN is embedded as a fitness function into 

GA where the combined artificial neural network-genetic algorithm; hence the term “neuro-genetic”; 

will be used in sequence as a tool for search and optimization purposes. GA was the desired 

optimization techniques as both ANN and GA can be easily modeled and integrated in Matlab® since 

toolbox for both of these techniques is available as standard. Generally, GA is a robust adaptive search 

method based on Darwinian principles of natural selection, survival of the fittest and natural genetics. 

It combines survival of the fittest among string structures with a structured yet randomized information 

exchange to form a search algorithm with some of the innovative flair of human search [24]. GA has 
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been widely used for optimization purposes in microelectronic problems as shown in previous works 

by Man et al. [25], Arunasalam et al. [26] and Jeevan et al. [27], while a more detailed description of 

GA can be found texts written by Goldberg [24], Mitchell [28] and Houck et al. [29].  

In this work, the purpose of the neuro-genetic optimization was to find the maximum efficiency 

ratio of diffuser element based on the diffuser angle, Reynolds number and aspect ratio under the 

specified working conditions and geometrical parameters of the micropump.  

2. Design and Modeling 

2.1. Theoretical and Dimensional Analysis of the Diffuser Element 

A schematic of the typical diffuser element is shown in Figure 2, where fluid flow in the positive 

direction usually depicts flow through the diffuser while fluid will be considered flowing through the 

nozzle for the negative direction.  

Generally the effectiveness of the diffuser element for applications in valveless micropump is 

gauged through the flow rectification efficiency. The flow rectification efficiency is the measure of the 

ability of the pump to direct the flow in one preferential direction and can be defined as the ratio of the 

micropump net flow rate, Qnet to the rate of displaced volume, 


V  as given by: 




V

Qnet  (1) 

Figure 2. Fluid flow in a diffuser element. 

 
 

The pressure loss for the diffuser element at both the diffuser and nozzle direction can be 

represented in terms of the pressure loss coefficient,  as: 
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where  is the fluid density, Q the mean volumetric flow rate at the throat of the diffuser element and 

A the cross-sectional area of the throat while the subscripts d and n denote the diffuser and nozzle 

direction, respectively.  
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Based on the geometrical relationship and continuity equation of fluid flow, the rate of displaced 

volume satisfy:  

nd QQV 


 (4) 

Hence solving Equations (1), (2), (3) and (4) simultaneously, the rectification parameter can be 

obtained as the ratio of the net flow rate to the rate of displaced volume, as given by: 

dn

dn

nd

nd

net

QQ
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 (5) 

For the same opening angle θ for the diffuser element, the pressure loss coefficient at the negative 

direction is higher than that at the diffuser positive direction. Hence the diffuser element efficiency 

ratio can be expressed as:  

d

n




   (6) 

Utilizing expression from Equation (6), Equation (5) can now be written in a dimensionless form 

as:  

1

1









  (7) 

The dimensional analysis for the diffuser element using Buckingham  theorem presented by 

Ahmadian and Mehrabian [18] showed that for steady state conditions, the diffuser element efficiency 

ratio (and subsequently the rectification parameter) depends upon the geometrical parameters and 

Reynolds number. The optimization task is stated as: 

  ,Re, ARf  (8) 

where Re is the Reynolds number given by Re = ρVD/µ with V as the average throat velocity and µ as 

the fluid dynamic viscosity, AR is the diffuser aspect ratio given by I = L/D and θ is the diffuser 

opening angle.  

2.2. Numerical Simulation 

In this work, a simplified model of the valveless micropump has been proposed to evaluate the 

performance of the diffuser element. The numerical model consists of a supply chamber, an output 

chamber and a diffuser element as shown in Figure 3. It should be noted that only planar diffuser 

element is considered. Simulations will be performed using MemCFD™ module under 

CoventorWare® with FLUENT™ as the finite volume solver.  
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Figure 3. Simplified model of the valveless micropump. 

 
 

In order to ease computational demands, only a 2-D simulation of the micropump was carried out. 

This could be achieved in CoventorWare® by creating only a single element through the thickness of 

the micropump with mesh refinement at the edges. Tetrahedrons mesh type will be used and mesh 

sensitivity analysis will be conducted for preliminary simulation to determine the minimum element 

size required to ensure that the simulation results obtained will be independent of the meshing 

densities. This could be achieved by refining the mesh until the change in the simulation results is 

within 1% as shown in Table 1. Consequently, the element size will be set to 50 for all subsequent 

simulations. All the walls of the micropump; except the boundaries to be applied with pressure; will be 

attached with zero velocity to represent the no-slip conditions of the flow. The top surface of the 

supply and outlet chamber will be applied with either the actuation or the gauge pressure based on the 

fluid flow direction. For flow through the diffuser (positive) direction, the top surface of the supply 

and outlet chamber will be applied with the actuation and the gauge pressure respectively, and vice 

versa for flow through the nozzle direction. Figure 4 shows the meshed model of the valveless 

micropump along with the boundary conditions defined in the simulation.  

Figure 4. Meshed model of the valveless micropump with applied boundary conditions. 
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Table 1. Mesh sensitivity analysis for flow at diffuser direction (Diffuser angle = 5; AR = 

20). 

Element size 
Number of 
elements 

Flow rate  
(103µl/s) 

%change  
Simulation 
time (min) 

500 3921 9.9328 - 12 
200 6371 9.7247 2.139912 23 
100 7757 9.4892 2.481769 41 
50 13523 9.3241 1.77068 52 
30 55720 9.2309 1.009652 97 
20 85237 9.2309 0 138 

 

All the simulations use water as the working liquid, thereby limiting the problem to incompressible 

flow. Actuation pressures ranging from 1 kPa to 20 kPa applied on the supply chamber and fluid flow 

through the diffuser element will be considered as laminar since the Reynolds numbers is expected at 

below 500 based on previous studies of the diffuser element [16,17]. The thickness of the diffuser 

element has been fixed at 150 µm based on the standard thickness of SU8-100 (MicroChem Corp) 

negative photoresist to be used for patterning the diffuser structures. Parametric studies will be 

conducted for flow through the diffuser element using range of parameters provided by Table 2. This 

is achieved by keeping the other parameters constant using the basic design value whenever the 

parameter of interest is varied. Results for the average throat velocity and pressure loss obtained from 

the steady-state analysis will be used to calculate the flow Reynolds number, pressure loss coefficient 

and subsequently, both the efficiency ratio and rectification parameter of the diffuser element. 

Table 2. Range of parameters simulated in CoventorWare®. 

Parameters Range Basic  

Throat width, D (µm) 50–100 100 

Diffuser length, L (µm) *Depends upon aspect ratio 2000 

Thickness (µm) – 150 

Aspect ratio, AR  5–40 20 

Chamber width, W (µm) – 5000 

Diffuser angle, θ () 2–25 2, 5, 7, 9, 10 

Actuation pressure, P (kPa) 1–20 1, 5, 10, 15, 20 

2.3. Neuro-Genetic Optimization 

Simulation results obtained from CoventorWare® simulations will be used to train the ANN model 

so that the diffuser element efficiency ratio can be predicted for different diffuser angle, Reynolds 

number and aspect ratio. The artificial neural network used in the present study is shown in Figure 5 

where there are three neurons in the input layer and one neuron in the output layer. The architecture 

used for the artificial neural network is the feed-forward multilayer perceptron neural network while 

the training method implemented is the back-propagation algorithm with two hidden layers. Table 3 
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shows the details of the ANN model used in this work where the overall simulation has been 

accomplished using MATLAB® R2008a. 

It should be noted that from the range of parameters simulated in CoventorWare®, there will be 

five sets of data for each category of parameters that will not be used as training inputs to the ANN. 

This is because simulation data that were not trained will be used instead to verify the accuracy of the 

ANN results. This is performed by comparing the predicted ANN results to the CoventorWare® 

simulation results. Once the ANN results are validated, a well trained ANN will be established. At this 

stage any new sets of values for parameters such as diffuser angle, Reynolds number and aspect ratio 

that are fed into the ANN model will, upon simulation, generate prediction for the efficiency ratio with 

high level of accuracy.  

Figure 5. Illustration of the artificial neural network model.  

 

Table 3. Architecture of the ANN. 

Parameters Type /Value 

Architecture Feed-forward 

Training algorithm Back-propagation 

Transfer function All logsig 

Hidden layer and neurons 2 hidden layer with 3 neurons each 

Maximum epoch 1000 

Learning rate 0.000001 

Sum Square Error (SSE) 1e-5 

 

After completing the training process, the trained ANN will then be embedded into genetic 

algorithms (GA) for the search and optimization purpose. Simulation for the GA has been performed 

using a self-developed code in Matlab® through modification to the Genetic Algorithm Toolbox 

(GAOT) [28] to enable direct interaction with ANN. The objective of the optimization is to maximize 

the efficiency ratio for the diffuser element. GA will generate initial population for parameters such as 

Re, AR and θ where these data are subsequently fed into the trained ANN algorithm as input variables 

to predict the efficiency ratio of the diffuser element. The predicted efficiency ratio will undergo an 

evaluation process by GA and is assigned a fitness score which is then measured, recorded, ranked and 

compared with previous iteration results. The top grade chromosomes (highest value of fitness score) 
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from the evaluation process will be selected and allowed to reproduce with other individuals in the 

population where they will undergo the crossover and mutation processes using parameters given by 

Tables 4 and 5. These two processes produce new individuals that will become the new population of 

solutions for the next generation. The new individuals share some traits and features from the parent. 

Members of the population with a low fitness value will be discarded and are unlikely to be selected 

for the next evolution process. The population of the newly recombined and mutated chromosomes 

will become the new input parameters for the trained ANN which subsequently predicts the efficiency 

ratio for a new cycle of iteration in GA. The entire process of evaluation and reproduction then 

continues until either the population converges to an optimal solution for the problem or the stopping 

criterion has been met. Finally, the converged result obtained will yield the maximum efficiency ratio 

of the diffuser element for the range of parameters considered.  

Table 4. Crossovers parameters.  

Type Parameters 

Arithmetic 4 

Heuristic [2 3] 

Simple 4 

Table 5. Mutations parameters.  

Type Parameters 

Boundary 3 

Multi Non-Uniform [3 10 1] 

Non-Uniform [3 10 1] 

Uniform 3 

3. Results and Discussion 

Numerical simulations for both the positive and negative direction of flow for the diffuser element 

have been conducted using the range of parameters given earlier in Table 1. Results of the volumetric 

net flow rate at the throat of the diffuser element obtained from CoventorWare® simulations for 

different diffuser angle is presented in Figure 6 while Figure 7 and Figure 8 shows the efficiency ratio 

of the diffuser element for variations in Reynolds number and aspect ratio. 

The net flow rate shows the effective fluid volume flowing through the diffuser element in the 

desired direction (positive direction). From Figure 6 it can be seen that for the respective actuation 

pressure, an increase of the diffuser angle causes the net flow rate of the diffuser element to increase 

until reaching a maximum value. Any subsequent increase of the diffuser angle after the maximum net 

flow rate is reached will results in reduction of the net flow rate until the state where the net flow rate 

will become zero. At this instance, any further increment of the diffuser angle will instead create 

backflow where the net flow rate will be from the negative direction. It is apparent that there is an 

instance where the optimized net flow rate could be achieved at a specific diffuser angle. For cases 

where the net flow rate is negative, the volumetric flow rate is higher in the nozzle direction as 
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compared to the diffuser direction due to the higher pressure loss coefficient in the diffuser direction. 

At this stage, net amount of fluid will be instead sucked into the supply chamber each pumping cycle. 

Figure 6. Net flow rate at the throat of diffuser element for variation in diffuser angle at 

different actuation pressure (AR = 20). 

 

Figure 7. Efficiency ratio of the diffuser element for variation in Reynolds number at 

different diffuser angle (AR = 20). 
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Figure 8. Efficiency ratio of the diffuser element for variation in aspect ratio at different 

diffuser angle (Re = 200) at a constant actuation pressure of 10 kPa. 

 

Similar characteristics can be observed for variations in Reynolds number where there exists an 

optimized maximum efficiency ratio for a given diffuser angle as shown in Figure 7. At higher Re, 

reduction in the efficiency ratio is imminent as flow separation; the phenomenon where some parts of 

the flow are actually going in a direction opposite to the bulk flow direction; is higher through the 
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diffuser direction. This is due to the fact that at higher Re, the free stream flow velocity will be higher 

and will consequently be reduced in a rapid manner due to effect of the adverse pressure gradient 

present in the diffuser element. The sudden reduction of the free stream flow velocity resulted in the 

boundary layer unable to be sustained without separating from the wall. At this instance, flow 

separation will occur where another region of flow, in the opposite direction to the bulk flow direction, 

will be created near the wall. Meanwhile, pressure gradient inherent at the nozzle direction decreases 

with the flow direction due to the increasing free stream flow velocity. Hence at increasing Reynolds 

number, flow separation; which directly contributes to the pressure loss coefficient; increases more 

rapidly in the diffuser direction as compared to the nozzle direction. It is also apparent that reduction 

in the efficiency ratio for high Re is more significant at higher diffuser angle since expansion of the 

diffuser angle promotes more flow separation due to the sudden increase of the flow area which results 

in the reduction of the free stream flow velocity and consequently increases the adverse pressure 

gradient. In view of this, the overall pressure loss coefficient of the flow along the diffuser element 

will be dominated by the occurrence of the flow separation at higher diffuser angle.  

The effect of the diffuser element aspect ratio on the efficiency ratio is given in Figure 8. As can be 

observed in the figure, there is a relatively small influence of the diffuser element aspect ratio on the 

efficiency ratio although generally the efficiency ratio increases when higher aspect ratio of the 

diffuser element is used. This is due to the fact that as the length increases, a small change of velocity 

in the diffuser element will be encountered resulting in a small amount of additional pressure recovery 

for flow through the diffuser direction. Hence a lower pressure loss coefficient at the diffuser direction, 

d will be generated for the diffuser element. These findings concur well with the experimental results 

presented by Olsson et al. [10,11].  

Following results obtained, it can be ascertained that there are distinctive features for the influence 

of each parameters (diffuser angle, Reynolds number and aspect ratio) on the efficiency ratio of the 

diffuser element. Since mathematical modeling relating the efficiency ratio to θ, Re and AR is 

unknown, optimization could only be achieved by utilizing artificial intelligence tool which is capable 

of correlating the design parameters to the efficiency ratio with ease. For that purpose, the neuro-

genetic optimization method has been performed to find the maximum efficiency ratio for the diffuser 

element under the range of parameters investigated. 

In order to assess the accuracy of the ANN predictions, validation has been made by comparing 

results for the efficiency ratio of the untrained numerical simulations with the ANN predictions.  

Figure 9 shows comparison of the CoventorWare® simulations results with ANN predictions for the 

efficiency ratio obtained from variations of the diffuser angle at different Reynolds number. Additional 

comparison of results between CoventorWare® simulations and ANN predictions are presented in 

Table 6. As mentioned earlier, five sets of data from each category of parameters from the numerical 

simulations that were not used for training in ANN will be presented for comparison purpose. From 

the results of Figure 9 and Table 6, it can be ascertain that the trained ANN was able to predict 

accurately the efficiency ratio of the diffuser element for the range of design parameters investigated. 

The percentage of errors from the ANN predictions is less than 2% while negligible for some cases, 

establishing the ANN predictions superiority.  
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Figure 9. Comparison of efficiency ratio obtained from CoventorWare® simulations with 

ANN predictions for variations in diffuser angle at different Re numbers. 

 

Table 6. Comparison of efficiency ratio results obtained from CoventorWare® simulations 

with ANN prediction for different parameters (Basic design values: θ = 5; Re = 200;  

AR = 20). 

Parameters 
Efficiency ratio 

Variations (%) 
CoventorWare® ANN 

θ = 4 1.2153 1.2197 0.358 

θ = 8 1.3236 1.3241 0.042 

θ = 12 1.2776 1.2711 −0.504 

θ = 16 1.1432 1.1345 −0.766 

θ = 20 1.0172 1.0093 −0.771 

Re = 100 1.1904 1.1986 0.684 

Re = 150 1.2075 1.2096 0.174 

Re = 250 1.2553 1.2620 0.534 

Re = 300 1.2750 1.2643 −0.840 

Re = 350 1.2844 1.3016 1.340 

AR = 10 1.2135 1.2364 1.887 

AR = 15 1.2240 1.2266 0.213 

AR = 25 1.2397 1.2512 0.928 

AR = 30 1.2390 1.2260 −1.050 

AR = 35 1.2430 1.2440 0.081 
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Once a well-trained ANN is found, it is then embedded as a fitness function into genetic algorithms 

(GA) for optimization purposes. The optimization analysis has been performed to find the maximum 

efficiency ratio from the range of parameters available for selection in the trained ANN. Figure 10 

shows an example of utilizing GA to find the maximum efficiency ratio for variations in diffuser angle 

at fixed Reynolds number of 100, 200 and 400. The maximum efficiency ratios obtained along with 

the corresponding diffuser angle for each Reynolds number are shown in Table 7 where it should be 

noted that only integers are used for parameters associated with the diffuser angle. 

For the range of parameters indicated earlier in Table 1 that have been considered for simulations in 

CoventorWare® and used for training the ANN, the maximum efficiency ratio attainable is 1.38 as 

optimized by the neuro-genetic methodology. The optimized maximum efficiency ratio achieved is the 

highest obtained thus far when compared against results from the overall parametric studies. This is 

due to the fact that the neuro-genetic optimization will be able to take into account all the possible 

combinations of parameters to generate the predicted output which are then compared until the highest 

efficiency ratio is found. However, it should be made clear that the highest efficiency ratio produced is 

only valid for application of the diffuser element within the range of parameters investigated. Another 

point to note is that in actual application, the range of Reynolds number varies according to flow 

condition. Hence the expected range of Reynolds number for the flow in the diffuser element should 

be estimated in advance so that the optimized parameters can be chosen based on the perceived 

application. Table 8 shows parameters associated with the maximum efficiency ratio obtained while 

Table 9 shows the five highest efficiency ratios generated by the neuro-genetic optimization along 

with the corresponding parameters. Results from the present study clearly indicate that a well trained 

ANN combined with GA can be used to optimize the efficiency ratio of the diffuser element with 

confidence. The neuro-genetic optimization methodology is able to predict the maximum efficiency 

ratio for the range of parameters under consideration without requiring the actual mathematical model 

governing the behavior of the fluid flow across the diffuser element to be defined. Additionally 

parametric studies can be conducted with ease through ANN simulations using only few numerical 

simulation results as the training inputs, eliminating the needs for extensive remodeling of the 

numerical model.  

Figure 10. Maximum efficiency ratio obtained using GA for variations in θ at different Re. 
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Table 7. Maximum efficiency ratio obtained using GA for different diffuser angle. 

Reynolds number, Re Maximum efficiency ratio, η Optimized diffuser angle, θ () 
100 1.290 17 
200 1.326 9 
400 1.307 6 

Table 8. Parameters associated with the diffuser element to obtain the highest efficiency ratio. 

Parameter Value 
Diffuser angle, θ () 8 

Reynolds number, Re 240 
Aspect ratio, AR 40 

Maximum efficiency ratio, η 1.38 

Table 9. Five highest efficiency ratios obtained along with the corresponding parameters 

generated using neuro-genetic optimization. 

Diffuser angle, θ ()  Reynolds number, Re Aspect ratio, AR Optimized efficiency ratio, η 
8 220 40 1.38 
9 220 40 1.36 
7 220 40 1.35 
9 200 40 1.35 
8 210 40 1.34 

4. Conclusions  
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The efficiency ratio of the diffuser element has been successfully optimized for valveless 

diaphragm micropump applications. The optimization process has been realized using a hybridized 

neuro-genetic optimization methodology by embedding numerical simulations trained artificial neural 

networks (ANN) into genetic algorithms (GA). The fluid flow behavior through the diffuser element 

has been initially simulated using CoventorWare® software for different diffuser angles, Reynolds 

numbers and aspect ratios where results obtained have been used for training the ANN model via the 

back-propagation method. The trained ANN is a superior tool when utilized to conduct parametric 

studies where it has been shown that predictions with errors of less than 2% were generated. The 

trained ANN, combined with GA to form the neuro-genetic tool, predicted that the maximum 

efficiency ratio is 1.38 for the range of parameters investigated. The predicted efficiency ratio is higher 

than the maximum efficiency ratio attained from the overall parametric studies, establishing the 

optimization method superiority.  
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