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Abstract: Existing 3-dimensional acoustic target tracking methods that use wired/wireless 
networked sensor nodes to track targets based on four sensing coverage do not always 
compute the feasible spatio-temporal information of target objects. To investigate this 
discrepancy in a formal setting, we propose a geometric model of the target tracking 
problem alongside its equivalent geometric dual model that is easier to solve. We then study 
and prove some properties of dual model by exploiting its relationship with algebra. Based 
on these properties, we propose a four coverage axis line method based on four sensing 
coverage and prove that four sensing coverage always yields two dual correct answers; 
usually one of them is infeasible. By showing that the feasible answer can be only 
sometimes identified by using a simple time test method such as the one proposed by 
ourselves, we prove that four sensing coverage fails to always yield the feasible spatio-
temporal information of a target object. We further prove that five sensing coverage always 
gives the feasible position of a target object under certain conditions that are discussed in 
this paper. We propose three extensions to four coverage axis line method, namely, five 
coverage extent point method, five coverage extended axis lines method, and five coverage 
redundant axis lines method. Computation and time complexities of all four proposed 
methods are equal in the worst cases as well as on average being equal to Θሺ1ሻ each. 
Proposed methods and proved facts about capabilities of sensing coverage degree in this 
paper can be used in all other methods of acoustic target tracking like Bayesian  
filtering methods. 
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1. Introduction 

3-dimensional acoustic target tracking is an extension of acoustic target tracking in 2-dimensional 
space in view of the fact that in real life applications we mostly deal with 3-dimensional target tracking. 
In target tracking temporal information of a target object in addition to its 3-dimensional spatial 
information must be computed. Target tracking in 3-dimensional space is a 4-dimensional problem and 
we consider time as the fourth dimension. The sensing information of each sensor node about a target 
object in its sensing coverage forms an equation. Simultaneous equations of target tracking are 
quadratic and non-linear therefore solving those using numerical methods is difficult, complex, and 
requires high computational resources that are generally constrained in the sensor nodes of wireless 
sensor networks (WSNs). In this paper we use geometry and algebra and exploit their relationship to 
model and prove some basic facts about 3-dimensional acoustic target tracking and propose new 
methods for computing the spatio-temporal information of a target object. Our proposed methods use 
linear simultaneous equations instead of quadratic equations and need less computational resources, 
making them more amenable to target tracking applications with timing constraints. We prove that four 
sensing coverage of a target object cannot always yield the correct spatio-temporal information of a 
target object and that this proven fact is quite independent of the kind of used target tracking method.  

In this paper we show that simultaneous equations of four sensing coverage for a target object yield 
two different answers. Most of the times we can eliminate the infeasible answer by performing a 
simple proposed time test. We introduce a four coverage axis line method which works based on the 
four sensing coverage. We prove that the sensing information of five sensor nodes about a target object 
accurately determine the correct spatio-temporal information of the target object. To overcome this 
weakness, we propose to increase the sensing coverage to five sensing nodes and present three new 
methods as extensions to the four coverage axis line method. Five coverage extent point method uses 
the sensing information of five sensor nodes and by solving a set of four linear equations accurately 
determines the spatio-temporal information of a target object. Five coverage extended axis line method 
is based on the four coverage axis line method and if the sensing information of four sensor nodes 
about a target object does not satisfy conditions to remove the infeasible answer out of two answers of 
the set of its simultaneous linear equations, the sensing information of a fifth sensing node on the same 
target object is used to determine the correct spatio-temporal information of the target object. Our last 
proposed method called five coverage redundant axis line method is based on the five sensing 
coverage but uses the set of simultaneous equations of four sensing coverage in at least two different 
sets. This method deploys a customized version of formal majority voter among sensory nodes to 
compute the spatio-temporal information of a target object. The contributions of our paper are 
applicable to other methods of target tracking like Bayesian filtering, Kalman filtering [1], and Particle 
filtering [2]. All analytic discussions and presented algorithms in this paper are applicable to both 
wired and wireless platforms of sensor nodes. For the sake of brevity, simulations are only performed 
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for a wireless sensor nodes platform. Proposed theorems and methods are equally applicable to time of 
flight radio positioning systems. In these systems beyond the acoustic signals we can use radio signals 
or other types of signals for tracking the target object. The main discussion of this paper is about the 
target localization in acoustic target tracking. 

The rest of this paper is organized as follows. Section 2 presents related work in the area of  
3-dimensional acoustic target tracking. Section 3 presents the basics of 3-dimensional acoustic target 
tracking and geometric representation of problem and its equivalent dual geometric problem that can 
be solved easier than the main problem. Section 4 discusses theoretically the special properties of dual 
representations of 3-dimensional acoustic target localization and introduces the theoretical basis for a 
method based on the four sensing coverage. Section 5 introduces a four coverage axis line method 
based on the theoretic background of Section 4 and analyses the simulation results of its application to 
a real life problem. Section 6 theoretically proves that five sensing coverage always guarantees to yield 
the correct answer. It also presents three extended methods based on the four coverage axis line 
method in Section 5, alongside the necessary theorems and proofs and simulation results in support of 
these methods. Section 7 concludes the paper and suggests some future work. 

2. Related Work 

A considerable part of the literature on WSNs discusses the issues of sensor node localization and 
location tracking [3,4]. Some node localization approaches measure the time difference of RF signal 
propagations to compute the distance between sensor nodes. Other approaches use the signal strength 
to measure the distance between sensor nodes for sensor node localization [3,4]. Trilateration and 
multilateration techniques are used for sensor node localization [3,4]. Target localization using sound 
detection has similar simultaneous equations with sensor node localization; but target localization 
equations contain an extra temporal unknown variable that makes them different from sensor node 
localization. Wang et al. [5] studied the basics of acoustic target tracking and showed the possibility of 
using this method to accurately track targets using WSNs. They used quality rank to target tracking 
result and quality-driven redundancy suppression and contention resolution to improve the information 
throughput. Gupta and Das [6] discuss several factors that influence the accuracy of target tracking and 
their potential problems. The accuracy of their results is however greatly influenced by the number of 
location estimation samples. Their studies had higher error margin than it is possible to be applicable 
to real applications. 

Brooks et al. [7] studied the basics of tracking single and multiple targets that are sufficiently 
separated in space and/or time. They have used a technique called lateral inhibition to reduce the 
computational and network costs while maintaining an accurate tracking. Lin et al. [8] formulated the 
object tracking problem as an optimization problem. They presented two message-pruning structures 
for tracking moving objects, taking into account the physical topology of the network to reflect the real 
communication costs [8].  

Ekman et al. [9] used Bayesian framework for acoustic target tracking by developing particle filters 
that use data association techniques based on probabilistic data associations. Simultaneous localization, 
tracking and calibration based on Bayesian filter are studied in two and three dimensional indoor and 
outdoor spaces with accurate results [10,11]. Special types of Kalman filtering [12] are used to 
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overcome some of the problems of acoustic target tracking such as the problem of global  
time synchronization.  

Using WSNs for real-time target tracking with guaranteed deadlines had been studied by  
He et al. [13]. They studied relations between sensor density, velocity of a moving target and wake-up 
delay of sensor nodes under real-time constraints. Distributed data associations of sensors’ 
measurements are used in multiple targets tracking [14]. Decentralized dynamic clustering for target 
tracking is an approach that is derived and evaluated by some researches [15]. Using acoustic signal 
energy measurements of individual sensor nodes to estimate the locations of multiple acoustic sources 
is another approach that is used for target tracking [16]. Studies show that the maximum likelihood 
acoustic source location estimation method compared to existing acoustic energy based source 
localization methods yields more accurate results and enhances the capability of multiple  
source localization. 

Barsanti et al. [17] studied the tracking of objects with constant velocity in uncertain locations, in 
addition to studying various scenarios related to locating sensor nodes. Good time synchronization and 
localization accuracy are reported as the essential prerequisites for accurate target tracking [18]. Using 
measured time difference of arrival (TDOA) for a sensor array for joint estimation of source location 
and propagation speed is done using two different techniques [18]. Dan et al. [19] proposed 
collaborative signal processing (CSP) as a framework for tracking multiple targets in a distributed 
WSN. The key components include event detection, estimation and prediction of target location, and 
target classification. Chuang [20] classified target tracking approaches from another viewpoint to three 
categories: tree-based, cluster-based, and prediction-based. 

Combining geometry and algebra to represent the spatio-temporal information of target objects is a 
new idea. We had studied the geometric modeling of 2-dimensional acoustic target tracking using 
wireless sensor nodes and proved that three sensing coverage can only sometimes determine the 
correct spatio-temporal information of a target object in 2-dimensional acoustic target tracking. We 
proved that four sensing coverage is the best sensing coverage for 2-dimensional target tracking and 
proposed new geometric methods with low computational overhead [21]. The current paper is the 
extension of our previous work [21] on 3-dimensional acoustic target tracking. 

3. Basics of 3-Dimensional Acoustic Target Tracking  

3.1. 3-Dimensional Acoustic Target Localization Model  

In this paper we have ignored the signal processing aspects of acoustic target tracking and assumed 
that the sound waves of a target object is detected and differentiated from other environmental sounds 
by an appropriate signal processing method. We have also ignored the environmental phenomena that 
may affect the broadcasting of sound waves in 3-dimensional space and the reflections of sound waves 
when they meet the ground surface. Furthermore, we have assumed that every sensor node is equipped 
with a microphone for sensing sound waves, and localization and time synchronization of all sensor 
nodes are done with high accuracy.  

When a target object in an unknown location (x0, y0, z0) generates sound waves at time ݐ଴, its sound 
waves broadcast in a spherical form in 3-dimensional space and reaches to each sensor node in the 
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field after some time delay that directly depends on the Euclidian distance of sensor nodes from the 
target object. Figure 1 shows the basic schema of acoustic target localization in 3-dimensional space 
by sensing sound waves of a moving target object. When a sensor node Pi senses a sound wave and 
detects that this sound belongs to a target object of interest, it generates a record consisting of four 
fields in the form of (xi, yi, zi, ti). The first three fields represent the 3-dimensional coordinates of the 
sensing node and the fourth field represents the time at which this mote has sensed the sound of the 
target object. Each mote broadcasts this record to its neighboring motes in its communication range. 
The goal is to cooperatively compute the four unknown variables (x0, y0, z0, t0) that represent the 
spatio-temporal information of target object in a distributed way. This information implies that the 
target object has generated a sound at time ݐ଴ in position (x0, y0, z0) that has been detected by motes 
after some delay. To compute these four unknown variables, we need the sensing information of at 
least four sensor nodes to create simultaneous equations that contain at least four equations. 

Figure 1. Basic schema of target localization in 3-dimensional space. 

 
Let us assume that sound waves propagate with constant speed of v = 344.0 m/s. Based on simple 

formulas of physics for displacement with constant velocity ∆x = ν·∆t relation, the distance Δx of a 
sensor node from a target object is equal to sound propagation speed (v) multiplied by the time delay 
(Δt). Time delay is equal to the difference between the sensing sounds of the target object by a sensor 
node and the sound generation time of the target object. The sensing information of four sensor nodes 
gives us the simultaneous equations of target localization as follows: 

ە
ۖ
۔

ۖ
ݔሺۓ െ ଵሻଶݔ ൅ ሺݕ െ ଵሻଶݕ ൅ ሺݖ െ ଵሻଶݖ ൌ ሺݐଵ െ ଶݒሻଶݐ

ሺݔ െ ଶሻଶݔ ൅ ሺݕ െ ଶሻଶݕ ൅ ሺݖ െ ଶሻଶݖ ൌ ሺݐଶ െ ଶݒሻଶݐ

ሺݔ െ ଷሻଶݔ ൅ ሺݕ െ ଷሻଶݕ ൅ ሺݖ െ ଷሻଶݖ ൌ ሺݐଷ െ ଶݒሻଶݐ

ሺݔ െ ସሻଶݔ ൅ ሺݕ െ ସሻଶݕ ൅ ሺݖ െ ସሻଶݖ ൌ ሺݐସ െ ଶݒሻଶݐ

 (1) 
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All equations in (1) are degree two. Solving this set of simultaneous equations using iterative 
numerical methods like Newton method is computationally intensive. We use geometric modeling to 
find an equivalent set of simultaneous equations that can be solved with less computation. 

3.2. Geometric Representation of 3-Dimensional Acoustic Target Localization 

The general equation of a right spherical double hypercone (spherical cone) in 4-dimensional space 
whose apex point has (x0, y0, z0, t0) coordinates is as follows [22]: 

ሺܺ െ ଴ሻଶݔ ൅ ሺܻ െ ଴ሻଶݕ ൅ ሺܼ െ ଴ሻଶݖ

ܽଶ ൌ
ሺܶ െ ଴ሻଶݐ

ܿଶ  (2) 

Capital letters X, Y, Z, and T in this equation represent free variables. One famous method for 
visualizing the shape of a 4-dimensional object is to map it to a 3-dimensional space. In this paper we 
consider the fourth dimension as time and keep it fixed and draw the 3-dimensional shape of the object 
at fixed points in time. If we serialize the different 3-dimensional images of the object in a time period, 
we can imagine the 4-dimensional shape of the object [23].  

If the T coordinate of the equation of the right spherical double hypercone in Equation (2) is 
interpreted as time, then the shape of it will be like the sphere at different points in time. Figure 2 
shows the 3-dimensional spatial shape of a 4-dimensional unlimited right spherical double hypercone 
of degree two Equation (2) at five different points in temporal dimension. The 4-dimensional apex 
point of this cone is (x0, y0, z0, t0) point. Shape grows in spherical form centered at the apex point with 
the ratio of a/c with respect to the fourth (time) dimension.  

Figure 2. A general right spherical double hypercone in 4-dimensional space mapped to  
3-dimensional space at five different points in time. 

 
When time increases (up nappe) or decreases (down nappe) relative to t0, the 3-dimensional shape 

of Equation (2) becomes an increasing radius sphere as it is shown in Figure 2. The upper nappe is 
called the future hypercone and the lower nappe is called the past hypercone. Equation (2) can be 
converted to the equation of sound propagation in 3-dimensional space with respect to time by 
assuming a = v = 344.0 (m/s) and c = 1 making it in the form of equations in Equation (1). 
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By looking at simultaneous equations in Equation (1) we can assume that the sensing information of 
each sensor node Pi(xi, yi, zi, ti) is a 4-dimensional point from surface of up nappe of double hypercone 
defined in Equation (2). If we substitute the coordinates of each sensing node in Equation (2), we 
derive the simultaneous equations of Equation (1). Therefore, the geometric representation of the target 
localization problem can be stated as: finding the four dimensional coordinates of the apex point  
(x, y, z, t).of the right spherical double hypercone using four known points ௜ܲ on the surface of the up 
nappe. Because sound can be sensed only after its production, the sensing information of sensor nodes 
are related to the up nappe. 

3.3. Dual Geometric Representation of Acoustic Target Localization  

We represented the 3-dimensional acoustic target localization problem as a geometric problem in 
previous section and now we want to present an equivalent dual representation of this problem from 
another viewpoint. Answers of these two dual interpretations are the same because both of them use 
the same set of Equation (1). Solving dual geometric representation of the problem is easier and more 
straightforward than that in the general form. 

Each equation in simultaneous equations of Equation (1) represents a sound propagation hypercone 
in 4-dimensional space whose apex point is Pi (xi, yi, zi, ti), where i = 1,2,3,4. So, the sensing 
information of each sensor node ݅ is a 4-dimensional double hypercone whose apex point is the sensing 
information of that sensor node. The target localization problem can thus be redefined from this new 
viewpoint as: finding the 4-dimensional coordinates of the point (x, y, z, t) that lie on all 4-dimensional 
sound propagation double hypercones whose apex points are sensing nodes’ information. Hereafter in 
the paper we solve the dual representation of the 3-dimensional acoustic target localization problem. 

4. Combined Algebraic and Geometric Solution to 3-Dimensional Acoustic Target Localization  

4.1. Geometric Properties of Two Sensor Node’s Information 

Definition 1. Sensing information of each sensor node i represents a 4-dimensional right spherical 
double hypercone that we call it the sensing hypercone. We denote the sensing hypercone of a sensor 
node i by ηi and its equation as follows: 

η௜: ሺݔ െ ௜ሻଶݔ ൅ ሺݕ െ ௜ሻଶݕ ൅ ሺݖ െ ௜ሻଶݖ െ ሺݐ௜ െ ଶݒሻଶݐ ൌ 0 (3)

Affine hyperplane or just hyperplane in 4-dimensional space (Թସ) is a 3-dimensional subspace of  Թସ 
whose equation is as follows [24]: 

ݔܣ ൅ ݕܤ ൅ ݖܥ ൅ ݐܦ ൅ ܧ ൌ 0 (4) 

Hereafter in this paper, hyperplane is taken synonymous to hyperplane in 4-dimensional space. 

Lemma 1. The intersection of two different sensing hypercones resides on a hyperplane. 

Proof. If a point is a solution to both sensing hypercones (the intersection) then it is also a solution to 
any linear combinations of both sensing hypercones’ equations. By subtracting the sensing hypercone 
of a sensor node j from the sensing hypercone of a sensor node i, the following equation is derived: 
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ሺሺݔ െ ௜ሻଶݔ ൅ ሺݕ െ ௜ሻଶݕ ൅ ሺݖ െ ௜ሻଶݖ െ ሺݐ௜ െ ଶሻݒሻଶݐ െ ሺሺݔ െ ௝ሻଶݔ ൅ ሺݕ െ ௝ሻଶݕ

൅ ሺݖ െ ௝ሻଶݖ െ ሺݐ௝ െ ଶሻݒሻଶݐ ൌ 0 (5) 

that can be simplified to: 

2ሺݔ௝ െ ݔ௜ሻݔ ൅ 2ሺݕ௝ െ ݕ௜ሻݕ ൅ 2ሺݖ௝ െ ݖ௜ሻݖ ൅ 2ሺݐ௜ െ ݐଶݒ௝ሻݐ
൅ ሺሺݔ௜

ଶ െ ௝ݔ
ଶሻ ൅ ሺݕ௜

ଶ െ ௝ݕ
ଶሻ ൅ ሺݖ௜

ଶ െ ௝ݖ
ଶሻ ൅ ሺݐ௝

ଶ െ ௜ݐ
ଶሻݒଶሻ ൌ 0 (6) 

Equation (6) is the general form of a hyperplane’s equation as it is shown in Equation (4). This 
shows that differencing the equations of two sensing hypercones in the given form is a hyperplane and 
thus any intersection point of the two hypercones also lies on this hyperplane. This means that the 
intersection of each pair of sensing hypercones of simultaneous equations of target localization is a 
surface that lies in a hyperplane in Թସ. 

Definition 2. The intersection of two sensing hypercones resides on a hyperplane we call it the 
intersection hyperplane. We denote the intersection hyperplane made by the sensing hypercones of 
sensor nodes i and ݆ by πij as in the following equation: 

π௜௝: ݔ௜௝ܣ  ൅ ݕ௜௝ܤ ൅ ݖ௜௝ܥ ൅ ݐ௜௝ܦ ൅ ௜௝ܧ ൌ 0 
௜௝ܣ ൌ 2ሺݔ௝ െ ,௜ሻݔ ௜௝ܤ ൌ 2ሺݕ௝ െ ,௜ሻݕ ௜௝ܥ ൌ 2ሺݖ௝ െ ,௜ሻݖ ௜௝ܦ ൌ 2ሺݐ௜ െ  ,ଶݒ௝ሻݐ

௜௝ܧ ൌ ሺሺݔ௜
ଶ െ ௝ݔ

ଶሻ ൅ ሺݕ௜
ଶ െ ௝ݕ

ଶሻ ൅ ሺݖ௜
ଶ െ ௝ݖ

ଶሻ ൅ ሺݐ௝
ଶ െ ௜ݐ

ଶሻݒଶሻ 
(7) 

Definition 3. A pair of sensing hypercones ηi and ηj intersect on a 4-dimensional degree two surface 
that we denote by σij.This surface resides on the hyperplane πij and we call it the intersection surface of 
two sensing hypercones. 

4.2. Demonstrating Geometric Properties of Two Sensor Node’s Information 

To clarify the results of lemmas and theorems, we use an example 3-dimensional target localization 
problem. We assume that a target object at location T (670, 604, 10) has generated a sound wave at 
time 0.0 and four sensor nodes have sensed its sound waves. The sensing information of the four 
sensor nodes are P1 (800, 400, 100, 0.75029), P2 (122, 400, 150, 1.7479), P3 (400, 800, 200, 1.1161), 
and P4 (500, 200, 125, 1.3173). Figure 3a shows two 4-dimensional sensing hypercones η1 and η2 

alongside their intersection hyperplanes ߨଵଶ in three different points in time. Figure 3b shows these 
two sensing hypercones from another viewpoint and also shows the intersection surface of them in 
three different points in time. In visualization of the 4-dimensional shapes mapped to 3-dimensional 
space shown in Figure 3, the hypercones are shown as spheres and hyperplanes as planes at different 
points in time. Every section of a sphere and a plane is a circle and the intersection curve of two 
spheres is a circle too [25]. If two spheres intersect, their intersection will be a circle that resides on a 
2-dimensional plane. In visualization of 4-dimensional shapes in Figure 3, we see that each pair of 
unbounded 4-dimensional sensing hypercones intersects on a 4-dimensional curve that resides on their 
intersection hyperplane.  
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Figure 3. (a) The intersection hyperplanes of two double hypercones at three different 
points in time. (b) The intersection of two 4-dimensional double hypercones of target 
localization in 3-dimensional space. 

 
Based on Lemma 1, we can now compute the intersection surface of two sensing hypercones more 

easily by computing the intersection of each sensing hypercone with their common intersection 
hyperplane. To introduce intersection surface of two sensing hypercones, we need to define  
hyperconic sections. 
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The conic sections are the curves generated by the intersections of a plane with one or two nappes 
of a double circular right cone in (Թଷ). Circle, ellipse, parabola, and hyperbola are four different 
quadratic curves that can be produced from the intersection of a cone and a plane [26–28]. We use 
hyperconic sections in our study that are the extension of the conic section to 4-dimensional space. A 
hyperplane intersects with a right spherical double hypercone in a quadric surface [29]. Figure 4 shows 
ten different possible quadric surfaces that can be produced from the intersection of a hyperplane with 
a right circular spherical double hypercone in 4-dimensional space [30,31]. 

Figure 4. Possible quadric surfaces built from the intersection of a hypercone with a 
hyperplane [30]. 

 

The intersection of each pair of sensing hypercones is a hyperconic section that is mostly in the 
form of a hyperboloid of two sheets or an elliptic paraboloid. All sensing hypercones that we deal with 
in target localization in this paper are right circular hypercones with equal aperture angles whose axis 
are parallel. That is why the intersection hyperplanes of sensing hypercones do not have big angles 
with the axis line of hypercones, implying that their intersection surface will not be in the form of 
some of the hyperconic sections like sphere and ellipsoid. The intersection surface of two hypercones 
in Figure 3 and Figure 5 is a hyperboloid of two sheets, but in these figures you can see only half of a 
hyperboloid of two sheets; because we have only drawn the part of figure that is related to the  
future time. 

4.3. An Algebraic Representation of 3-Dimensional Acoustic Target Localization 

We use the relation of linear algebra with geometry to study the properties of intersection 
hyperplanes in Թସ. We can represent the equations of intersection hyperplanes of each pair of sensing 
hypercones in the form of system of linear equations [32]. The dimension of the solution space of a 
homogeneous system of linear equations AX = 0 is n−r where n is the number of unknowns and r is 
the rank of the coefficient matrix A that is the number of maximally linearly independent rows of  
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matrix A [32–34]. Equation AX = B has a solution if and only if rank A = rank [A B] that means the 
ranks of the coefficient matrix and the augmented matrix ሾܤ ܣሿ be equal [32,35]. 

Theorem 1. Two non parallel hyperplanes always intersect in a plane.  

Proof. If two hyperplanes in 4-dimensional space are not parallel, then their normal vectors are linearly 
independent. Simultaneous linear equations of such two hyperplanes will have dimension 4 − 2 = 2. 
Therefore, the intersection of two non parallel hyperplanes in 4-dimensional space is a plane.  

4.4. Geometric Properties of Three Sensor Node’s Information 

Three sensing hypercones can have three different paired combinations and thus have three 
intersection hyperplanes. In this part we study the geometric properties of three sensing information. 

Definition 4. All planes in Թଷ that pass from a common straight line form a pencil and the common 
straight line is called the axis of pencil [36]. 

Now we extend the definition of pencil to Թସ 

Definition 5. All hyperplanes in Թସ that pass through a common plane form a pencil of hyperplanes. 
Any two of these hyperplanes may be used to define the intersection plane [37]. We name the axis of 
the pencil that is constructed by the intersection hyperplanes of sensing hypercones ηi, ηj and ηk make, 
as the axis plane and denote it by ξijk. 

Lemma 2. Let us assume that equations of two independent hyperplanes are as follows: 

൜ܣଵݔ ൅ ݕଵܤ ൅ ݖଵܥ ൅ ݐଵܦ ൅ ଵܧ ൌ 0
ݔଶܣ ൅ ݕଶܤ ൅ ݖଶܥ ൅ ݐଶܦ ൅ ଶܧ ൌ 0 (8) 

If a third hyperplane’s equation satisfies the following condition:  
ݔଷܣ  ൅ ݕଷܤ ൅ ݖଷܥ  ൅ ݐଷܦ  ൅ ܧଷ

ൌ  ݇ଵሺܣଵݔ ൅ ݕଵܤ ൅ ݖଵܥ  ൅ ݐଵܦ ൅ ଵሻܧ ൅ ݇ଶሺܣଶݔ ൅ ݕଶܤ ൅ ݖଶܥ ൅ ݐଶܦ  ൅ ଶሻܧ 
ൌ 0 

(9) 

where ݇ଵ, ݇ଶ א Թ,… then three hyperplanes make a pencil. 

Proof. Let us consider the equation of three hyperplanes as a set of simultaneous equations. If 
condition of Equation (9) holds, it implies that the equation of the third hyperplane is a linear 
combination of equations of two first hyperplanes. Therefore the coefficients of only two hyperplanes 
are linearly independent and the rank of the coefficients will be two and we have four unknown 
parameters. Dimension of result will be 2 and these three hyperplanes intersect with each other on a 
common plane and make a pencil. 

Theorem 2. Intersection hyperplanes of three sensing hypercones make a pencil. 

Proof. Let us assume that three sensing nodes are i, j, k and based on Definition 2 their paired sensing 
hypercones makes intersection hyperplanes as πij, πik, πjk. In the following equation the first equation 
represents the intersection hyperplane πij and the second equation represents the intersection 
hyperplane πik:  
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ۖ
۔

ۖ
௝ݔ௜௝: 2ሺߨۓ െ ݔ௜ሻݔ ൅ 2ሺݕ௝ െ ݕ௜ሻݕ ൅ 2ሺݖ௝ െ ݖ௜ሻݖ ൅ 2ሺݐ௜ െ ݐଶݒ௝ሻݐ ൅

ሺሺݔ௜
ଶ െ ௝ݔ

ଶሻ ൅ ሺݕ௜
ଶ െ ௝ݕ

ଶሻ ൅ ሺݖ௜
ଶ െ ௝ݖ

ଶሻ ൅ ሺݐ௝
ଶ െ ௜ݐ

ଶሻݒଶሻ ൌ 0
௞ݔ௜௞: 2ሺߨ െ ݔ௜ሻݔ ൅ 2ሺݕ௞ െ ݕ௜ሻݕ ൅ 2ሺݖ௞ െ ݖ௜ሻݖ ൅ 2ሺݐ௜ െ ݐଶݒ௞ሻݐ ൅
ሺሺݔ௜

ଶ െ ௞ݔ
ଶሻ ൅ ሺݕ௜

ଶ െ ௞ݕ
ଶሻ ൅ ሺݖ௜

ଶ െ ௞ݖ
ଶሻ ൅ ሺݐ௞

ଶ െ ௜ݐ
ଶሻݒଶሻ ൌ 0

 (10) 

If we substitute the equations of hyperplanes πij, and πik from Equation (10) in Equation (9), the 
following equation holds: 

݇ଵሺ2ሺݔ௝ െ ݔ௜ሻݔ ൅ 2ሺݕ௝ െ ݕ௜ሻݕ ൅ 2ሺݖ௝ െ ݖ௜ሻݖ ൅ 2ሺݐ௜ െ ݐଶݒ௝ሻݐ ൅
ሺሺݔ௜

ଶ െ ௝ݔ
ଶሻ ൅ ሺݕ௜

ଶ െ ௝ݕ
ଶሻ ൅ ሺݖ௜

ଶ െ ௝ݖ
ଶሻ ൅ ሺݐ௝

ଶ െ ௜ݐ
ଶሻݒଶሻሻ ൅

݇ଶሺ2ሺݔ௞ െ ݔ௜ሻݔ ൅ 2ሺݕ௞ െ ݕ௜ሻݕ ൅ 2ሺݖ௞ െ ݖ௜ሻݖ ൅ 2ሺݐ௜ െ ݐଶݒ௞ሻݐ ൅
ሺሺݔ௜

ଶ െ ௞ݔ
ଶሻ ൅ ሺݕ௜

ଶ െ ௞ݕ
ଶሻ ൅ ሺݖ௜

ଶ െ ௞ݖ
ଶሻ ൅ ሺݐ௞

ଶ െ ௜ݐ
ଶሻݒଶሻሻ

ൌ 0

 (11) 

If we put ݇ଵ ൌ െ1 and ݇ଶ ൌ  ൅1 in Equation (11) and simplify it, we get the following equation: 

2ሺݔ௞ െ ݔ௝ሻݔ ൅ 2ሺݕ௞ െ ݕ௝ሻݕ ൅ 2ሺݖ௞ െ ݖ௝ሻݖ ൅ 2ሺݐ௝ െ ݐଶݒ௞ሻݐ
൅ ሺሺݔ௝

ଶ െ ௞ݔ
ଶሻ ൅ ሺݕ௝

ଶ െ ௞ݕ
ଶሻ ൅ ሺݖ௝

ଶ െ ௞ݖ
ଶሻ ൅ ሺݐ௞

ଶ െ ௝ݐ
ଶሻݒଶሻ ൌ 0 (12) 

Equation (12) is the equation of hyperplane πjk. This shows that the equation of a third intersection 
hyperplane πjk is a linear combination of intersection hyperplanes πij and πik. Based on Lemma 2, the 
intersection hyperplanes of each of three sensing hypercones that are constructed from the sensed 
information of a target object by three sensor nodes makes a pencil.  

Definition 6. We define the equations of hyperplanes πij and πik as the base of hyperplane equation πjk 
if the equation of a hyperplane πjk is a linear combination of (dependent on) hyperplanes equations πij, 
πik and denote it as follows: 

ሺߨ௜௝, ௜௞ሻߨ ՜  ௝௞ (13)ߨ
Our points of interest that give the spatio-temporal information of a target object are located on the 

intersection points of 4-dimensional degree two intersection surfaces of each pair of sensing 
hypercones. Computing the intersection of three sensing hypercones of target localization is a difficult 
work and needs heavy computation. Theorem 2 states that the intersection of three sensing hypercones 
resides on the axis plane of the pencil that is constructed from the intersection hyperplanes of sensing 
information. Computing the axis plane is easy and finding the intersection of sensing hypercones with 
this plane is easier than computing the intersection of three sensing hypercones. 

4.5. Demonstrating Geometric Properties of Three Sensor Node’s Information 

In this part we demonstrate the simulations results of Theorem 2 about properties of sensing 
information of three sensor nodes 1, 2 and 3 that were introduced in Part 4.2. Figure 5a,b,c shows the 
three intersection hyperplanes and the three intersection surfaces for sensing hypercones of sensor 
nodes 1, 2 and 3 in three different points in time. In these figures the intersection hyperplanes are 
shown in the form of planes and the axis plane is shown in the form of a dotted line at different points 
in time. The figures show that the intersection hyperplanes make a pencil and displays the intersection 
surfaces as circles that meet each other in two different points on axis plane of this pencil at three 
different points in time.  
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Figure 5. The intersection surfaces, the pencil and the axis plane of three sensing 
hypercones (a). At time t = +1.5, (b). At time t = +2.0, and (c). At time t = + 2.5, (d). The 
axis plane of the pencil passes through point that representing real target object’s spatio-
temporal information. 

 
In 4-dimensional space, the intersection surface of each pair of sensing hypercones reside on a 

hyperplane and three pair of three sensing hypercones meet each other on a curve that resides on the 
intersection plane of the pencil that these sensing hypercones make. Figure 5d summarizes  
Figure 5a,b.c and shows that the intersection hyperplanes make a pencil whose axis plane passes 
through a target object’s spatio-temporal information. 

Definition 7. Three sensing nodes i,j and k make a pencil whose axis plane intersects with the 
intersection of three sensing hypercones on a 2-dimensional curve that we call it the intersection curve 
and denote it by χijk.  

If we consider all figures in Figure 5 sequentially and try to figure out the 4-dimensional shape that 
the intersection surfaces of each triple sensing hypercones make, we see that they make a hyperbola 
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like the one shown in Figure 6. In other words, if we draw these two intersection points of three 
sensing hypercones in different points in time, it will appear as in Figure 6. This hyperbola lies on the 
axis plane of the pencil that is made from the triple paired combination of sensing hypercones. This 
figure shows the axis plane and the intersection curve of three sensing information in the time range  
of [−4,4]. 

Figure 6. The axis plane of sensor nodes 1, 2 and 3, alongside their intersection curve, in 
the range of [−4,4] seconds. 

 

4.6. Geometric Properties of Four Sensor Nodes’ Information 

Lemma 3. Three hyperplanes that are not in the same pencil and do not parallel intersect in a  
straight line.  

Proof. Let us assume a set of simultaneous equations constructed from equations of three hyperplanes. 
If equations of three hyperplanes do not satisfy the condition of Equation (9) and are not parallel, we 
conclude that equations of these three hyperplanes are linearly independent. The number of unknown 
parameters is four and the rank of coefficient matrix is three. We can thus conclude that the rank of 
result will be one and three hyperplanes intersect in a straight line. 



Sensors 2009, 9                    
 

 

6778

Definition 8. Three planes in Թଷ can meet each other in a common point and make a bundle of planes 
if their equations are linearly independent [38]. 

Now we extend the definition of bundle of planes to Թସ. 

Definition 9. All hyperplanes in Թସ that pass through a common line form a bundle of hyperplanes. 
Any three hyperplanes that are not in the same pencil can be used for computing that line [37]. We 
name the common line of a bundle of hyperplanes that is formed by the intersection hyperplanes of 
sensing hypercones ηi, ηj, ηk and ηl as the axis line and denote it by λijkl.  

Lemma 4. A set of n hyperplanes in 4-dimensional space meet each other in a common line and 
constitute a bundle of hyperplanes if equations of only three hyperplanes of this set are linearly 
independent. 

Proof. Let us assume a set of simultaneous equations of n hyperplanes. If the coefficients of only three 
hyperplanes are linearly independent, the number of unknowns is four and the rank of coefficient 
matrix is three, therefore the rank of answer is one and they will intersect in a common line. 

Theorem 3. The intersection hyperplanes of four sensing hypercones makes a bundle of hyperplanes. 

Proof. Four sensing hypercones can have four triple combinations. We prove that non common 
intersection hyperplanes of each triple combination of four sensing hypercones make a bundle of 
hyperplanes with non common intersection hyperplanes of other triple combination of sensing 
hypercones. This proves that all intersection hyperplanes pass through a common line. Now we prove 
that four different pencils that can be constructed from triple combination of sensing information of 
four sensing nodes intersect with each other in a common line.  

Each pair of triple combinations of four sensing hypercones will have two common hypercones. Let 
us assume two pencils ξijk and ξijl. The pencil ξijl consists of three intersection hyperplanes πij, πil, and 
πjl, and the pencil ξijk consists of three intersection hyperplanes πij, πik, and πjk. Each pair of these 
pencils has a common intersection hyperplane. The common intersection hyperplane of the pencil ξijk 
and ξijl is the πij hyperplane. We prove that the intersection hyperplanes πil and πjl from the pencil ξijl 
make a bundle of hyperplanes with the intersection hyperplanes πik and πjk of the pencil ξijk. The 
equations of the intersection hyperplanes πil, πjl and πik are as follows, respectively: 

ە
ۖۖ
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ۖۖ
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ሺሺݔ௜

ଶ െ ௞ݔ
ଶሻ ൅ ሺݕ௜

ଶ െ ௞ݕ
ଶሻ ൅ ሺݖ௜

ଶ െ ௞ݖ
ଶሻ ൅ ሺݐ௞

ଶ െ ௜ݐ
ଶሻݒଶሻ ൌ 0

 (14) 

We now prove that the equations of these three hyperplanes are linearly dependent. We write the 
equations of hyperplanes in Equation (14) as follows: 

λ. ሺܣ௜௟ݔ ൅ ݕ௜௟ܤ ൅ ݖ௜௟ܥ ൅ ݐ௜௟ܦ ൅ ௜௟ሻܧ ൅ μ. ൫ܣ௝௟ݔ ൅ ݕ௝௟ܤ ൅ ݖ௝௟ܥ ൅ ݐ௝௟ܦ ൅ ௝௟൯ܧ
൅  υ. ሺܣ௜௞ݔ ൅ ݕ௜௞ܤ ൅ ݖ௜௞ܥ ൅ ݐ௜௞ܦ ൅ ௜௞ሻܧ ൌ 0 (15) 
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By setting λ = −1, μ = +1, and υ = +1 the above relation is simplified to the following form: 

െ1 ൈ ሺ 2ሺݔ௝ െ ݔ௜ሻݔ ൅ 2ሺݕ௝ െ ݕ௜ሻݕ ൅ 2ሺݖ௝ െ ݖ௜ሻݖ ൅ 2ሺݐ௜ െ ሻݐଶݒ௝ሻݐ ൅ ሺെ1ሻ
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ଶ െ ௝ݖ
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൅ 2ሺݔ௞ െ ݔ௜ሻݔ ൅ 2ሺݕ௞ െ ݕ௜ሻݕ ൅ 2ሺݖ௞ െ ݖ௜ሻݖ ൅ 2ሺݐ௜ െ ݐଶݒ௞ሻݐ
൅ ሺሺݔ௜

ଶ െ ௞ݔ
ଶሻ ൅ ሺݕ௜

ଶ െ ௞ݕ
ଶሻ ൅ ሺݖ௜

ଶ െ ௞ݖ
ଶሻ ൅ ሺݐ௞

ଶ െ ௜ݐ
ଶሻݒଶሻ ൌ 0 

(16) 

We can write Equation (16) in the following simplified form: 

 െሺܣ௜௝ݔ ൅ ݕ௜௝ܤ ൅ ݖ௜௝ܥ ൅ ௜௝ሻܦ ൅ ሺܣ௜௞ݔ ൅ ݕ௜௞ܤ ൅ ݖ௜௞ܥ ൅ ௜௞ሻܦ ൌ 0 (17) 

Equation (17) is a linear combination of hyperplanes πij and πik equations.  

We have proved in Part 4.4 that hyperplanes πij, πik, and πjk make a pencil. We know that Equation 
(17) is like Equation (12) and showed that after simplification we get the equation of π௝௞ hyperplane in 
Equation (17). Therefore, from four hyperplanes πij, πjl, πik, πjk three of them are independent. Based on 
the Lemma 3 and Lemma 4 these four hyperplanes make a bundle of hyperplanes. With a similar 
reasoning we can prove that each non common intersection hyperplanes of two pencils makes a bundle 
of hyperplanes and that all these bundles of hyperplanes share a common line like the one shown in 
Figure 7a. 

We can present our proof in other words. Let us assume four sensing hypercones of sensing nodes i, 
j, k and l. These four sensing hypercones have six different paired combinations whose intersection 
hyperplanes are πij, πik, πil, πjk, πjl, πkl In Theorem 2 we proved that in a general form the two 
intersection hyperplanes of each triple combination of three sensing hypercones are linearly 
independent and the equation of the third intersection hyperplane from this set is always linearly 
dependent on the equations of two other intersection hyperplanes. The equations of hyperplanes πij, πik, 
πil are linearly independent because each one uses the equation of a new hypercone. According to 
Theorem 2 we have: 

൫ߨ௜௝, ௜௞൯ߨ ՜ ௝௞ߨ , ൫ߨ௜௝, ௜௟൯ߨ ՜ ௝௟ߨ , ሺߨ௜௞, ௜௟ሻߨ ՜  ௞௟ (18)ߨ
Therefore, from the equations of the six intersection hyperplanes of four sensing hypercones, only 

three of them are linearly independent. Dimension of solution of these simultaneous equations of four 
intersection hypercones is one and shows that they will intersect in a common line. 

Based on Theorem 3, we can find the axis line of a bundle of hyperplanes that are formed by the 
intersection hyperplanes of four sensing nodes; the axis line intersects with all sensing hypercones only 
in two common points. We can compute the intersection of the axis line with one of the sensing 
hypercones for computing the spatio-temporal information of a target object. This computation has 
lower overhead in comparison to computing the intersections of four sensing hypercones. 

4.7. Demonstrating the Geometric Properties of Four Sensor Node’s Information 

In this part we use the sensing information of the example introduced in Part 4.2 for demonstrating 
the properties of four sensing hypercones proven in Theorem 3. In Theorem 2 and Part 4.5 we proved 
and showed that each triple combination of sensing nodes’ information makes a pencil on whose axis 
plane resides the spatio-temporal information of a target object. Theorem 3 proved that four axis 
planes of intersection hyperplanes’ pencil meet each other in a common line and all intersection 
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hyperplanes make a bundle of hyperplanes. Figure 7a shows four axis planes passing through a 
common axis line, where this line passes through a 4-dimensional point that represents the spatio-
temporal information of the target object.  

Figure 7. (a). Triple combination of four different sensing nodes’ information making a 
bundle of hyperplanes that pass through an axis line. (b). Intersection curves of four 
sensing nodes passing from two different points on the axis line of a bundle of intersection 
hyperplanes in the time range of [−4,4]. 

 

Figure 7b shows the axis planes and the intersection curves of four sensing nodes. This figure shows 
that four intersection curves intersect with each other in two different points R1 and R2. Both of these 
points lie on the axis line of the intersection hyperplanes. Our target localization equations are degree 
two; therefore we have two dual mathematically correct answers. One of these two points is the 
feasible spatio-temporal information of the target object and another answer is infeasible. The feasible 
spatio-temporal information of the target object is shown by point ܶ in Figure 7b. To apply Theorem 3, 
we first compute the axis line and then compute its intersection with one of the sensing hypercones. 
We call this method the four coverage axis line (FCAL) and formulate it in Part 5.1. In Part 4.8 we 
explain a method of detecting the feasible answer between two dual computed answers.  

4.8. Elimination of the False Positive Answer of 3-Dimensional Acoustic Target Localization  

FCAL method produces two different answers both of which are mathematically correct but only 
one of them is the feasible 4-dimensional spatio-temporal information of the target object and the other 
answer is infeasible. We declare a simple method called the time test for recognizing the feasible 
answer. In Theorem 3 we proved that the axis line passes from two intersection points of four sensing 
hypercones. Computed answers sometimes belong to the up nappe of sound propagation hypercones of 
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Figure 2 and therefore related to the future time. The inherent property of the problem refuses that both 
answers become related to the future time. We can categories answers as follows: 

• Case I: If the time of one of the answers say R1 is before the times of the sound sensing by all 
four sensor nodes and the time of the other answer, R2 is after the time of the sound sensing of 
at least one of the four sensing nodes, answer R1 is related to past time and answer R2 is related 
to future time and is the infeasible answer. An example of case I was shown in Figure 7b. 

• Case II: If the times of both computed answers R1 and R2 is before the reported times of sound 
sensing by all sensor nodes, both answers are related to the past and time test cannot help the 
FCAL method to detect the feasible spatio-temporal information of a target object. Figure 8 
shows this case which demonstrates the pitfall of four degree sensing coverage and the FCAL 
method. In this case we can randomly select one of the answers or we cans or refuse to report 
any answer. Another approach is to report both answers and assign a 50% confidence degree to 
each answer. In simulation of this method in Part 5.3, if a redundant set of simultaneous 
equations with sensing information of different set of sensor nodes is constructed, the 
application of majority voter increases the probability of selecting the feasible answer. This is 
because it is probable that other set of simultaneous equations do not fall in case II. 

Figure 8. Pitfalls of the FCAL method in computing the accurate spatio-temporal 
information of a target object when both answers are related to past time. 
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• Case III: If the axis line is tangent to sound broadcasting hypercone of target object intersects 
with it on a single point, both answers R1 and R2 are the same and both of them are the feasible 
spatio-temporal information of a target object. The time test method is successful in cases I and 
III but it cannot detect the correct answer in case II.  

We proved that four degree sensing coverage only sometimes can determine the accurate spatio-
temporal information of a target object in 3-dimensional acoustic target localization. This fact is 
independent of the target localization method we use and it is true in Bayesian filtering methods too. 
Proof of this fact using the Kalman filtering or the Particle filtering is very difficult while the 
combination of the algebraic and geometric methods is a straightforward method for proving this fact. 

5. A Proposed Four Sensing Coverage Based Method  

5.1. Four Coverage Axis Line Method for 3-Dimensional Acoustic Target Localization  

Based on Theorem 3 we propose a simple combined algebraic and geometry based method, we 
called it Four Coverage Axis Line (FCAL) method in Part 4.7. Using properties of Theorem 3 we do 
not use heavy computations for computing the intersection of four sensing hypercones; instead in the 
first step we compute the axis line of four sensing hypercones and then we compute its intersection 
with one of the sensing hypercones. FCAL converts degree two systems of four simultaneous 
equations to a simple degree one system of three simultaneous equations and greatly decreases the 
computation overhead. 

The simultaneous equations in Equation (1) representing the classic target localization problem are 
degree two and by differencing these equations, as in following equation, we can eliminate the degree 
two factors:  

 

ە
ۖۖ
۔

ۖۖ
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ݔଵଷ: ሺߨ െ ଵሻଶݔ ൅ ሺݕ െ ଵሻଶݕ ൅ ሺݖ െ ଵሻଶݖ െ ሺሺݔ െ ଷሻଶݔ ൅ ሺݕ െ ଷሻଶݕ ൅ ሺݖ െ ଷሻଶሻݖ ൌ
ሺሺݐଵ െ ሻଶݐ െ ሺݐଷ െ ଶݒሻଶሻݐ

ݔଵସ: ሺߨ െ ଵሻଶݔ ൅ ሺݕ െ ଵሻଶݕ ൅  ሺݖ െ ଵሻଶݖ െ ሺሺݔ െ ସሻଶݔ ൅ ሺݕ െ ସሻଶݕ ൅  ሺݖ െ ସሻଶሻݖ ൌ
ሺሺݐଵ െ ሻଶݐ െ ሺݐସ െ ଶݒሻଶሻݐ

(19) 

 
If we simplify the above equations we get the equations of intersection hyperplanes as follows: 
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ଶ െ ସݐ
ଶሻݒଶ ൅ ሺݔସ

ଶ െ ଵݔ
ଶሻ ൅ ሺݕସ

ଶ െ ଵݕ
ଶሻ ൅ ሺݖସ

ଶ െ ଵݖ
ଶሻ

 (20) 

Equation (20) can be converted into the matrix form as follows:  
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቎
2ሺݔଶ െ ଵሻݔ 2ሺݕଶ െ ଵሻݕ 2ሺݖଶ െ ଵሻݖ
2ሺݔଷ െ ଵሻݔ 2ሺݕଷ െ ଵሻݕ 2ሺݖଷ െ ଵሻݖ
2ሺݔସ െ ଵሻݔ 2ሺݕସ െ ଵሻݕ 2ሺݖସ െ ଵሻݖ

቏ ቈ
ݔ
ݕ
ݖ

቉

ൌ ሾ2ሺݐଶ െ ଷݐଶ 2ሺݒଵሻݐ െ ଶݒଵሻݐ 2ሺݐସ െ ሿݐଶሿ்ሾݒଵሻݐ

൅ ቎
ሺݐଵ

ଶ െ ଶݐ
ଶሻݒଶ ൅ ሺݔଶ

ଶ െ ଵݔ
ଶሻ ൅ ሺݕଶ

ଶ െ ଵݕ
ଶሻ ൅ ሺݖଶ

ଶ െ ଵݖ
ଶሻ

ሺݐଵ
ଶ െ ଷݐ

ଶሻݒଶ ൅ ሺݔଷ
ଶ െ ଵݔ

ଶሻ ൅ ሺݕଷ
ଶ െ ଵݕ

ଶሻ ൅ ሺݖଷ
ଶ െ ଵݖ

ଶሻ
ሺݐଵ

ଶ െ ସݐ
ଶሻݒଶ ൅ ሺݔସ

ଶ െ ଵݔ
ଶሻ ൅ ሺݕସ

ଶ െ ଵݕ
ଶሻ ൅ ሺݖସ

ଶ െ ଵݖ
ଶሻ

቏ 

(21) 

Equation (21) can be simplified to:  

݉ ቈ
ݔ
ݕ
ݖ

቉ ൌ ܾሾݐሿ ൅ ܿ  (22) 

Equation (22) can be solved by using the inverse matrix of ݉ as follows:  

 

ቈ
ݔ
ݕ
ݖ

቉ ൌ ݉ିଵܾሾݐሿ ൅ ݉ିଵܿ  (23) 

Equation (23) has four unknown variables ݔ, ,ݕ ݖ  and ݐ  , but we have only three simultaneous 
equations. These simultaneous equations have unlimited answers. Equation (23) yields the equation of 
the axis line of four sensing hypercones of sensing node’s information. Now we need to compute the 
intersection of this line with one of the sensing hypercones; the intersection always takes place at two 
different points. We can use the equation of sensing hypercone of the sensing node ଵܲ as follows: 

ηଵ: ሺݔ െ ଵሻଶݔ ൅ ሺݕ െ ଵሻଶݕ ൅ ሺݖ െ ଵሻଶݖ െ ሺݐଵ െ ଶݒሻଶݐ ൌ 0 (24) 

We represent unknown variables ݔ,  and ݐ in Equation (23) based on the unknown variable ݖ and ݕ
then substitute them in Equation (24) and after simplification we get the following equation: 

ሺሺ݉ିଵܾሻଵݐ ൅ ሺሺ݉ିଵܿሻଵ െ ଵሻሻଶݔ ൅ ሺሺ݉ିଵܾሻଶݐ ൅ ሺሺ݉ିଵܿሻଶ െ ଵሻሻଶݕ

൅ ሺሺ݉ିଵܾሻଷݐ ൅ ሺሺ݉ିଵܿሻଷ െ ଵሻሻଶݖ െ ሺݐଵ െ ଶݒሻଶݐ ൌ 0 
(25) 

Factorizing Equation (25) with respect to t yields a degree two equation in the following form:  

ሺሺ݉ିଵܾሻଵ
ଶ ൅ ሺ݉ିଵܾሻଶ

ଶ ൅ ሺ݉ିଵܾሻଷ
ଶ െ ଶݐଶሻݒ

൅ 2ሺሺ݉ିଵܾሻଵሺሺ݉ିଵܿሻଵ െ ଵሻݔ ൅ ሺ݉ିଵܾሻଶሺሺ݉ିଵܿሻଶ െ ଵሻݕ
൅ ሺ݉ିଵܾሻଷሺሺ݉ିଵܿሻଷ െ ଵሻݖ ൅ ݐଵሻݐଶݒ ൅ ሺሺ݉ିଵܿሻଵ െ ଵሻଶݔ

൅ ሺሺ݉ିଵܿሻଶ െ ଵሻଶݕ ൅ ሺሺ݉ିଵܿሻଷ െ ଵሻଶݖ െ ଵݐ
ଶݒଶ ൌ 0 

(26) 

Equation (26) is in the form of degree two equation of one variable in the following from:  

ଶݐܣ ൅ ݐܤ ൅ ܥ ൌ 0 (27) 
Equation (27) can be solved by the delta rule method. The inherent structure of the problem causes 

the delta of Equation (27) never to become negative. Equation (27) gives two different values for 
variable t when delta is greater than zero. Values of x, y, z variables are computed by replacing the 
computed value of ݐ variable in Equation (23). Using time test method that was presented in Part 4.8 
we can mostly identify the feasible answer. 
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5.2. Discussion on FCAL Method  

Matrix ݉ in Equation (22) is singular if and only if it is not reversible and this happens when the 
rank of m is less than its dimension [39]. If the rows of m are linearly independent then the rank of m is 
3 and m is nonsingular [40,41]. If four sensor nodes P1, P2, P3, and P4 are located such that no three of 
them are located on a line, then the matrix m will be nonsingular. The probability that three randomly 
placed sensing nodes are located on a line is very low, though it is not zero. If three sensing nodes are 
located on a line the system of simultaneous equations of Equation (1) will not have answer. FCAL 
method has low computational overhead. Computing the answers is not iterative similar to known 
numerical methods like Newton method. Computation and memory usage of FCAL method at worst 
and on average are equal to Θ(1).  

5.3. Simulation Model  

For simulative study of the FCAL method we developed and tested the 3-dimensional acoustic 
target tracking problem in a WSN with randomly distributed wireless sensor nodes. We used the 
VisualSense simulator [42] that builds on and leverages Ptolemy II version 6.0.2 [43,44]. In our 
simulations we used a single sink node with 40 unique sensor nodes that were spread with normal 
distribution in a 3-dimensional square field with variation of X position in [0,500] meters range and Y 
position in [0,500] meters range, and Z position in [0,50] meters range. A target object was rotated ten 
times in spiral form in this field passing through a unique route in every run such that most areas of 
simulation field were traversed by all runs. Simulation was run for 400 seconds and a target object 
regularly broadcasted specific acoustic signals that were detectable by sensor nodes every two seconds. 
Target localization was carried out 200 times during simulation. The sink node had radio 
communication radius of 240 meters and other sensor nodes had an equal radio communication and 
sensing range of 120 meters. We assumed perfect routing without any packet losses and perfect time 
synchronization with accuracy of 10−9 seconds. 

5.4. Simulation Results  

Figure 9 shows the square error of target tracking when we used (1) highly accurate time 
synchronization with 10−9 (seconds) precision, (2) target localization by using the information of only 
four different sensing nodes in each set of simultaneous equations using the FCAL method, and (3) a 
simple formal majority voter algorithm. The accuracy of the best time synchronization algorithms in 
real cases were in the order of 10−6 seconds [45,46]. Because our chosen time synchronization 
accuracy was not attainable in reality, we assumed that our simulations were running under ideal 
perfect time synchronization. With this very high time synchronization accuracy, the square error was 
sometimes in the order of 104 m2. A variation of formal majority voter presented in [47] was used for 
fusing the information of target tracking. The mean of spatially distributed 4-dimensional vectors of 
spatio-temporal information of the target object was computed first. A nearest vector to the mean 
vector was chosen as a representative. A vector was then randomly selected from a group of candidate 
vectors whose Euclidian distance was lower than a specific threshold value (similarity parameter) σ 
from the representative vector; 0.4 was assigned to the σ parameter. 
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Figure 9. Square error of 3-dimensional acoustic target tracking of FCAL method. 

 
As Figure 9 shows, most of the times the FCAL method computes the accurate spatio-temporal 

information of the target object. But sometimes reported results had big error values. These outliers 
happened when case II of FCAL method happened one of the answers was randomly selected and 
reported. In other words, the source of this big error is the reporting of false positive answers. 

5.5. Elimination Condition for False Positive Answer 

Definition 10. Four hyperplanes that are not parallel and do not belong to a pencil or a bundle of 
hyperplanes intersect on a point. All hyperplanes passing through the same point form a 3-dimensional 
extent [37] and we call them extent of hyperplanes.  

Theorem 4. The intersection hyperplanes of five sensing nodes makes an extent of hyperplanes. 

Proof. Let us assume that we have five sensing hypercones i, j, k, l, and m. Five sensing hypercones 
have ten different paired combinations whose intersection hyperplanes are πij, πik, πil, πim, πjk, πjl, πjm, πkl, 
πkm, and πlm. In Theorem 2 we proved in a general form that two intersection hyperplanes of each triple 
combinations of three sensing hypercones are linearly independent and the equations of a third 
hyperplane always is linearly dependent on the equations of these two hyperplanes. The equations of 
hyperp lanes πij, πik, πil and πim are linearly independent, because each one uses the equation of 
different set of sensing hypercones. According to Definition 6 and Theorem 3 we have: 

൫ߨ௜௝, ௜௞൯ߨ ՜ ௝௞ߨ , ൫ߨ௜௝, ௜௟൯ߨ ՜ ௝௟ߨ , ሺߨ௜௞, ௜௟ሻߨ ՜ ௞௟ߨ  
൫ߨ௜௝, ௜௠൯ߨ ՜ ௝௠ߨ , ሺߨ௜௟, ௜௠ሻߨ ՜ ௟௠ߨ , ሺߨ௜௞, ௜௠ሻߨ ՜  ௞௠ (28)ߨ

Therefore, from equations of ten intersection hyperplanes of five sensing hypercones, only four of 
them are linearly independent. The equations of the six remaining hyperplanes are linearly dependent 
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on the equations of these four hyperplanes. The system of simulatenous equations of intersection 
hyperplanes has four unknown variables and four independent equations. Therefore the dimension of 
answer will be 4 – 4 = 0 implying that the intersection hyperplanes intersect on a common point. This 
point is our unique and feasible spatio-temporal information of the target object.  

Definition 11. We call the common point of an extent of hyperplanes that the intersection hyperplanes 
of sensing hypercones ηi, ηj, ηk, ηl, and ηm, make as the extent point and denote it by ωijklm. 

Let us now assume that we add a fifth sensing node P5 (750, 800, 175, 0.7802) to the example given 
in Part 3.2. Figure 10 shows ten axis planes, five axis lines and the extent point of the intersection 
hyperplanes. This figure shows that based on Theorem 4 the intersection hyperplanes of five sensing 
nodes make an extent of hyperplanes. By computing the extent point we can reduce the computation 
overhead of FCAL method in determining the accurate spatio-temporal information of target object 
when case II occurs. 

Figure 10. Ten axis planes and five axis lines of their bundle of hyperplanes and their 
extent point of five sensing nodes.  

 

6. Five Sensing Coverage Proposed Methods 

6.1. Five Coverage Extent Point Method 

We extend the FCAL method and propose the Five Coverage Extent Point (FCEP) method. Based 
on Theorem 4 we make a system of four simultaneous equations of independent intersection 
hyperplanes as follows: 
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ە
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ଶݔଵଶ: 2ሺߨۓ െ ݔଵሻݔ ൅ 2ሺݕଶ െ ݕଵሻݕ ൅ 2ሺݖଶ െ ݖଵሻݖ ൅ 2ሺݐଵ െ ݐଶݒଶሻݐ ൌ

ሺݐଵ
ଶ െ ଶݐ

ଶሻݒଶ ൅ ሺݔଶ
ଶ െ ଵݔ

ଶሻ ൅ ሺݕଶ
ଶ െ ଵݕ

ଶሻ ൅ ሺݖଶ
ଶ െ ଵݖ

ଶሻ
ଷݔଵଷ: 2ሺߨ െ ݔଵሻݔ ൅ 2ሺݕଷ െ ݕଵሻݕ ൅ 2ሺݖଷ െ ݖଵሻݖ ൅ 2ሺݐଵ െ ݐଶݒଷሻݐ ൌ
ሺݐଵ

ଶ െ ଷݐ
ଶሻݒଶ ൅ ሺݔଷ

ଶ െ ଵݔ
ଶሻ ൅ ሺݕଷ

ଶ െ ଵݕ
ଶሻ ൅ ሺݖଷ

ଶ െ ଵݖ
ଶሻ

ସݔଵସ: 2ሺߨ െ ݔଵሻݔ ൅ 2ሺݕସ െ ݕଵሻݕ ൅ 2ሺݖସ െ ݖଵሻݖ ൅ 2ሺݐଵ െ ଶݒݐସሻݐ ൌ
ሺݐଵ

ଶ െ ସݐ
ଶሻݒଶ ൅ ሺݔସ

ଶ െ ଵݔ
ଶሻ ൅ ሺݕସ

ଶ െ ଵݕ
ଶሻ ൅ ሺݖସ

ଶ െ ଵݖ
ଶሻ

ହݔଵହ: 2ሺߨ െ ݔଵሻݔ ൅ 2ሺݕହ െ ݕଵሻݕ ൅ 2ሺݖହ െ ݖଵሻݖ ൅ 2ሺݐଵ െ ଶݒݐହሻݐ ൌ
ሺݐଵ

ଶ െ ହݐ
ଶሻݒଶ ൅ ሺݔହ

ଶ െ ଵݔ
ଶሻ ൅ ሺݕହ

ଶ െ ଵݕ
ଶሻ ൅ ሺݖହ

ଶ െ ଵݖ
ଶሻ

 (29) 

We can represent this system of linear equations in the following matrix form: 

ۏ
ێ
ێ
ێ
ଶݔ2ሺۍ െ ଵሻݔ 2ሺݕଶ െ ଵሻݕ 2ሺݖଶ െ ଵሻݖ 2ሺݐଵ െ ଶݒଶሻݐ

2ሺݔଷ െ ଵሻݔ 2ሺݕଷ െ ଵሻݕ 2ሺݖଷ െ ଵሻݖ 2ሺݐଵ െ ଶݒଷሻݐ

2ሺݔସ െ ଵሻݔ 2ሺݕସ െ ଵሻݕ 2ሺݖସ െ ଵሻݖ 2ሺݐଵ െ ଶݒସሻݐ

2ሺݔହ െ ଵሻݔ 2ሺݕହ െ ଵሻݕ 2ሺݖହ െ ଵሻݖ 2ሺݐଵ െ ےଶݒହሻݐ
ۑ
ۑ
ۑ
ې

቎

ݔ
ݕ
ݖ
ݐ

቏

ൌ

ۏ
ێ
ێ
ێ
ଵݐሺۍ

ଶ െ ଶݐ
ଶሻݒଶ ൅ ሺݔଶ

ଶ െ ଵݔ
ଶሻ ൅ ሺݕଶ

ଶ െ ଵݕ
ଶሻ ൅ ሺݖଶ

ଶ െ ଵݖ
ଶሻ

ሺݐଵ
ଶ െ ଷݐ

ଶሻݒଶ ൅ ሺݔଷ
ଶ െ ଵݔ

ଶሻ ൅ ሺݕଷ
ଶ െ ଵݕ

ଶሻ ൅ ሺݖଷ
ଶ െ ଵݖ

ଶሻ
ሺݐଵ

ଶ െ ସݐ
ଶሻݒଶ ൅ ሺݔସ

ଶ െ ଵݔ
ଶሻ ൅ ሺݕସ

ଶ െ ଵݕ
ଶሻ ൅ ሺݖସ

ଶ െ ଵݖ
ଶሻ

ሺݐଵ
ଶ െ ହݐ

ଶሻݒଶ ൅ ሺݔହ
ଶ െ ଵݔ

ଶሻ ൅ ሺݕହ
ଶ െ ଵݕ

ଶሻ ൅ ሺݖହ
ଶ െ ଵݖ

ଶሻے
ۑ
ۑ
ۑ
ې
 

(30) 

This method has higher computational cost as it requires the computation of the inverse of a 4 × 4 
instead of 3 × 3 matrix of the FCAL method. The cost of computing the inverse of a matrix with 
dimension n is Θ(n2) [48]. Most sensor nodes have low computational power and using floating point 
computations requires more clock cycles, reducing the computation cost when using tiny wireless 
sensor nodes is essential especially in real time applications.  

6.2. Five Coverage Extended Axis Line Method 

Based on Theorem 4 we propose a second extension to the FCAL method and call this method Five 
Coverage Extended Axis Line (FCEAL) method. In FCEAL we use the FCAL method for computing 
the spatio-temporal information of a target object. If case I or case III occurs we select the feasible 
answer and if case II occurs, we use the sensing information of a fifth sensor node. Only one of the two 
computed answers satisfies the equation of sensing hypercone of the fifth sensor node. 

Figure 11 shows the square error of 3-dimensional target tracking using FCEP method. This method 
in comparison with the FCEP method has less computational overhead because the coefficients matrix 
of simultaneous linear equations is 3 × 3 and computing its inverse requires less overhead. 

FCEP and FCEAL methods produce the same results but only differ in their computation method 
and computation cost. As Figure 11 shows, the order of square error of results is 10−11 m2 that is by far 
smaller than the 104 m2 order of the square error of target tracking with four sensing coverage of the 
FCAL method shown in Figure 9. Simulation results showed that the FCEP and FCEAL methods 
using five sensing coverage completely eliminates the occurrence of false positive answers. 
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Figure 11. Square error of 3-dimensional acoustic target tracking using FCEP method. 

 

6.3. Five Coverage Redundant Axis Lines Method 

Based on Theorem 3 and Theorem 4 we propose a new method relaying on the five degree sensing 
coverage called Five Coverage Redundant Axis Lines (FCRAL) method as yet another extension to the 
FCAL method. In FCRAL, each sensor node gathers the sensing information of four neighbor sensing 
nodes and uses the FCAL method for computation. Two different conditions occur; in case I or case III 
we can compute accurately the spatio-temporal of target object with 100% confidence degree. 
However, if case II occurs then the computing node sends both computed answers to sink node with 50% 
confidence degree. With five sensing coverage, we need at least two groups of sensing information to 
be constructed, wherein each group has the sensing information of at least four sensor nodes. Five 
sensing nodes of a target's sound may be located such that some of them cannot communicate with 
each other in single hop. Therefore, every sensing node sometimes needs to broadcast its sensing 
information to its neighbor nodes in two hops for making at least two sets of localization simultaneous 
equations. By this means at least two sets of sensing information of four sensor nodes can be 
constructed; this must be guaranteed by the management procedures that are enforced on sensor nodes. 

Sensor nodes that are placed in the routing path to the sink node and we call them the fusing nodes, 
can use a modified formal majority voter algorithm [47,49]. Fusing nodes only send information to the 
sink node which has 100% confidence level. In worst cases, when all answers received by a fusing 
node have 50% confidence levels, the fusing node runs a voter algorithm to cluster the received 
answers and select the answer whose frequency is higher than other answers; the selected answer is 
then sent with 100% confidence by the fusing node to the sink. For example let us assume that one set 
contains the sensing information of sensor nodes 1, 2, 3, and 4 and another set contains the sensing 
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information of sensor nodes 2, 3, 4, and 5. If both sets report two answers with 50% confidence levels, 
we know that both sets must have a common answer which is the feasible spatio-temporal information 
of a target object and their uncommon answer must differ with each other because a different set of 
sensing information is used in each set. Therefore the proposed modified formal majority voter selects 
the feasible answer. Figure 12 shows the square error of simulation results of 3-dimensional acoustic 
target tracking when we used FCRAL method using the same network set up and scenario mentioned 
in Part 5.1. The magnitude of the square of error was in the order 10−11 m2, which is comparatively 
smaller than the square error of the FCAL method in Figure 9 in Part 5.3 whose magnitude of square 
error was 104 m2 using four sensing coverage. 

Figure 12. Square error of 3-dimensional target tracking using FCRAL method. 

 
As Figure 12 shows, we did not have infeasible reported answers and only few outliers existed in 

the results that were due to the error propagation of computation. Given outliers were rare with no 
false positive answer we can conclude that 3-dimensional target tracking had a high accuracy. 

Figure 11 and Figure 12 show some outliers in the results whose magnitudes are in the scale of  
10−11 m2. As mentioned in Part 5.2, if at least three sensing nodes are located on a straight line then the 
coefficient matrix m is not reversible and the set of simultaneous equations do not have any answer. 
Similarly, if at least three sensing nodes are such that their locations are near to a straight line, then 
they are close to being linearly dependent and the determinant of matrix ݉ will be close to zero and 
causes big error propagation in computations. The probability of this condition is very low and the 
only solution for it is to eliminate these rarely happening outliers from results but we did not eliminate 
them in this study to clarify that the magnitude of error propagation is comparatively low in 
comparison with the magnitude of error shown in Figure 9 that was attributed to the error in reporting 
a false dual answer.  



Sensors 2009, 9                    
 

 

6790

6.4. Application of Proposed Methods in Bayesian Filters 

Kalman and Particle filters are special types of Bayesian filters that use a measurement model 
beyond the system model for tracking a target object. Commonly, the measured signals of sensor nodes 
are used in measurement models [1,2,12]. Measuring the distance of a target object from a sensor node 
based on the characteristics of the measured acoustic signals in the existence of many different 
environmental influencing factors and sources of noises is very error prone. Although assumptions of 
our proposed method require frequent time synchronization and communication between sensor nodes 
but its accuracy is higher than relying only on the intensity or other features of measured acoustic 
signals of each individual sensor node. Therefore, our proposed method can be used as part of 
measurement model in Bayesian filters to provide better estimate of the spatio-temporal information of 
a target object based on measured acoustic signals.  

7. Conclusions and Future Work 

7.1. Conclusions 

Given that wireless sensor networks based solutions to 3-dimensional acoustic target tracking with 
four sensing coverage do not always compute the feasible spatio-temporal information of target objects, 
we investigated this weakness in a formal setting in this paper. To do so we first combined geometry 
and algebra for modeling the basics of 3-dimensional acoustic target tracking. These basics are valid 
for all variations of 3-dimensional acoustic target tracking methods like Bayesian filters. We converted 
the classic 3-dimensional acoustic target tracking problem to a form combining algebraic and 
geometric reasoning. This allowed us to study and prove some of the inherent and interesting 
properties of the problem. Based on these proven properties, we proved that four sensing coverage 
only under certain conditions guarantees to compute two dual answers, one of which is a feasible 
answer and another is infeasible answer. We then proved that four sensing coverage does not always 
guarantee to clarify feasible answer of the 3-dimensional acoustic target localization problem. This 
was achieved by using a set of lemmas and theorems we proved before applying them to our proposed 
four coverage axis line (called, FCAL) method for 3-dimensional acoustic target tracking.  

We proved that five sensing coverage guarantees to always yield the spatio-temporal information of 
target objects in 3-dimensional acoustic target tracking. We extended our FCAL method to five 
sensing coverage in three ways and proposed three methods called five coverage extent point (FCEP) 
method, five coverage extended axis line (FCEAL) method, and five coverage redundant axis lines 
(FCRAL) method. We showed that the computational and memory usage overheads of all four 
methods on average and in the worst cases are equal to Θሺ1ሻ each. Sources such as bad placement of 
sensor nodes that caused big error propagation in the proposed methods were discussed too. We also 
showed that having perfect assumptions and input data are not sufficient conditions for accurate target 
localization and that paying attention to the mathematical basis of used algorithms is an  
important issue. 
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7.2. Future work 

We did not consider the time synchronization, sensor node localization error, and the sensing and 
environmental noises in our studies reported in this paper. In real applications though, these factors 
greatly influence the accuracy and precision of the results. In our previous works the basics of two 
dimensional target tracking were presented [21] and the error propagation effect of time 
synchronization error on the results of 2-dimensional target tracking was discussed [50]. Simulative 
and analytic studies of error propagation of acoustic target localization based on the combination of 
sensor node localization and time synchronization errors are included in our future work.  

The aim of this paper was to prove some facts about the basics of 3-dimensional acoustic target 
tracking regardless of the above parameters. These facts are valid for all types of 3-dimensional 
acoustic target tracking methods. Bayesian methods like Kalman filtering and Particle filtering can 
also use these facts and our proposed methods in their measurement models. Application of the results 
of this paper to the Bayesian filters in real world applications is currently under investigation by  
the authors. 
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