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Abstract: Electrochemical systems with high capacities demand devices for 

electrochemical impedance spectroscopy (EIS) with ultra-low frequencies (in order of 

mHz), that are almost impossible to accomplish with analogue techniques, but this 

becomes possible by using a computer technique and accompanying digital equipment. 

Recently, an original software and hardware for electrochemical measurements, intended 

for electrochemical systems exhibiting high capacities, such as supercapacitors, has been 

developed. One of the included methods is EIS. In this paper, the method of calculation of 

circuit parameters from an EIS curve is described. The results of testing on a physical 

model of an electrochemical system, constructed of known elements (including a 1.6 F 

capacitor) in a defined arrangement, proved the validity of the system and the method. 

Keywords: electrochemical measurements; measurement system; electrochemical 

impedance spectroscopy; supercapacitors 

 

1. Introduction 

 

Every system may be regarded in a frequency domain displaying frequency logarithm on the X–axis 

and logarithm of module and/or phase angle of transfer function on the Y–axis (Bode plot) [1–3]. For 
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the electrochemical system, the transfer function is, in fact, the impedance of an equivalent electrical 

circuit i.e., its complex form. That is why this method is named electrochemical impedance method 

(EIS) and it is widely used for characterization of electrochemical systems [4–14]. Applying alternate 

voltage, U(S), of different frequencies and constant amplitude to an electrical circuit, responding 

current, I(S), will appear [2,3]. Amplitude and phase angle of this current will depend on voltage and 

impedance, Z(S), of the circuit at that frequency: 

Z(S)

U(S)
      I(S)   

where S = j is Laplace complex variable. For sinusoidal excitation the real part  is equal to zero, 

so the S becomes S = j, where frequency,  is given in s-1. 

Conventional impedance spectra are actually snapshots of transfer functions taken at certain  

well-defined states of the system (usually stationary, constant potential states). However, for a fuller 

description of electrochemical systems the evolution of impedance spectra should be investigated 

during the evolution of the system in both potential and time. With the progress of digital techniques 

this is becoming increasingly possible [15–17]. 

The system used for electrochemical measurements consisted of hardware (PC, AD-DA converter 

NI–621 produced by National Instruments and an analog interface developed at the Technical Faculty 

in Bor) and software for excitation and measurement (LABVIEW platform and originally developed 

application software) [18,19]. With the goal of achieving a full mathematical analysis of the measured 

data directly in the LabVIEW application, it was necessary to develop our own mathematical model 

which is implemented in the measurement software and described in this work. This was not possible 

with some commercially available fitting software packages (EqCwin, Z-view) [20].  

The possibilities of the software described here are compared with the Thales software of the 

Zahner EIS firm [21,22]. Our model and software are more adequate to the real system because the 

model better describes real electrochemical systems taking into account the complexity of the 

processes. The mathematical model developed herein is adapted to the investigated class of 

electrochemical systems and it is strongly connected with the physical parameters of the system. That 

approach enabled us to obtain analytical values of mutual relationships between the physical 

parameters from the system response and, in that way, to make system optimization following some 

given criteria. This is a significant advantage in compare to the commercial software, where the model 

is not “visible”.  

 

2. Theoretical Part 

 

By recording amplitude and phase angle of the response current for every frequency value 

(excitation voltage known), one can obtain the module and the phase angle of impedance for that 

frequency; this is presented as one point on the Bode plot which gives the dependence of impedance 

module, Z, on frequency, f, in logarithmic scale. Logarithm is used in a goal to obtain linear 

dependences instead of exponential ones. At frequencies obtained by extrapolation of straight 

segments, some deviation from straight line appears, and the line slope changes gradually. From the 

heights of the horizontal regions and corner frequencies, one can calculate all the parameters of the 

circuit of which the Bode plot is recorded, i.e. to estimate the equivalent circuit parameters [23–25]. 
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After years of investigating of electrochemical behavior of different electrode materials, different 

equivalent electrical circuits that exhibit the same response on excitations as considered 

electrochemical systems have been found [23–26]. One of the most common was the circuit presented 

in Figure 1. 

 

Figure 1. Considered equivalent electrical circuit. 

 
R0 corresponds to the resistance of electrolyte and electrode material, and its value is on an order of 

magnitude of milliohms (m) or Ohms (). Capacity C0 corresponds to double layer formed on the 

electrolyte side. Resistances R1 and R2 (order of magnitude ohm to tens Ohms) are related to slow 

processes of adsorption and diffusion, as well as the capacitances C1 and C2. As a matter of fact, the 

branch R1C1 exhibits and describes the inconstancy of parameters in R2C2
 branch. R3 is resistance of 

self-discharging, meaning that it is reciprocal to leakage current. Its value is on the order of hundreds 

of Ohms to tens of kiloohms. 

For the adopted equivalent circuit (Figure 1) in a general case the impedance equation is complex 

and not clear enough. So, here a step by step method is applied, one frequency domain after other, 

knowing the nature of the process, i.e. orders of magnitude of the circuit parameters. For very low 

frequencies (on the order of Hz) all capacitors do not conduct electricity, so the impedance of the 

circuit remains the serial connection of R0 and R3: 

Z1 = R0 + R3 

where Z1 is correlated to the first (the highest) horizontal plateau in Figure 5. At frequencies on the 

order of mHz capacitor C2 conducts, while C1 and C0 still are infinite resistances; so, the equivalent 

circuit has the shape presented in Figure 2. 

 

Figure 2. Equivalent circuit for the second frequency domain (on the order of mHz). 
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The impedance of the circuit presented in Figure 2 is: 

 
  

  1  R  RSC

R  R  CRR  CRR  RS
      Z

322

302322031




  

From the conditions for the impedance zero and pole, the corner frequencies may be obtained as: 

  232
1 CR  Rπ2

1
      f


  

 

  2322032

30
2 CRR  CRR  Rπ2

R  R
      f





 

At some higher frequencies (in order of dozens mHz) C2 becomes short circuit, while C0 and C1 are 

still in break, so the height of this horizontal region is: 

Z2 = R0 + R23  where 
32

32
23 R  R

RR
      R


  

At frequencies on the order of hundreds of mHz, C1 starts conducting, C0 is still in break, and C2 is 

a short circuit; the equivalent circuit then has the shape given in Figure 3. 

 

Figure 3. Equivalent circuit for fourth frequency domain (on the order of hundreds of mHz). 

 
 

The impedance of the circuit is then: 

 
  

  1  R  RSC

R  R  CRR  CRR  RS
      Z

2311

230112310231




  

From the previous equation, corner frequencies may be obtained as: 

  1231
3 CR  Rπ2

1
      f


  

and 

  112310231

230
4 CRR  CRR  Rπ2

R  R
      f




   

 

Next horizontal region is obtained at frequencies higher then 1 Hz, when capacitor C1 becomes a 

short circuit, as well as C2, while C0 still does not conduct; so it can be written: 
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Z3 = R0 + R123  

where R123 is a parallel connection of R1, R2 and R3. 

At relatively high frequencies (on the order of kHz) C0 starts leading, while C1 and C2 are short 

circuits, so the equivalent circuit becomes as in Figure 4. 

 

Figure 4. Equivalent circuit for sixth frequency domain (on the order of kHz). 

 
The impedance of such circuit is: 

1    CSR

R    R    CRSR
      Z

0123

123001230




  

and corner frequencies are: 

0123
5 CπR2

1
      f   

 

01230

1230
6 CRπR2

R  R
      f


   

At the end, the lowest horizontal part of Bode plot is obtained at highest frequencies (on the order 

of tens of kHz) when C0 is in short circuit, too, so: 

Z4 = R0 

The theoretical Bode plot for the whole equivalent circuit given in Figure 1 is presented in Figure 5. 

 

Figure 5. Theoretical Bode plot for adopted equivalent circuit. 
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3. Experimental 

 

Testing of the system and developed method was done on a physical model of the electrochemical 

system, constructed of known elements in a defined arrangement as in Figure 1. 

The elements that the physical model was made of were: R0 = 3 Ω; R1 = 39 Ω, R2 =90 Ω; C0 = 0,12 

μF; C1 = 30 mF; C2 = 1,6 F and R3 = 1 kΩ (alternatively R3 = 150 Ω). Experiments were performed 

using the following parameters: DC level 10 mV, AC amplitude 5 mV, frequency range 30 Hz up to 

1 Hz. The obtained curves are presented in Figures 6 and 7. 

Figure 6. Experimentaly obtained Bode plot for the physical model (R3 = 1 k). 

 

Figure 7. Experimentaly obtained Bode plot for the physical model (R3 = 150 ). 
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From the experimentally obtained Bode curve, all parameters of the system have been determined 

by following the next steps: 

From the plateau 4, R0 is obtained immediately from R0 = Z4; 

Horizontal region 1 is equal to Z1, and then R3 can be calculated from: 

R3 = Z1 – R0 

Plateau 2 gives Z2, and then applying:  

 

R23 = Z2 – R0 and 
233

323
2 R  R

RR
  R


  

 

From horizontal part 3, we get Z3 and calculate R123 = Z3 – R0. Then R1 can be estimated from: 

 

12323

23123
1 R  R

RR
  R


  

 

From the corner frequency f1, capacitance C2 is calculated from: 

 

 321
2 R  Rπf2

1
  C


  

 

From the corner frequency f3, C1 can be calculated as:  

 

 2313
1 R  Rπf2

1
  C


 ; 

 

Finally, from the corner frequency f5, C0 is estimated as:  

 

1235
0 Rπf2

1
  C


 . 

 

Using the method described above, values of the circuit parameters have been calculated from the 

plot given in Figure 6. The results are compared with those obtained using the commercial software 

EqCwin applied to the data from Figure 6 (Table 1). 

Table 1. Parameters of the investigated equivalent circuit. 

Parameter Actual value Measured value EqCwin value 

R1 [] 39 41 45 

C1 [F] 0.03 0.03 0.028 

R2 [] 90 93 93.4 

C2 [F] 1.6 1.58 1.59 

R3 [] 1,000 992 1,003 
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The plot in Figure 7 gives similar results, except R3, that is, in this case, 150 . Plots in Figures 6 

and 7 do not have the fourth plateau for highest frequencies, so R0 could not be determined from such 

a curve. 

 

4. Conclusions 

 

Table 1 shows a very good agreement between the actual values of the electrical components 

forming the investigated physical model, the values obtained by the method described in this work and 

the values obtained using a commercial software product. In that way the method, hardware and 

software are fully confirmed. It should be emphasized that this method describes the system very well 

and clearly, but its big disadvantage is that it works with very low frequencies (on the order of Hz), 

that means a need for special equipment (like this described in the present work, or similar) and the 

experiments have a very long duration. The second problem may be resolved by starting the 

experiment from a frequency f2 (much higher than previously indicated), but in that case R3 must be 

determined by some other method (for example potentiostatic). 
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