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Abstract: Dynamic spectrum access is a must-have ingredient fordgeinsors that are ide-
ally cognitive. The goal of this paper is a tutorial treatinehwideband cognitive radio and
radar—a convergence of (1) algorithms survey, (2) hardwkattorms survey, (3) challenges
for multi-function (radar/communications) multi-GHz frbend, (4) compressed sensing for
multi-GHz waveforms—revolutionary A/D, (5) machine leeng for cognitive radio/radar,
(6) quickest detection, and (7) overlay/underlay cogaitadio waveforms. One focus of this
paper is to address the multi-GHz front end, which is thelehgke for the next-generation
cognitive sensors. The unifying theme of this paper is tdl sy the convergence for cogni-
tive radio, radar, and anti-jamming. Moore’s law drivesslgstem functions into digital parts.
From a system viewpoint, this paper gives the first comprgkiertreatment for the functions
and the challenges of this multi-function (wideband) syst& his paper brings together the
inter-disciplinary knowledge.
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1. Introduction

In the most general sense, cognitive radio takes advantatie dvloore’s law to capitalize on the
computational power of the semiconductor industry. Whéarimation is accessible in digital domain,
the force driver behind this novel radio is computationaikglligent algorithms. Machine learning and
artificial intelligence have become the new frontier towtlrid vision—analogy of robotics. Converting
information from analog domain to digital domain plays atcalrrole in this vision: revolutionary com-
pressed sensing is, therefore, critical to expanding tigdey of this new system paradigm. The agile,
software defined radios that can perform according to dlyms are basic building blocks. When each
node is computationally intelligent, wireless networkfages a novel revolution. At the system level,
functions such as cognitive radio, cognitive radar and-amiming (even electronic warfare) have no
fundamental difference and are unified into a single framkwloat requires inter-disciplinary knowl-
edge. Radar and communications should be unified since bqthre dynamic spectrum access—the
bottleneck. Spectrum agile/cognitive radio is a new pamadin wireless communications—a special
application of the above general radio.

Spectrum agile/cognitive radio is a new paradigm in wirglesmmunicationsl], as illustrated by
DARPA XG radio P] in Figure 1. Cognitive radios can opportunistically use spectrum g/kjpace
and increase usage by ten tim& [One ingredient of this paper is to investigate a novel,el@hd
(multi-GHz) system architecture enabled by compressivgéiag (or compressed sensing)—a revolu-
tionary breakthrough in applied mathematics and signatgssing. The other is to design multi-GHz
spectrum sensing and experimental system testbeds. Tiggeelients share the same goal of bringing
together three separate system paradigms: cognitive, reatjmitive radar and electronic warfare.

The Department of Defense (DoD) is transforming the myitato a more responsive digitized force
capable of of rapidly deploying and effectively operatingil types of military operations, which makes
an intensive information network criticadl[ 5, 6]. Wireless sensor networks in Figufeis such an
example ¥]. A 2003 Congressional Budget Office repa8t toncluded: “current demand within the
Army is larger than the supply gn order of magnitudand these shortfalls will continue into and after
2010 with shortage as high &9 timesat some command levels.” To solve this bandwidth shortage,
improvements in spectrum usage are required. These batidshdrtages take place even though a
vast amount of the allocated spectrum is virtually unusednaier-used. This paradox results from the
current static and inefficient allocation process. In resgo the Federal Communication Commission
(FCC) 9] and US DoD [LQ] recently issued separate challenges to address the gmiersfy of static
spectrum assignment in licensed bands.

A recent study conducted by Shared Spectrum shows thatge/epectrum occupancy in the fre-
quency band from 300 MHz to 3000 MHz over multiple locatiogsrierely 5.2%. The maximum
occupancy is about ¥3in New York City [11, 12]. It can be found that the spectrum scarcity is mostly
caused by the fixed assignment to the wireless service apgrand there exist spectrum opportuni-
ties both spatially and temporally. Therefore, the interesllowing access to unutilized spectrum by



Sensor009 9 6532

unlicensed user (second user) has been growing in sevgudatery bodies and standardization groups,
e.g., the FCC and IEEE 802.22—the first complete cognitiderbased international standadds].

In particular, the spectrum scarcity is the most severelpnolior US for wireless services, partially
due to the fact that US has the densest spectrum usage. $laereinmon belief that we are running out
of usable radio frequencies. Cognitive radio (CR) provideslternative (a new paradigm) to systems
such as the third generation (3G) and the fourth generatl@).(As a result of the Department of
Defense (DoD) focusing on the Joint Tactical Radio SystefR&), US has a clear technical leadership
in cognitive radio.

Cognitive radar 14], on the other hand, has similar demand for dynamic specshaning. It is
our conviction that it is, indeed, feasible to build a coyeitradar system using today’s technology.
The advent of (multi-GHz) arbitrary waveform generators heade it possible to change waveforms
from pulse to pulsel5]. Until recently, sensor hardware was not capable of chranthe transmitted
waveform in real time. We believe that the sensor hardwanebealeveraged by jointly considering
wideband spectrum sensing and waveform design.

Figure 1. DARPA XG cognitive radio.
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Anti-lamming—an example of electronic warfare—is criticdhe multi-GHz wideband platform
proposed for both cognitive radio and cognitive radar mayfuréher leveraged by including anti-
jamming strategy (e.g., frequency hopping): it is much katd jam the multi-GHz wideband commu-
nication and radar, compared with their multi-MHz countetp. Our proposed experimental platform
is one of the first of such integrated platforms.

There are two frequency bands where the cognitive radiostnoigerate in the near futurél, 13):
54-862 MHz (VHF and UHF TV bands) and 3—-10 GHz (Ultra-wideb@dWB) radios) L6]. The FCC
has noted that in the lower UHF bands almost every geograykec has several unused 6 MHz-wide
TV channels. In 2002, the FCC approval of UWB underlay nekson 3—10 GHz indicates that this
frequency range might be opened for opportunistic use.
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Figure 2. Embedded web server (EWS) for wireless sensor networks (WSN

Central WSN
node node # L

Since CR uses opportunistic transmission, it is desirabd@éerate over the widest possible bandwidth
to give the highest probability of detecting unused spddiva The unique sensing function forces the
front-end to have several GHz sampling rate with high rasmiof 12 or more bits), if GHz bandwidths
are to be searched§]. One of the most demanding challenge is posed by wide baftdwmnake UWB
RF front-end able to access spectrum dynamically.

There exist two basic problems for system concepts: (1) Howve deal with baseband signals of
several GHz bandwidth, say 3 GHz (0-3 GHz) or 7.5 GHz (3.16-8Hz)? (2) How do we handle the
dynamic range of spectrum sensing over the bandwidth ofake@&1z? The objective of this paper is to
address these two problems.

The system is designed using a revolutionary new theoryp &sown as compressed
sensing 19, 20, 21]. By exploiting thestructureof the natural signal, a sampling rate that is much
lower than the Shannon/Nyquist rate can be used to recogéimtformation” of the analog signal with
overwhelming probability. We have demonstrated a UWB systaseband bandwidth (5 GHz) that
would take decades for the industry to reach with the comveakt sampling technology. We could
use standard converters at the level of 125 megasampleg@and (MS/s), for which excellent high
dynamic range commercial solutions are available—a biguathge of the proposed approach.

UWB radios are revolutionary due to its unprecedented baittiw-three orders of magnitude higher
than the typical wireless systems. Their signals exhibibynanique properties such as transient and
impulsiveness—they are sparse in some domain (e.g., tiMie¢ sparseness—the very fundamental
notion underlying compressed sensing—can be exploiteddoae sampling rate. Compressed sens-
ing framework provides a universal measurement approactigoal detection and estimation, without
reconstructing the signal—a quasi-digital receiver. kmlthe analog-intensive correlation receivers
(popular for UWB), extremely wideband analog delay eleni®nbt required.

The fact that space-time signals are essentially alwaysfigntly compressible in some represen-
tation promises huge benefits. These compressive samplgcpls are noteworthy for the relatively
limited prior knowledge about the class of the signal to bguared: basically just the knowledge that
the signal of interest would be compressible within a cemtapresentation—theoretically demonstrated,
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for a class of UWB radio and acoustic signals, by the first@utacently P2]. These classes are quite
large and, in principle, one compressive sampling prota@yks for the whole class. This paper focus
on the rigorous determination of the potential impact osthand other fundamental research concepts
on practical communications approaches. The proposedraswill uncover significant opportunities
and establish various important bounds on the samplingnetjuas a function of prior and ancillary
information, about the RF environment and the particulaliaption (UWB cognitive radio).

2. Summary of the Paper

The objective is to seamlessly integrate (into a singlef@iat) three system ingredients: cognitive
radio, cognitive radar and anti-jamming. One primary takths proposed research is to provide new
analytical and computational tools to allow for practicaplementation of compressed sensing and,
eventually, to aid the design of sensors that are capablarofing out direct measurements motivated
by the established theoretical bounds. Radar is a remoggngesystem well suited for cognitiod4].
The knowledge-based cognition is inherent in cognitivecatd radar, and can therefore be jointly de-
signed together with anti-jamming. For example, wavefoasigins for radar sensin§j] and cognitive
radio [23, 24] can, indeed, be co-designed in the same framework. Botkraydscheme (e.g., UWB
radio IEEE 802.15.44l, 25, 26, 27]) and overlay scheme (e.g., TV band cognitive radio IEEE. 3PP
can be studied in the unified framework for both cognitiveéaaahd cognitive radar. Anti-jamming is
the prerequisite for most DoD communication and radar appbns, and can be naturally fitted into
the unified framework. The focus is on the basics and proviegcbncept: multi-GHz waveforms and
spectrum sensing, theoretical framework, and hardwatledgesThe primary challenge is caused by the
wideband (multi-GHz) nature of the problem at hand. Congivessampling provides a new paradigm
to greatly relax the ADC, which simplifies the front end. Caoegsed sensing can be also used to reduce
the ADC for radar sensing2B]. On the other hand, wideband (multi-GHz) spectrum senrsingry
challenging—is used for dynamic spectrum access. Newjamtning capabilities can be explored in
this novel framework. Experimental systems with real lifgoerfections are proposed Figige

Below is a list of topics being discussed extensively in tikiving sessions:

e Spectrum Sensing for Cognitive Radio

A Survey on Cognitive Radio Implementation Research

Multi-Giga-Hertz Agile Radio Front-End Design

A Compressed Sensing Based Ultra-Wideband Cognitive Radio

Wideband Waveform Optimization for Multiple Input Singleitput Cognitive Radio Using Time
Reversal

A Unified Framework for Cognitive Radio and Cognitive Radar

Quickest Spectrum Sensing

Soft Decision Cognitive Radio and Hybrid Overlay/Underaggnitive RadioWaveform Design
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Figure 3. Experimental systems.
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2.1. Compressed Sensing

Compressed sensing builds upon a core tenet of signal giagesnd information theory: that signals,
images, and other data often contain some typstrofcturethat enables intelligent representation and
processing. For example, in imaging compressing, a coeelsignal’s energy can be compacted into
just a few essential coefficients. Such transform coderk@tpe fact that manyatural signals have a
sparserepresentation in terms of some basis (e.g., Fourier, wgvel

Fortunately, by the first autho2®, 29, 3(], transient electromagnetic signals and acoustic sigarals
rigorously shown to have such a structure, called comgriisgi UWB signals (used for communica-
tions and radar) belong to this class of transient signatss theoretical work paves the way for the
practical application, since the prerequisite for usirgg@% principle is that channel impulse response is
compressible in some basis, either frame or dictionaryngJsingular value decomposition (SVD) —an
orthogonal basis—of the channel impulse response, thafiteor has proved that the SVD coefficients
follow a power-law decay and thus satisfy the definition afhgoessibility P2, 30]. The focus of this
proposal is to demonstrate the real-world UWB system, akesidpy using a CS principle.

2.2. A Compressed Sensing Based Ultra-Wideband System

The concept of the compressed sensing based UWB systemsigalied in Figur&6. The core of
the system lies in compressed sensitg RO, 21, 31]. For example, for an RF bandwidth of 5 GHz, a
sampling rate of 125 MHz is sufficient for a measured charmplilse response indoors. This example
has demonstrated the power of the CS principle to reduceettever complexity by simplifying the
mixed signal processing. Related concept is used in r@&8hahd imaging B2).
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2.3. Wideband (Multi-GHz) Spectrum Sensing

There are two classes of cognitive radios: (1) narrowbarmphitive radio; (2) wideband cognitive
radio. This classification is purely for the convenienceedatiption in the context of spectrum sensing.
Two motivating examples are given to illustrate this funéamal difference: (1) 6 MHz cognitive radio
for unlicensed digital TV band—IEEE 802.223]; (2) wideband tunable (over several GHz bandwidth)
cognitive radio—evolution beyond 802.22.

The narrowband cognitive radio—band specific (TV band)—igimeasier for spectrum sensing. It
can exploita prior information about one particular system configurationhsagair interface, modula-
tion format, symbol rate, pilot, etc. Its wideband coungetmenerally has not so much information to
use. Spectrum is like disk space, the more one has, the mplieans that will use it3]. The front-
end, including A/D, filters, wideband and real-time sensiaghe primary challenge for the wideband
case. Spectrum sensing for the physical layer design ifianohallenge3]. The wideband CR is the
primary focus of this proposed research. We will systemadllievaluate the 802.22 technologies of the
narrowband CR3, 34, 35, 36, 37, 38] before their use in the wideband CR.

Spectrum sensing is one of the major challenges for cognidigio, since the signal is weak to detect
and protect (at low SNRsBB, 39. For example, TV broadcasters have set a stringent limitHe
digital TV signals to be reliably detected (probability atdction> 90% with probability of false alarm
> 10%) at a signal strength of 116 dBm translating to roughly dB of signal-to-noise ratio (SNR)
based on the receiver noise figure (NF) of around 11 dB and skeotiomnidirectional antenna for
spectrum sensing].

2.4. Waveform System Model and FPGA System Hardware Testbed

Wideband (multi-GHz) cognitive radio is in its infancy, cpared with its narrowband counterpart
IEEE 802.22. It is critical to test key system componentsiffeent system settings. Three system
models are proposed: (1) MATLAB/C simulation model; (2) \WBrm model; (3) Real-time FPGA
system model.

Most research is carried out in the domain of MATLAB/C sintida model. This approach is simple.
But many real-world limitations cannot be simulated. Th&ue approach of this proposal is to combine
these three models. Real-time FPGA model (Fig(l®) is the ultimate test, but time-consuming. We
will use this model when the system is very stable. As a resudst system emulations are based on the
waveform model in Figur8(a). A waveform of 9.6 GHz effective RF bandwidth with 10-t&solution
can be transmitted over the air, and captured after traisgmnisThis system produces high-speed serial
waveforms with real life imperfections including noisétgr, pre/de-emphasis, and multi-level signaling
up to 8 Gb/s. This waveform model is made available only riégéto the best knowledge of the first
author, this is available less than one year), with the 1ag&&3 conversion. TTU’s lab is fortunate to
have the NSF MRI grant to make this possible.

2.5. Challenges of the Wideband Front End

The main components of a cognitive radio transceiver areati® front-end and the baseband pro-
cessing unit. Each component can be reconfigured via a ¢dnisoto adapt to the time-varying RF
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environment. In the RF front-end, the received signal is ldre@, mixed and A/D converted. In the
baseband processing unit, the signal is modulated/dematduand encoded/decoded. The baseband
processing unit of a cognitive radio is essentially simitaexisting transceivers. However, the novelty
of the cognitive radio is the RF front-end. So we will first éscon the RF front-end of the cognitive
radios fQ].

For wideband (multi-GHz) cognitive radio, there may be iifgeng signals that are much stronger
than the CR signal of interest, resulting in signal to ireegfhce ratios as low as50 dB. This requires a
large dynamic range for the front-end circuitry and in gadiar for the ADC which must accommodate
the large interfering signals while still provides suffitigiuantization performance for the weak CR sig-
nal [18]. In typical cognitive radio sensing scenario, the RF sigmasented at the antenna includes sig-
nals from closely and widely separated transmitters, aomh fransmitters operating at widely different
power levels and channel bandwidths. As a result, the laygardic range becomes the main challenge
as it sets the stringent requirements on circuit lineariiy gesolution of A/D converterd [, 41].

Generally, a wideband front-end architecture of the cogmitadio has the following structure
(Figure 3(b)). The components of a cognitive radio RF front-end ardodews: (1) RF filter: the
RF filter selects the desired band by bandpass filtering teved RF signal. (2) Low noise amplifier
(LNA): the LNA amplifies the desired signal while simultanesty minimizing noise component. The
LNA should have minimal noise figure (e.g., 2—3 dB) in ordeh&ve good sensitivity at low power. (3)
Mixer: in the mixer, the received signal is mixed with logaflenerated RF frequency and converted to
the baseband or the intermediate frequency (IF). The mhars to maintain the linearity across entire
dynamic range and bandwidth. However, these are also domglicequirement with respect to power
consumption. (4) Voltage-controlled oscillator (VCO) gotthse locked loop (PLL): the VCO and PLL
need to quickly generate a signal at a specific frequencyfmigresolution. This is a key challenge for
wideband spectrum sensing. (5) Channel selection filtee drfannel selection filter is used to select
the desired channel and to reject the adjacent channel®\u{®matic gain control (AGC): The AGC
maintains the gain or output power level of an amplifier cansbver a wide range of input signal levels.

Furthermore, large dynamic range and sampling of widebagrdhts further require high precision
and high speed A/D converters. Unfortunately, the desighigh speed A/D converters has funda-
mental limits in terms of achievable resolution. The regmient of a multi-GHz speed A/D converter
necessitates the dynamic range of the signal to be redudectl®&dD conversion.

In summary, the key challenge of the physical architectéird@ cognitive radio is an accurate de-
tection of weak signals of licensed users over a wide spactamnge. Hence, the implementation of RF
wideband front-end and A/D converter are critical issu@s will be addressed in this paper.

2.6. Cognitive Radar and Anti-Jamming

Three ingredients are fundamental to the cognitive rabifr [1) intelligent signal processing, which
builds on learning through interactions of the radar with gurrounding environment; (2) feedback
from the receiver to the transmitter, which is a facilitatdrintelligence; and (3) preservation of the
information content of radar returns, which is realized bg Bayesian approach to target detection
through tracking.
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This cognitive cycle performed by a cognitive radar systeatwo-way process—is similar to the
time reversal communication systed?], in the spirit that the environment has a strong and comwtiisu
influence on the radar returns (i.e., multipath echoes).olnglso, the radar builds up its knowledge of
the environment from one scan to another and make decisfonterest on possible targets at unknown
locations in the environment. Unlike a communication systéhe feedback mechanism, which is a nec-
essary requirement of the cognitive system, is easier tteimgnt, as the radar transmitter and receiver
are usually co-located.

To simplify the description, we will use the cognitive radi® the motivating system; most of contents
are, however, valid to cognitive radar. For anti-lammingafed by both communication and radar), we
emphasize the new possibility enabled by wideband (mutizldront end. Hardware is our primary
concern in the concept proof stage. New algorithms will beettgoed when more experimental results
are available.

2.7. Significance and Related Work

For wideband (GHz) spectrum sensing, there is no practiegl tev locate all receivers of commu-
nications from the transmittedB]. One challenge is wideband RF front-end capable of simaetas
sensing of several GHz wide spectrubi[17, 18, 41, 44, 45).

ADC implementations—trade sampling frequency againstadyin range—are the bottleneck of
some emerging applications such as wideband cognitivesamhd cognitive radar. Emerging appli-
cations require conversion of instantaneous bandwidthergtgahertz range with dynamic range of up
to 16 bits. This translates to ADC sampling rates of multigigasamples per second (GS/s) with a
sample aperture jitter held to one-tenth of a picosecondre@t capabilities fall well short of needs
and are advancing at a rather slow rate—improving aboutifsSrbeight years. For example, UWB is
allowed to operate from 3.1 to 10.6 GHz (a bandwidth of 7.5 GIADC speed is far behind the need for
digital receivers.

Compressed sensing principles enable the design of flexialging devices and techniquéd?]. By
time multiplexing a single detector, they can employ a legeasive and yet more sensitive photo sensor.
Their new camera architecture that employs a digital mienamarray to perform optical calculations
of linear projections of an image onto pseudo-random bipatterns. Its hallmark includes the ability to
obtain an image with a single detector element, while sargphe image fewer times than the number of
pixels. The idea is to off-load processing from data coitecinto data reconstruction. Not only will this
lower the complexity and power consumption of the deviceitbull enable adaptive new measurements
schemes. The most intriguing feature of their system is #iate it relies on a single photo detector, it
can be adapted immage at wavelengths that are currently impossible withvemtional imagers

This surprising feat of the single-detector camera hasredphis research. A natural question arises
from this observation. Can one use the same principle foeladd (multi-GHz) communication and
radar? The UWB signal at the receiver consists of shortsteau pulses with huge bandwidth that is
impossible for the current semiconductor industry to han@ihe UWB signal, however, gparsan time
domain (like Dirac pulses). Can this signal sparsity be @x@dl in a novel UWB system design? This
idea appears very promising, according to preliminarystgations. For example, a system bandwidth
of 5 GHz has been achieved over the wireless channel, by asing/D converter of 125 MHz (as
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described above). As in the case of the one-detector camherajost important advantage is to adapt
this system architecture to work at bandwidths that areeatiyr impossible with conventional designs
(based on Shannon/Nyquest sampling). For example, theadeahced A/D can sample at 10 GS/s with
8 bits (www.Maxtek.com), and D/A (model DX-10G) can reachl@ck rate of 10 GS/s with 10 bits.
Assuming analog processing is available at the transmittersystem bandwidth can go much higher.
This implies digital signal processing will, thus, be fddsiat the receiver.

On the other hand, there is some sparsity in spectrum thabeasxploited in the framework of
CS [46]. This potential is not as large as the signal domain sincecare pre-code the transmitted
waveform in a way suitable for CS.

2.8. Quickest Detection for Spectrum Sensing

Spectrum sensing is the (instead of ‘a’) key problem in ctigmiradio systems. Secondary users
need to monitor the spectrum occupancy in order to use therspe when there is no primary user
or quit the spectrum when primary users emerge. Like allrafleéection (or equivalently, hypotheses
testing) problems, the spectrum sensing needs to find adfifdolstween miss detection (not detecting
the primary user when it emerges) and false alarm (clainagy & primary user exists when there is
actually no primary user). Due to the requirements of tdileraiolation to primary users and tolerable
interruption to the communication of secondary users, ffgetsum sensing has substantial impact on
the overall performance of cognitive radio systems.

In most existing publications on spectrum sensing, tradél block detection is used, in which the
observations are grouped into blocks and decision is matie a&nd of each block based on the obser-
vations of the corresponding block (illustrated in Figdr@)). The advantage of such a block detection
is easy implementation. However, it is difficult to determihe size of each block: if the block size is
small, the decision will be unreliable; if the block size @asde, then the detection delay may be large
(e.g., a primary user emerges at the beginning of a blockamtbe detected only at the end of the block;
then the delay will be the block duration).

Figure 4. lllustrations of block and sequential detections.
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Therefore, a more suitable framework for spectrum sensngequential detection (illustrated in
Figure4 (b)), in which the decision could be made when each new observarrive. Moreover, we
notice that the observation distribution could change. (&g average received power is increased when
primary user emerges), which is different from traditiodetection problems (the distribution is static).
Hence thespectrum sensing is essentially to detect the change ofvaism distribution A powerful
tool for such a problem of change detectionisckest detectio(also called quickest change detection or



Sensor009 9 6540

abrupt change detection). As illustrated in Figbygve assume that the original observation distribution
is Py and the distribution is changed i at a time unknown to the detector. The job of quickest dedacti
IS to detect the change as quickly as possible under thereartsif tolerable false alarm rate. We coin
the spectrum sensing within the framework of quickest dete@squickest spectrum sensing

Research on quickest detection dates back to 193land has attracted substantial research since
then. Quickest detection is useful in tasks like remoteiggrd8, 49, 50], financial decision makinggL,
52, 53, 54, 55], medical diagnosisg6, 57, 58, 59|, signal segmentatiorép, 61, 62, 63], environmental
monitoring [64, 65|, and network securityd6, 67, 68, 69, 70, 71]. In recent years, decentralized quickest
detection has received plenty of studi@ég,[73, 74]. Comprehensive introductions on quickest detection
can be found in75] and [76].

Figure 5. lllustration of quickest detection.

HO: PO H1:P1

The quickest spectrum sensing can be categorized accdalihg following criterions:

e Bayesian vs. non-Bayesian: thepriori probability of primary user activity is availabl&T] in
the former case and unavailable in the latter ca@sg [

¢ Single channel vs. multiple channels: whether the secgnaser could monitor one channel or
multiple channels in the frequency spectrum;

e Completely observable vs. partially observable: this igggb only the case of multiple channels;
in the former situation, the secondary user can get obsengfrom all channels whereas it can
monitor only a subset of channels in the latter case.

In the remainder of Sectio@., we will discuss two typical scenarios of quickest spectaansing:
single channel with non-Bayesian detection and multiplenciels with Bayesian detection based on
partial observations.

2.9. Overlay and Underlay Transmission for Cognitive Radio

In current cognitive radio, there are two approaches tohsspectrum more efficiently: the overlay
cognitive radio transmission and the underlay cognitivBaaransmission (UWB). In underlay CR, a
very wide bandwidth is occupied by the transmission with e/\ew power spectrum density. This
extremely low spectrum density of underlay CR transmissmwids significant interference to existing
primary users operating in the range of the underlay CR tngs®on. In overlay cognitive radio, fre-
quency agile transmitters discover unused spectrum “haled transmit over those unused frequency
bands. By doing so, interference to existing wireless systis avoided.

However, both underlay CR transmission and overlay CR tn&son are not without drawbacks. In
underlay CR, the transmission power is extremely limitedroher to avoid interference to primary users,
which significantly decreases the available channel cgpatm overlay CR, only unused frequency
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bands are exploited to transmit signal and all underusedsbare not touched at all, which decreases
the available bandwidth and channel capacity. In Sedt®ywe will address this issue.

3. Spectrum Sensing for Cognitive Radio

A CR dynamically alters its own frequency assignment akaseg its local spectrum and ultimately
does not impact the performance of the primary netwdtkPhysical (PHY) layer issues include spec-
trum sensing algorithms, low SNR signal detection, widebamarrowband sensing, adaptive modula-
tion and coding, waveform shaping, ADC, programmable Bltéddedium access control (MAC) issues
include coordination of quiet periods, spectrum sensingagament, contiguous multichannel opera-
tion, inter-channel synchronization, real-time dynansisaurce allocation, and multi-channel access.

Spectrum Sensing for Narrowband Cognitive Radio

Figure 6. Digital TV Signal. Pilot is noticed in the left.
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An exhaustive review of spectrum sensing in IEEE 802.22/srgin [39]. A good survey of cognitive
radio is J0]. Energy detection, pilot detection and collaborativeedgbn are experimentally studied
in the context of DTV 79]. Dynamically selecting one out of six (1.75 MHz) channeighwn 225-600
MHz was field tried within DARPA's XG progranBp), 81]. Pilot-based sensing is used for fine sensing
in IEEE 802.22, but is non-blind (ATSC -specific). A distribd approach is use82.

Cyclostationary Sensing The inherent spectral redundancy (in cyclostationaryag3]) caused by
the use of a cyclic prefix in OFDM signals may be exploited} fgs [11, 44] and then 84, 85, 86]. A
unified approach to the recognition of signals belongingpéahree basis air interfaces categories: single
carrier TDMA, OFDM systems, single carrier CDMA syster83][ It is also used to WCDMAZgS]. It

has been used in a framework of overlay/underlay cognitideor[23, 24).

This unified approach may be the most promising, if there mesprior information about com-
munication such as modulation form&3]. Although valid for some commercial systems above, this
is generally not true for DoD systems. Higher-order stas(HOS) of the cyclostationary signals
is needed.
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Non-Gaussian Nature of the Frequency Domain Signals No prior knowledge of the type of signals
present in the spectrum is often known. Signal detectionangSian noise can be carried out using
HOS [6]. The fact that the cumulants of the order higher than twaaf@aussian process are zero can
be used to detect the signals in the Gaussian noise. Theedagaveform samples can be grouped into
segments, and higher order cumulants for each of these s¢goan be estimated. The detection thresh-
olds are defined after a period of learning the distributmfrtee moments and cumulants, and a decision
is made whether a particular segment of the received saropteains meaningful information or not.
This is a test (also known as bi-coherency, tri-coherenty) éo determine if the received waveform
belongs to the DTV signal or noise. In the time domain, DTVhailg show Gaussian characteristics. In
the frequency domain, however, they are non-Gaussian. Wexpioit such characteristics to detect the
signals in AWGN.

Spectrum Sensing for Wideband Cognitive Radio

Wideband (e.g., from 0 to 3 GHz) spectrum sensors scannifigphedicensed bands may not be able
to include all feature detection algorithms necessaryeatidly all incumbents operating in the measured
band B3]. In this case, it may be preferred to use energy detectidheiQvideband sensing techniques
are needed.

At the cognitive radio (CR) transmitter, this sensing amehémission function is performed over the
widest possible bandwidth to give the highest probabilityletecting unused spectra—opportunistic
transmission17]. The unique sensing function forces the front-end to haveal GHz sampling rate
with high resolution (of 12 or more bits), if GHz bandwidtire &0 be searched §].

The main limitation in a radio front-end’s ability to detagéak signals is its dynamic range, which
dictates the requirement for number of bits in A/D conver&nce it is difficult to design high-resolution
A/D converters—the pricing will not follow Moore’s law, isihighly desirable to relax the A/D require-
ment. Also, the power and A/D complexity rises almost expiady with the number of bits.

There is a synergy between compressed sensing and speeimgmg The former enables the use of
a bigger signal bandwidth to fully exploit the potential bét7.5 GHz unlicensed spectrum allocated by
FCC. The latter enhances the opportunity of the system tomgecupied spectra.

Operation of WiMax in the 3.5 GHz band is susceptible to fiet@nce from UWB devices3p).

Energy-Based Sensing The non-coherent energy based approach does not regpiter knowledge

of the signal to detect, and results in far fewer calculaitmreach decision, enabling a larger band-
width to be surveyed at all times. The disadvantages arewtsrlsensitivity to the weak signal and the
requirement for the adaptive threshold setting.

Eigenvalue-based sensing The advantage of the autocorrelation matrix approach i®lp an the
spectrum only. Using the Wiener-Khintchine theorem, thimearrelation estimate at lagin the band
of interest defined by,,, m € [1, M] is given by ]

S

Rmx(Tn) _ % Z ‘S(wm)‘2€j2ﬂmen (1)

m=1
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wherer,, = ndét = £ with ¢ the sampling period equal to the inverse of the samplingieeqy ;. A

a result, only the spectrum is used. In other words, the estié@mformation or phase has been removed.
Once the autocorrelation is collected, its matrix can bené and its eigenvalues can be used to detect
the unused/under-used spectri@f] [

Measurement Systems for Sensing

Measurements of spectrum for interference temperaturdasie to cognitive radio, as is channel
sounding to wireless communications. A measurement sysgng spectrum analyzer controlled by
Labview has been developed for 9 kHz—26.5 GHz—Fidligea sample of collected data. The delay for
each snapshot of the spectrum is in the level of 40 ms.

Since sensing window is in the level of 5-25 ms for IEEE 803322 35, 36, 38, 39|, much quicker
measurements are required. For this purpose, we will usdinga spectrum analyzer Tektronix RSA
6114A. Multiple correlated views are available in all donsa(frequency, time, amplitude, phase, mod-
ulation). The statistics of the spectrum will be essentiduture system designs. For example, quickest
detection 91] is a framework to incorporate the statistics into the alfpons for wideband (several GHz)
spectrum sensin@®p).

Preliminary Results and Proposed Tasks

Roughly speaking, TTU’s Lab has developed the necessarnpreeuat infrastructure for long-term
research in the area of wideband cognitive radio. The measemt equipment is available for spectrum
statistics study. Proposed tasks are to answer the foltpguestions: (1) What are the long-term and
short-term statistics of the wideband spectra? (2) How tloestatistics change with the geo-location?
(3) What algorithms are suitable for wideband spectrumisgfs(4) How is the statistics incorporated
into algorithms?

How does a CR select the best portions of the spectrum todieéNhat amount of spectrum will a
CR be able to harvest in urban/sub-urban areas? How can ar@Rhe risk of using spectrum that only
appears to be unused locally but is indeed being used neaidefr-node problem)?

4. A Survey on Cognitive Radio Implementation Research

For cognitive radio, ultimately, the ability to reliablyaegnize the communication environment and
agilely adapt the transmission parameters to maximize tiaditg of service (QoS) while minimizing
the interference to the primary users can only be addressgglatified by real working system83].
However, for now it is far from clear what mechanisms are Beaged to implement cognitive radios,
both with respect to preventing interference and with resgeefficiency and performance. There are a
plethora of techniques (cooperative sensing, cyclostatiodetectors, Higher Order Statistics Sensing,
etc.) that have been proposed to enhance detection. Noresé techniques have been tested in
real world scenarios and their performance has yet to beactaaized 94]. Thus, the cognitive radio
implementations research becomes a significantly impopian in this area.
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Currently, there are a bunch of testbeds/platforms hava Heeeloped and used for cognitive ra-
dio experiments by industry and academia. A subset of mashteplatforms that are mostly widely
available will be covered in this paper.

4.1. GNU/USRP Radio Platform

GNU/USRP radio is one of the largest scale open source s@&tdefined radio platform today
[95, 96]. It consists of GNU software package and the USRP hardwiatéopm, Figure7 shows a
typical block diagram for a the GNU/USRP radio. The GNU radia free/open-source software toolkit
for building software radios, in which software defines trensmitted waveforms and demodulates
the received waveforms. The USRP (Universal Software RBéirgpheral) is the associated hardware
platform, which is completely open to the public, includitige circuit schematic and FPGA source
code P5, 96).

Figure 7. Architecture of GNU software Radio.

GNU Radio | ! RF N/
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With GNU radio’s open architecture, open source code, abkalfunctionalities developed by devel-
opers from all over the world grows quickly. Because it isdzhen general purpose processor (GPP)
architecture, it is flexible, extensible and portable. €ntly, the GNU radio software capabilities sup-
port the development of various waveforms including AM andl &alog waveforms, narrowband dig-
ital waveforms of GMSK, BPSK, QPSK, and even multi-carrieavaforms 5. GNU radio is written
in both C++ and Python language, and programs can be comgmiédun on most GPPs and operat-
ing systems including Linux, Mac OSX, and Windows XP. Tylic&NU radio is used with a USRP
radio front-end.

The USRP, whose architecture and layout are as describeidunef8, consists of a small mother-
board containing up to four 12-bit 64M sample/s ADCs for reeéunctions, four 14-bit, 128M sample/s
DACs for transmit functions, a million gate Altera CyclonBGA and a programmable USB 2.0 con-
troller. Each fully populated USRP motherboard supports ftaughterboards, two for receiving and
two for transmission. RF front ends are implemented on thghierboards. Depending on the specific
daughterboards added, it can cover a variety of frequenagdaA list of current available daughter-
boards with specification is shown in Taldl¢96.

Hardware drivers for the USRP are included in the standaitd btiGNU radio software package by
default, most of the USRP settings, such as center frequ&@&4 gain, interpolation, decimation, and
other transmission and receiving path options on the USRFbeacontrolled using GNU Radio. The
drivers for the USRP in the GNU radio package are providett botelementary C++ class level and
Python API function level 96].
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GNU/USRP radio provides great flexibility to support vasondependent cognitive radio devel-
opments through software. However, it cannot support hginputational throughput for real-time
processing and controlled physical and network layer natton.

Figure 8. USRP architecture.
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Table 1. USRP daughterboard list with specifications.

Board Rx /Tx Frequency Range Tx Power

Basic TX/Rx| Tx/Rx 1 MHz to 250 MHz N/A

LF Tx/Rx TX/RX DC to 30 MHz N/A

TVRX Rx 50 MHz to 860 MHz N/A

DBSRX Rx 800 MHz to 2.4 GHz N/A

WBX0510 | Transceiver 50 MHz to 1 GHz 100mW (20dBm)
RFX900 Transceiver 750 to 1050 MHz 200mWw (23dBm)
RFX1200 Transceiver 1150 to 1450 MHz 200mW (23dBm)
RFX1800 | Transceiver 1.5t0 2.1 GHz 100mW (20dBm)
RFX2400 | Transceiver 2.3t0 2.9 GHz 50mW (17dBm)
XCVR2450 | Transceiven 2.4to 2.5 GHz, and 4.9 to 5.9 GHzZLOOmW (20dBm)

4.2. Cognitive Radio Platform from UC Berkeley

The BWRC (Berkeley Wireless Research Center) cognitiveores$tbed hardware architecture con-
sists of Berkeley Emulation Engine (BEE297], reconfigurable 2.4 GHz radio modems, and fiber link
interface for connection between BEE2 and radios. The soéwarchitecture consists of Simulink-based
design flow and BEE2 specific operating system that providetagrated environment for implemen-
tation and simple data acquisition during experimed. [

The BEE2 contains 5 Vertex-2 Pro FPGAs, each FPGA embeds arP@w¥05 core, which min-
imizes the latency between the microprocessor and recoabtpilogic while maximizing the data
throughput. Furthermore, with FPGASs running at clock raieslar to that of the processor cores, sys-
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tem memory, and communication subsystems, all data tnansithin the system have tightly bounded
latency. BEEZ2 is therefore well suited for high throughmatlstime applicationsJ7].

In order to interface this real-time processing engine waiios and other high throughput devices,
multi-gigabit transceivers (MGTs) on each FPGA are utdiegether with physical XAUI 4X electrical
connection to form a 10 Gbps full-duplex links. There aretaltof 18 such interfaces per BEE2 board
allowing independent connections of 18 radios. Each iddial MGT channel is software configurable
to communicate and exchange data at any rate below 10 GbpdcHnd also contains USB and JTAG
interfaces. Figur® shows the architecture and a picture of the BEE2 board. Bethout BEE2 can be
found in [97].

Figure 9. BEEZ2 system architecture (left) and BEE2 implementatiah}.
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The reconfigurable wireless modem consists of the filtersCAIAC chips and a Xilinx Vertex-II
Pro FPGA. Digital-to-analog conversion is performed by abit4DAC running at 128 MHz, while
analog-to-digital conversion is performed by a 12-bit A@ming up to 64 MHz. The FPGA performs
data processing and control, and supports 10 Gbps full oAl link for transmitting and receiving
data to/from BEE2. The RF modem module is capable of up/deawwerting 20 MHz RF bandwidth
at 2.4 GHz. The RF frequency is fully programmable in therer80MHz ISM band using LMX2326
synthesizer9§].

Top level block diagram and implementation of the wirelegslem are presented in Figuté. Both
received signal strength (RSSI) and automatic gain cof®@IC) are measured in real-time to support
optimal signal conditioning on the receiver end. It alsddeas dual antenna configuration for switched
antenna diversityd8].

Figure 10. The BWRC Reconfigurable wireless modem.
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Software design is built around Matlab/Simulink from Matinks [99] coupled with the Xilinx Sys-
tem Generator]0( for mapping high-level block diagrams and state machirecgjgations to FPGA
configurations. This environment supports simultaneowgldpment of signal processing algorithms
and digital design description for their hardware reai@at Therefore no translation is required and al-
lows signal processing researchers to realize hardware lemgntation of developed
algorithms P4, 98, 101].

One of the key features in the design flow is the ability to camioate and control hardware registers,
block RAMs, DRAMSs, and software running on control FPGA ialrféme. BEE2 can be connected to
the local area network, so that registers and memory candessed and transferred to laptops or PCs
via Ethernet. Figurdlillustrates the mapping process of algorithms and protoonlBEE2 as well as
experiment control via Etherne®$§, 101].

Figure 11. Software design flow for mapping of algorithms and protocoiBEE2.
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4.3. ORBIT Platform from Rutgers University

The Orbit (Open Access Research Testbed for Next-Genar#ticeless Networks) testbed devel-
oped by WinLab at Rutgers University is a large-scale waleetwork testbed which can be dynami-
cally interconnected into specified topologies for wirslastwork experiments with reproducibility for
quantitative evaluation of various new protocols, or aggilon and system conceptsOR 103. The
radio grid emulator as shown in Figui@ currently consists of 400 wireless nodes having 802.1¢a/b/
wireless cards laid out in 20 x 20 grid separated by about 1 m between adjacent nodes. Each node
is built on a standard PC platform with multiple wireless aviced network interfaces, some of these
nodes can support mobility. The selection of a subset of ks yields a configuration that aims to
emulate a wireless network in the real worldp, 103 104].

As shown in Figurel3, the Orbit testbed uses a two-tier architecture with a lablatar/field trial
network architecture to deal with the important issue ofredpcibility in experimentation, while at
the same time supporting the ability to evaluate protocal application performance in real-world
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settings 103. A user-defined protocol is migrated to the field test aftes ivalidated by the matrix.
Users on the Internet can have remote access to the ORBY.

As shown in Figurel4, the radio nodes in ORBIT testbed form the grid and serve aspth
mary platform for user experiments. Each radio node is aocustireless node which consists of:
(1) 1-GHz VIA C3 processor with 512 MB of RAM and a 20 GB localrthalisk, (2) two wireless
mini-PCIl 802.11a/b/g interfaces, and (3) two 100BaseT ittteports for experimental data and control
respectively. The hardware components also include Im&ntation subsystem, Independent WLAN
monitor system and support server. These components grtvedtestbed with power abilities such as
radio measurements, MAC/network layer view of the radi@’grcomponents and huge data storage
support L02 103 104.

Figure 12. Orbit system architecture.
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Figure 13. High-level view of proposed 2-tier system architecture@iBITs.
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The Orbit testbed has a software framework as shown in FigGrevhich consists of manage-
ment/control software as well as user level applicatione $bftware packages and libraries support
both application/protocol evaluations. These include mmm libraries for traffic generation, measure-
ment collection, etc., and also provide easy hooks to erefgert users to develop their own applica-
tions, protocol stacks, MAC layer modifications and/or otteperiments on the testbed. The manage-
ment/control software include node handler, collectiawaeand disk-loading server. The software for
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radio nodes include node agent, ORBIT Measurement Lib@ML()) and Libmac. These components
and libraries were developed based on Linux kernel 2.6 Heamtget platform to support the experiment
and to provide libraries and interfaces for the user apgtinalevelopment]02, 103 104].

Figure 14. Orbit radio node.

Figure 15. Software architecture of ORBIT testbed.
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The ORBIT testbed can be used to evaluate various concegtsedwork applications in real radio-
device situations. However, such testbed is primarily igpple to experimentation with higher level
networking protocols. The radio node is more like a comptltan a real RF radio and does not have the
ability to do spectrum sensing experiments. At the same, tiheeuse of only a single vector analyzer
limits the exploration of distributed spectrum sensingtpecols. Also, the use of standard 100BaseT
Ethernet overhead can be a limiting factor in study of chaswéching algorithms 94, 103.

4.4. WARP platform from Rice Univ

The WARP (Wireless Open-Access Research Platform) degdlby CMC lab at Rice University
is a scalable and configurable platform to develop, impldraed test advanced wireless algorithms
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for educational and research oriented applications at jployisical layer and MAC layer. The platform
architecture, depicted in Figufes, consists of four key components: custom hardware, platfup-
port packages, open-access repository and researchapls; all together providing a reconfigurable
wireless testbedl05 106, 107.

Figure 16. Architecture of the WARP platform.
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The hardware components include a FPGA motherboard and fiquitgeripheral daughterboards
hosted by the FPGA board in its four daughterboard slots gsr&il7 shows. The Xilinx Virtex-
Il Pro FPGAs is the heart of the hardware and serves as theagricommunication processor, the
embedded PowerPC core in the Xilinx FPGA was programmed pdeiment a flexible medium access
development framework, which enables researchers to aeweltwork layer designs while abstracting
away the physical layer. The four daughterboard slots onWARP board can be used to build 4
multiple-input multiple-output (MIMO) systenmip5, 106 107]. With the radio boards, the testbed may
be used for wideband wireless communications in the 2.4 &B8#z ISM/UNII bands.

Figure 17. WARP custom hardware, including the Virtex-11 Pro FPGA lband radio boards.
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Between multiple FPGA boards, the multi-gigabit transessMGTSs) built into the Xilinx FPGAs
are utilized to provide high speed board-to-board conaastwhich make the WARP platform scalable,
each MGT provides a full duplex 3+ Gb/s connection betweem BRGAs. The daughterboards can
provide analog video capture, playback capabilities, Bexmels of fast analog 1/0 (2 A/D and 4 D/A).
They can therefore enable the implementation of wirelegsrathms in real-time at baseband frequen-
cies, which decouples the processes of algorithmic and Fate debuggingl0g.
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For software development, the platform supports diffedemels of design flows from low level
VHDL/Verilog RTL coding to system level MATLAB modeling. Xnx ISE design tools are used to
synthesize hand-coded HDL and map the designs to hardwaiex ¥ystem Generator, integrated in
MATLAB Simulink, provides abstractions for building andliegging high performance DSP systems
in MATLAB/Simulink using the Xilinx blockset. Moreover, 8iulink hardware co-simulation that ex-
pedites the simulation and debugging steps is also sugptmteMAC and network layer design, the
WARP platform supports C language based applications oRdlmeerPC while interfacing the physical
layer implementations in the FPGA fabritd5, 106 107]. Figure18 shows how researchers design the
various layers of a custom wireless network while using th&qrm interface tools to integrate different
layer implementations.

Figure 18. WARP design flows.
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Rice university also held workshops to further expand the afshe WARP platform at Rice Uni-
versity as well as other universities and research centéesonline open-access repositoipf is the
central archive for all source codes, models, platform sugpackages, application building blocks, re-
search applications, design documents and hardware ddsgjassociated with WARP. The researchers
can discuss problems and exchange ideas about differenithlgic and hardware implementations.

4.5. SFF SDR Platform from Texas Instruments

The Small Form Factor (SFF) Software Defined Radio (SDR) ldpweent platform provided by
Lyrtech in collaboration with Texas Instruments (TI) andid is a self-contained platform consisting
of three separate modules: the digital processing mochéaldta conversion module and the RF module
as shown in Figuré9[109.

The baseband processing part is designed around the TM38204% System on Chip (SoC)11(
from Tl and Virtex-4 SX35 FPGA from Xilinx. The DM6446 SOC isj@ipped with a DSP core and
a ARM9 general-purpose processor(GPP) core on a single ittd[so comes with a complete set of
peripherals necessary for SDR development, includingls&fSB and Ethernet ports, as well as DDR2
memory and NAND flash memory109. The data conversion module is equipped with a 125 MSPS,
14-bit dual channel ADC and a 500 MSPS 16-bit dual channefpaiating DAC provided by TI. The
RF module is configured to have either 5 or 20 MHz bandwidttnwibrking frequencies of 200-930
MHz for the transmitter and 30-928 MHz for the receiver, othigher band products with working
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frequency from 1.6—-2.3 GHz and Wi-Fi band, Wi-Max band ase a@ptional 109. The platform also
uses TI's MSP430 ultra low-power MCU and power managemehinelogy fL11].

Figure 19. SFF SDR platform and the functional block diagram.
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Lyrtech selected the real-time operating system INTEGRIiom Green Hills Software as the un-
derlying software foundation of the SFF SDR developmentfglas and integrated various compo-
nents such as System Generator for DSP from Xilinx, as wallASLAB, Simulink, and Real-Time
Workshop from The MathWorks. These components provide td@ds development package with a
module-based design ability. Model-based design supp@reuse by being able to include legacy code
among the other blocks. In the Simulink environment, thkaise by using S-functions for the DSP, and
black boxes for the FPGA. On the other hand, a developer d¢agrate his or her model-based algo-
rithms to the low-level coded design of the rest of the teath thie use of Embedded Coder, another tool

from the Mathworks tailored for embedded processd@9[111]. The software design flow is shown as
Figure20.

Figure 20. Using SFF SDR platform in module-based design flow.
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The platform also integrates Software Communications #ecture (SCA) that specifies interactions
between hardware and software elements and Common ObjgaeReBroker Architecture (CORBA)

communications middleware standard for the SFF SCA Dewetop Platform. This makes the devel-
opment process much easi&ff].
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4.6. Some TV Band White Space Devices for Cognitive Radio

For years, cognitive radio research has focused on TV bahifF (&d UHF spectrum) because this
band provides superior propagation and building penetratompared to other unlicensed spectrum in
other bands like the 2.4 and 5 GHz bands. After two years veipigee devices (WSD) testing, the Fed-
eral Communications Commission (FCC) in the United Stagsgad a report and order which permits
cognitive use of the TV white space spectrum. These new aggyl rules open up an opportunity to
develop new wireless networks to utilize this spectrdrhd. The following section will give a brief
introduction of the most recent WSD devices from commeimahpanies such as Motorola, Inc., Adap-
trum, Inc. and Philips, Inc. In addition, engineers at thévgrsity of Kansas (KU) have built and tested
a simulated WSD transmitter and successfully demonsttaiedWSD transmissions can be structured
to avoid causing harmful interference to licensed broadaas adjacent channels.

Motorola WSD device

The Motorola WSD platform can operates on channels 21-52 [BHz—698 MHz) and includes
capabilities for geo-location and sensing of digital TVisfs. The system consists of a Cognitive Radio
Rack and a laptop computer host connected via Ethernet. ddkeconsists of a UHF radio and two
PRO-3500 carrier boards co-located in a compact Peripl@aiponent Interconnect (PCI) chassis.
The cognitive engine runs on the lower boatd3§.

This WSD implements a geo-location-based approach asitspr method for the determination of
occupied TV channels with a spectrum-sensing capabiliggus refine the results of the geo-location
solution and to prioritize those channels found to be alela This WSD exhibited the fastest scan
execution time of 0.1 s/channdlf2 113.

In DYSPAN 2008, Motorola WSD platform’s demonstration slsatvat individual video streams from
Client Cognitive radio as transmitter to Master Cognitigdio and displayed on a local terminal. Each
of the radios uses a non-proprietary 802.11 MAC/PHY thatdees rebanded to UHF. Figu?& shows
the TV white space cognitive radio demonstration architect

Adaptrum WSD device

Adaptrum Inc.'s Cognitive Radio Platform is an integrateddware and software development sys-
tem that has been designed for TV white space operation on tévision channels 21-51
(512 MHz-698 MHz). The system is capable of various forms \dfsignal sensing including wave-
form/signature sensing, spectral identification, sigralgr estimation, and network-level cooperative
sensing. It detects both analog and digital TV signals. Fsées is also capable of signal transmission
in the TV bands with flexible waveform, modulation and sigoahdwidth construction. It incorporates
transmit power control and chain linearization to reduga@eht channel interference. The maximum
transmitter output power specification is 100 mW (+20 dBngrdhe selected bandwidtthl3 114.

Key components of the development platform include a wideekhigh dynamic-range RF transceiver
operating over the frequency range 400-1000 MHz and an FP&&d hardware development board
with integrated high-speed ADCs and a high-density FPGAretiee baseband and protocol-layer
functions can be implemented. The software design is basedatlab-based integrated development
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environment (IDE) where CR hardware functions are coretbiising Matlab GUI and Matlab scripts.
Figure22 shows a lab picture of the prototype system which includesRk transceiver board and the
FPGA board 112 113 114.

Figure 21. Motorola TV white space cognitive radio demonstration @exture.
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Figure 22. picture of Adaptrum CR prototype system.

In the 2008 FCC White Space Device testing, Adaptrum dematest its CR prototype system, which
is capable of reliably sensing ATSC and NTSC signals at v@mydetection thresholdlfL2, 114]. More
details can be found irlfL3.

Philips WSD device

The Philips WSD platform is built using a combination of @mtalgorithms implemented on a
Field Programmable Gate Array (FPGA) and commercial affghelf components. It consists of a
commercial TV tuner for tuning to a specified television amarand translating to IF. A digital signal
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processing board is used for ADC processing and a desktopwtemis used to configure the hardware,
provide a GUI and store detection results. FigeBshows a picture of a cognitive radio nodd p, 113.

Figure 23. Philips WSD cognitive radio node.

Philips claims that the prototype WSD will scan UHF chan2dls51 and detect ATSC (DTV), NTSC
(analog TV) or wireless microphones to a level of at least4 dBm over a 6 MHz television channel.
The channel scan time for this device varies between 8 anéch@se to the sequential application of
separate ATSC, NTSC and wireless microphone detectiomitiiges [113.

In the 2008 FCC White Space Device testing, the Philips d@ed@monstrated the most sensitivity in
the laboratory tests, also performed best with respecttertieg occupied channels, however, it reported
a very high percentage of channels occupied that were pattgravailable fL12 113.

4.7. Other Cognitive Radio Implementation Researches

Other than all the platforms mentioned above, there are ratrer research centers and universities
are involved in cognitive radio implementation researclowidver, not all of them can be covered in
this paper, notable are the platforms from NICT of Jag&lb[116, Shared Spectrum Company/1[7],
Georgia Institute of TechnologyL 1§, Virginia Tech University 119 and University of Utah12Q.

5. Multi-Giga-Hertz Agile Radio Front-End Design

Demand for agile radio is increasing from applications ithb@mmmunications and radar aspects. A
dream agile radio should be able to sense the frequencyrspechake a best strategy and dynamically
access to a desired frequency band. These serial actiortsomua®ne as quickly as possible, which
poses design and implementation challenges.

In addition to the requirement for quick response, wide dilrtpy range ability is another essential
requirement for an agile radio to take full advantage of wialege of spectral availability. A multi-
giga-Hertz frequency coverage may sound aggressive, isueithnically achievable, considering recent
advances in electronic devices and our experience in UWiB.rad
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The key subsystem in a multi-giga-Hertz agile radio systermé front-end. The main challenges
in designing and implementing such a front-end include: wideband amplifier with low noise fig-
ure and large dynamic range, and (2) fast switching betwabhands in both transmitter and receiver
RF chains.

5.1. Potential Front-End Design Options

Scheme 1
Frequency sweeping: like a spectrum analyzer, too slow.

Scheme 2
With multiple narrowbands and working in a hybrid paraelial fashion: too many RF analog branches
including a filter bank, and band switching takes too mucletim

Scheme 3
With a few wide bands and working in a hybrid parallel/sefaahion: less RF analog branches and less
band switching time; taking advantage of the power of digitgnal process to achieve flexibility and
agility.

The scheme 3 seems the most attractive and it is considetied fallowing.

5.2. A Design Example-GigaFront-1 Test-Bed Front-End

Proposed here is a multi-giga-Hertz agile radio front-eesigh as an optional design for our labora-
torial test-bed called GigaFront-1.

Philosophy of Design:
The following aspects are used as guidance in the design.

e cover all frequencies of interest, namely, the busy TV bamakhigher bands up to 5.4 GHz
e reduce RF circuit complexity by using large digital procegdandwidth

e achieve fast subband switching in digital domain

e flexible in system configuration and adding new functioratiees

e use as many off-the-shelf products as possible

The major frequency parameters are listed in TaBlasd3. The proposed transmitter front-end and
receiver front-end are shown separately. The overall #aqu span ranges from 400 MHz
through 5.4 GHz, divided into 10 bands in the transmitter @rfxhnds in the receiver. Each band can
be further divided into a number of subbands in digital domaihe digital processing bandwidth is
500 MHz, which does not put too much pressure on the data csiowesection and digital back-end.
Band switching can be done by changing the analog switchiposj combined with local oscillator
(LO) frequency switching. In the transmitter, the analogenigenerates upper sidebands and lower
sidebands, and depending on the position of the seconds{@W?2), one of side bands is utilized. This
design assumes a minimum transmit subband bandwidth of 10, M#rd fast switching between the
subbands is achieved by changing the frequengje$, and f; in digital domain. Note thaf,, f; and
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f2 range from—240 MHz to 240 MHz, resulting in a maximum frequency shift 480 MHizs expected
that switching between the subbands is much faster thactawyg between the bands. There are three
guadrature digital processing cores in parallel in eitherttansmitter or the receiver. The first digital
processing core is dedicated to the two lower busy bandsmgifrgm 400 MHz through 1.4 GHz, while
the rest two cores are dedicated to the higher bands with azif@@guency span. The second and third
digital processing cores can work simultaneously to covér@Hz frequency range. In the receiver,
the bandwidths are 500 MHz for each of the first two bands anéiz fér each of the rest of the four
bands. This receiver band arrangement tries to reduce baitchsg effort in the higher frequency
range, assuming unbalanced utilizations in the lower agldrifrequency ranges.

Table 2. Transmitter frequency parameters (GHz).

Band LO frequency combination center frequency SW position
1.04-0.9 0.65 0.65 +f, SW1 lower
2.09-14 1.15 1.15 +f, SW1 upper
3.14-19 3.15,1.5 1.65+f; SW2 lower
4,19-24 3.65,1.5 2.15+f, SW2 lower
5.24-29 3.15,0.5 2.65 +f; SW2 lower
6.29-34 3.65,0.5 3.15 +f, SW2 lower
7.34-29 3.15,0.5 3.65 +f; SW2 upper
8.29-44 3.65, 0.5 4.15 + f, SW2 upper
9.44-49 3.15,1.5 4.65 +f, SW2 upper
10. 4.9-5.4 3.65,1.5 5.15 +f, SW2 upper

3.4~5.4GHz

Figure 24. Transmitter front-end architecture.
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Figure 25. Receiver front-end architecture.
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Table 3. Receiver frequency parameters (GHz).
Band Intermediate frequency (IR) Image frequency
1.0.4-0.9 0
2.09-14 0
3.14-24 3.9,0 54-6.4
4.24-34 390 44-54
5.34-44 390
6.4.4-54 3.9,0 24-34

5.3. Remarks

The multi-giga-Hertz agile radio is a new technical trendcommunications and radar applica-
tions, in response to the need for efficiently sharing thecgcapectral resource. The front-end de-
sign and implementation is the most difficult part in thisalewionary radio. High level front-end de-
sign has been proposed through an example. The methodoseglyhere can be applied to different
situations, depending on specific frequency band planmagjired minimum signal bandwidth, and
hardware availability.

6. A Compressed Sensing Based Ultra-Wideband Cognitive Rawl

Ultra-wideband (UWB) 121, 122 123 124 represents a new paradigm in wireless communication.
The unprecedented radio bandwidth provides advantagésasuienmunity from flat fading. However,
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extremely high sampling rate analog to digital conversidfbj becomes a major challenge in UWB
communication systems. According to Nyquist sampling teeg the sampling rate should be at least
twice the bandwidth of the signal, and oversampling is negilifor better quality. For example, a 5 GHz
UWB signal needs over 10 Gsps A/D if oversampling is congidewhich is not feasible even for the
state-of-art hardware.

Compressed Sensing (CR)] 125 gives an opportunity to overcome this challenge. The samgpl
rate can be reduced to less than one tenth of the Nyquistamteng as the transmitted signal is sparse
in some aspect. CS has been used to UWB communicatii#® 127]. A novel CS based UWB
communication system is proposed. The channel itself isidened as part of compressed sensing. The
hardware complexity of the receiver is moved to the tranemside. The A/D sampling rate for a5 GHz
UWB signal, covering the 3—8 GHz frequency band, is reducexstiow as 125 Msp4.p§.

Cognitive Radio (CR) is another challenge in the UWB systdrhe ultra wide spectrum a UWB
system occupied will interfere or be interfered by othermaband or wideband systems sharing the
same spectrum. A simple method is suggested and verified D$hased UWB communication system.

6.1. Compressed Sensing Background

Reference 129 gives a most succinct highlight of the CS principles and & followed here for a
flavor of this elegant theory. Consider the problem of retmigting an/NV x 1 signal vectorr. Suppose
the basisl = [y, ..., ¥x] provides aK -sparse representation ofwhereK << N; that is

N—-1 K
2= o= vubn @)
n=0 =1

Herex is a linear combination ok™ vector chosen fron¥; {n;} are the indices of those vectoks),, }
are the coefficients. Alternatively, we can write in matrotation

x =Vl (3)

wheref = [0, 01, ...,0n_1]7. In CS,z can be reconstructed successfully frathmeasurements and
M << N. The measurement vectglis done by projecting: over another basi® which is incoherent
with ¥, i.e.,y = ®W¥¢. The reconstruction problem becomedanr norm optimization problem:

0 = argmin |||, st y=dVH (4)

This problem can be solved by linear programming technidikesbasis pursuit (BP) or greedy
algorithms such as matching pursuit (MP) and orthogonathmag pursuit (OMP).

When applying the CS theory to communications, the samphteg can be reduced to sub-Nyquist
rate. In [L3( and [13]] a serial and a parallel system structure were proposegecésely. Sampling
rate can be reduced to less than 20% of the Nyquist rate. Hawiaey were designed for signals that
are sparse in frequency domain. In this paper we proposeal sgstem structure which is suitable
for pulse-based UWB communications, which is sparse in tilmmain. The analog-to-information
converter (AIC) structure inl[3Q is not suitable for UWB communications. The 3-8 GHz UWB sign
is considered as an example in describing the reasons:
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e The multiplier, which can be a mixer, supporting such highdvaidth for 3-8 GHz UWB signal
is difficult to implement.

e The system is time-variant. Each measurement is the prodacitreaming signal and a changing
PN sequence. This requires a huge amount of storage spaceraptex computation.

A simple architecture that is suitable for UWB signals isgmeed using a finite impulse response
(FIR) filter-based architecture.

6.2. Filter-based Compressed Sensing

Random filter based CS system for discrete time signals w@soped in 132. This idea can be
extended to continuous time signals. We u$e denote the convolution process in a linear time-invarian
(LTI) system. Assume that there is an analog sigr@), < [0,7,] which is K-sparse over some
basisv:

P = S U (0)0, = W (1)0 ©)
n=0
where
W(t)=[Wo(t), Ui (t), ... Un-1(t)] (6)
0= [0y, 01,....00_1]" (7)

Note that there are onli non-zeros ir¥. x(t) is then fed into a lengtli- FIR filter h(¢):

L—1
ht) = hid (t —iT)) 8)
=0

whereT), is the time delay between each filter tap.

The outputy(t) = h(t) * z(t) is then uniformly sampled with sampling peri@d. T follows the
relationT /T;, = q, whereg is a positive integer)M samples are collected sothdt 7, = |L - T), + 1|,
where(L - T}, + T ) is the duration of(t).

Now we have the down-sampled output sign@h7;), m = 1,2, ..., M — 1:

y (mTs) = h (mTy) * x(mTy)

- OT” h(mTs —7)x(1)dr

L-1
= OTy Z;O h15 (st — ZTh — T) T (T) dr (9)
L-1

= > hyx (mT, —iTy)
i=0
=dx

where® is aquasi — Toeplitz matrix and

z=1[x(0),z(T),...x (M —1)qTy)]" = U6 (10)
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A quasi — Toeplitz matrix has such property: each row®dthasL non-zero entries and each row is
a copy of the row above, shifted right yplaces.
Lety,, = y(mT}), we have

Y= [yo,yla e nyl]T (12)
Combining Equations, 6, 7, 9, 10, 11 and12, we have:

y = dUY = O (13)

Now the problem becomes recoveringx 1 vectorf from the M x 1 measurement vectgr, which
is exactly the same as the problem posed in Equatiolmhe number of measurements for successful
recovery depends on the sparsify duration of the analog signal,, filter lengthZ and the incoherence
between® and . Numerical results in Sectiof.3. show that whenz(t) is sparse and(t) is a PN
sequencef can be reconstructed successfully with a reduced sammieg requiring onlyM << N
measurements. Note that measuremeista projection frome via an FIR filter. We use this feature to
design our proposed system.

6.3. Compressed Sensing Based UWB Communication System
Communication system architecture

With the knowledge of Sectior& 1. and6.2, we propose a CS-based UWB communication system
which is able to reduce the sampling rate to 1.25% of the Nstquaite. The system architecture is
illustrated in Figure26. A UWB signal is transmitted by feeding a sparse bit sequémmaigh a UWB
pulse generator and an pre-coding filter. Then, the recaiggdl is directly sampled after the channel,
using a low-rate A/D and then processed by a recovery algorip is the projection matrix consisting of
the pre-coding filter and the channel. It can be noticed thahoel itself is part of the projection matrix
in CS, so the receiver is very simple, with only one low-raf® Ao collect measurement samples. For
example, a 3-8 GHz UWB signals can be successfully recowsredl25 Msps A/D.

K-pulse position modulation (PPM) is used to modulate sphissequence. Each PPM sym-
bol is K-sparse: there ar& positions and onlyx’ << N pulses in each symbol, as illustrated in
Figure27. The output of the UWB pulse generator can be written usiegnibtations in Equations
and6, with U, (t) = p(t — nT,), wherep(t) is the function of the UWB pulse arifl, is the period
of the pulse. Pre-coding filter and channel are modeled adiFéRs, with combined impulse response
h(t) = f(t)*c(t), wheref(t) andc(t) are the impulse response for the pre-coding filter and thereta
respectively. Heré () is equivalent to thé(¢) in Equation8. The received signal(t) = h(t) * z(t) is
then uniformly sampled by an A/D with sampling peridgd Similar to Equation® and12, the down-
sampled measurements form thex 1 vectory = ®¥H = 00, where® is aquasi — Toeplitz matrix.
Now, the communication problem becomes a problem of estigdtfrom M/ << N measurements,
which is again identical to the problem described as Eqoaktio
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Figure 26. The system architecture of the proposed CS based UWB sy$tesrcommuni-
cation problem of recovering the transmitted informatian be modeled as a CS problem.
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Figure 27. The structure of thé(-sparse transmitted symbol.
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The success of recovery relies on the sparkitgnd the incoherence betwe@nand®. Sparsity is
easily met by controlling the transmitted sequence. In prase, we sek = 1, which means that
there is only one pulse in PPM symbol. The incoherence ptppan be met by proper selection of the
pre-coding filterf(¢). If f(¢) is a PN sequence whose chip rate is equal to the bandwidtle ¢f\WB
pulsep(t), thend can be successfully recovered using recovery algorithrodaSthe discussion is in
baseband. If the transmitted UWB is passband, then up-csioveis applied after the pre-coding filter.
PN chip rate and the receiver structure remain the same. Wo-donversion is required at the receiver.
For example, a 3-8 GHz UWB pulse requires a 5 GHz PN chip rat&ghns the same as the signal
bandwidth, not the Nyquist rate of the maximum signal freguyeas required by the AIC system. A/D
at the receiver directly samples the received signal, witkdoing down-conversion.

The number of measurement$ and sampling rate are related and determined by the lengtieof
combined filterh(¢). If h(t) is long, the received signal is “spread out” in the time daméierefore
sufficient measurements can be made under a lower sampleng ra

Cognitive radio capability

CR concept can be integrated within the CS based architeatuthe pre-coding filter, since the
spectrum of the transmitted signal is dominated by the spexcof the pre-coding filter. Suppose the
system has the knowledge of the interference frequencig® aeceiver and a spectrum mask to avoid
interfering other systems. Then, a notch filter will be addethe receiver to cancel the interference. A
spectrum mask will be added at the transmitter. From thetsire of CS based UWB system, the recover
matrix at the receiver should be identical to the pre-codilter matrix. As a result, the transfer function
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of the pre-coding filter will notch out some frequencies aatlasspectrum mask in a prior manner, as
shown in Figure28. The pre-coding filter is then modified to have the capabibtgvoid interfering the
primary users and canceling the interference from them.

Figure 28. Spectrum Mask of the transmitted signal. The 'notch’ paddsto cancel the
interference at the receiver. Transmitter also has themart because CS requires consis-
tency at the receiver and transmitter. The 'mask’ part iscsatoid interfering primary users.
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Channel estimation

After down-samplingy is processed at the receiver withusing BP. In constructin®, f(t), c(t)
and W (t) are requiredf(t) andW(t) are fixed and can be considered as prior knowledge at thevezcei
The channel¢(t), however, needs to be estimated. A CS based channel estimnagithod is proposed.
A 3-8 GHz channel can be estimated by a 500 Msps A/D.

Similar to Equatior8, the UWB channel can be modeled as:

c(t) = i ci0 (t —iTy) (14)
i=0

The channel estimation block diagram is illustrated in Fég20. A UWB probing pulsep(t) * f(t)
is transmitted to “probe” the channel, wherg) is a UWB pulse andf(¢) is a PN sequence. At the

receiver, sub-Nyquist rate A/D collecid uniform measurements. This process can be represented as

y=D | (c(t)* f(t) xp(t)), whereD | denotes a down-sampling factor o¥/M | andy denotes the
measurement vector. Since the system is LTI, an alternbloek diagram can be drawn as Fig.a@
Then,y = D | ((f(t) *p(t)) * c(t)). In matrix notationy = Oc, where® is aquasi — Toeplitz matrix
derived fromf(t) = p(t) ande = [co, cq, ..., c—1]" . The channel estimation problem is to gefrom
measurementg, which is identical to the CS problem described in Equation

Successful recovery requires to be sparse and the incoherent property of measurement
matrix© [21]. Indoor UWB channel is sparse and PN sequence struc&iteats the incoherent property.
PN chip rate should be the same as the bandwidth of the chandel estimation. We demonstrate an
estimation result in the following.
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Figure 29. Block diagram of channel estimation.
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Figure 30. An equivalent block diagram of channel estimation.
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First, we need to set up the real chantie) as the estimation target. Vector network analyzer (VNA)
is used to get the real indoor channel coefficienThe 3-8 GHz channel is measured by VNA with 1
MHz frequency step and 128 averagest) (Figure 31) is derived from the VNA data using CLEAN
algorithm with a rectangular window. There are about 50 nero entries i. PN chip rate is 5 GHz and
length of f(¢) is 1 us. Baseband Gaussian UWB pulsg) has 5 GHz bandwidth. Since the measured
channel is in passband, up-conversion is applied after khélter. At the receiver, 500 Msps A/D is
used to get measurements. BP is then used to get the estiveated: with the knowledge off (¢), p(t)
andy only. Additive white Gaussian noise (AWGN) is added at theeiheed samples ag = Oc¢ + w,
wherew is the noise vector. Basis pursuit denoising (BPDN) is usexbtve the recovery problem with
noise. Figure32(a) shows the estimation result and Fig8&b) shows the zoomed in result. It can be
seen that althoughis a little noisy, all major paths in perfectly match ta:. Only the amplitudes are
slightly different.

Figure 31. Time domain channel derived from VNA measurement. The #yao$ this
channel is 50.
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6.4. Discussion

Our proposed approach is to exploit the projection matrithwhannel itself and a waveform-based
pre-coding at the transmitter. Taking the channel as pait®fesults in a very simple receiver design,
with only one low-rate A/D. The pre-coding is implementedaimatural way using an FIR filter. The
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Figure 32. (a) Channel estimation result. (b) Zoomed in version of dsaiit.
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concept has been demonstrated, through simulations, tesahgvorld measurements. Realistic channel
estimation is also considered. The philosophy is to tradepzgation complexity for hardware complex-
ity, and move receiver complexity to the transmitter.

This work is just the beginning of the pre-coded CS. Futurgkwacludes reduction of algorithm com-
plexity. Much quicker algorithms are required for real-#impplications such as UWB communications.

7. Wideband Waveform Optimization for Multiple Input Singl e Output Cognitive Radio Using
Time Reversal

Waveform design or optimization is a key research issueercthrent wireless communication sys-
tem. Waveform should be designed according to the differemqiirements and objectives of system
performance. For example, the waveform should be designedrty more information to the receiver
in terms of capacity. For navigation and geo-location, flraghort waveform should be used to increase
the resolution. If the energy detector is employed at theivec, the waveform should be optimized such
that the energy of the signal in the integration window atrdeeiver should be maximized. In the con-
text of cognitive radio, waveform design or optimizatiomgus more flexibilities to design radio, which
can coexist with other cognitive radios and primary radier®m cognitive radio’s point of view, spectral
mask constraint at the transmitter and the influence of AabjitNotch Filter at the receiver should be
seriously considered for waveform design or optimizatextept for the consideration of the traditional
communication objectives. Spectral mask constraint isoseg on the transmitted waveform such that
cognitive radio has no interference to primary radio, wherArbitrary Notch Filter at the receiver is
used to cancel the interference from primary radio to cognradio.

This section deals with wideband waveform optimization daultiple input single output (MISO)
cognitive radio using time reversal. The system architedasishown in Figur&@3. We limit our discus-
sion to a single user scenario. There Ar@antennas at the transmitter and one antenna at the receiver.
OOK modulation is used for transmission. Thus the trangahigignal at the transmitter antennés,
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Figure 33. System architecture.
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Sn, (t) - Z djpn (t - ij) (15)

j=—00
whereT,, is the bit durationp,,(t) is the transmitted bit waveform defined oyer7,| at the transmitter

antennan andd; € {0,1} is j-th transmitted bit. Without loss of generality, the minirpaopagation
delay is assumed to be zero. The energy of transmitted wawsfis £,

N Ty
3 / P () df = E, (16)

The received noise-polluted signal at the output of low @aisiplifier (LNA) is,

r(t) = > hn(t) @ sy () +n(t) (17)
_ Z d; Y an (t—jT4) +n(t) (18)

whereh,, (t) ,t € [0,T}] is the multipath impulse response that takes into accoengffiect of channel
impulse response, the RF front-ends in the transceiverts asicower Amplifier, LNA and Arbitrary
Notch Filter as well as antennas between the transmittenaat. and the receiver antenna,, () is

available at the transmittengT” h? (t)dt = E,,. “®" denotes convolution operatiom(t) is AWGN.
x,(t) is the received noiseless bit-“1” waveform defined as

T (t) = hn(t) @ pu(t) (19)

We further assume thdt > 73, + 7, o T,, i.e., no existence of ISI.

If the waveforms at different transmitter antennas arerasslito be synchronized, theth decision
statistic is,

r(kT, +t)) = i d; > an (KT, + to — §Tp) + n () (20)

j=—00 n=1

N
= dy Z Ty (to) + 7 (1) (21)
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N
In order to maximize the system performange, x,, (t,) should be maximized. Thus the optimiza-

n=1
tion problem can be formulated as follows to get the optimaleiormsp,, (¢),

max é\s xy (to)

n*l

s.t. Zfo pn (1) df < E,
OStOSTb

(22)

An iterative algorithm is proposed here to give the optin@lson to the optimization problem,
which is a computationally efficient algorithm. For the sliopy of the following presentationt, is
assumed to be zero. Meanwhile,

N
=z, (t) (23)
From inverse Fourier transform, -
ng (f) = g () g (f) (24)
and
Z g (f) g (f (25)

wherex, s (f), hny (f) andp,s (f) are the frequency domain representations,dt), h,,(t) andp,(t)
respectivelyx,( f) is frequency domain representatiorugf). Thus,

N

n=1

and -
5 0) = [y (51t @7)

If there is no spectral mask constraint, then accordingedtauchy—Schwarz inequality,
d0) = Y / g () puy (f) df (28)
n=1Y"
< \// bt (NP [ o (5 df (29)
<

> [ ih (f)Qde Sy LI (30)

N
= B Euw (31)
n=1

whenp,,; (f) = ah,s (f) for all f andn, two equalities are obtained.

o= Ey (32)

Zf |y (f)[° df
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In this casep, (t) = ah, (—t), which means the optimal waveform (¢) is the corresponding time
reversed multipath impulse resporisgt).
If there is spectral mask constraint, then the followingroptation problem will become more com-

plicated,
max z (0)

stszP P2 (t)df < E, (33)
|pnf( )1 < cnr ()
wherec, ((f) represents the arbitrary spectral mask constraint atanermitter antenna.

Because,(f) is the complex value, the phase and the modulys, pff) should be determined.
Meanwhile,

- | e () df (34)

oo

and
Z g (£)]pag (£)] 2 (exelts D) resslens () (35)

where the angular component of the complex valueg<e).
For the real value signal(t),

wp (f) =23 (=) (36)

where %” denotes conjugate operation. Thus,
Z\hnf M pag ()] (slos ) rereres() 37)

andzs(f) + x;(—f) is equal to

N

Y g (Nl 1png (£)] cos(2m (arg (hug (f)) + arg (pag (f)))) (38)

n=1

If h,;(f) and|p,s (f)| are given for allf andn, maximizationz(0) is equivalent to setting,

arg (hny (f)) +arg (pus (f)) = 0 (39)

which means the angular componenpgf( f) is the negative angular componentgf;(f).
The optimization problem33) can be simplified as,

maXZf \hng () |png ()] df

s.t. Zf |pnf | df<E
\Pnf( )" < eag (f)

(40)

Because

g ()] = g (= 1) (41)
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[Puy (N = |pns (= 1) (42)

|eng (F)| = lens (=) (43)
for all f andn. Thus uniformly discrete frequency poinfs .. ., fy; are considered in the optimization
problem @0). Meanwhile, f, corresponds to the DC component afid ..., fi; correspond to the
positive frequency components.

Define column vectorhy, hyy, ..., hyy,
hf = [h1Tf hgf h%f]T (44)
hn fi— 7i =1
har)i =1 55 ng {s-3) (45)
2|hnf(fi—1)|72227---7M+1
where ‘T denotes transpose operation.
Define column vectorgy, piy, - .., Py,
ps = [Piy Pay - Pagl” (46)
png (fim1)] i =1
(Pn) { Vo (i)l i =2, M+ 1
Define column vectorey, ¢y, .. ., cny,
Cr= [C1Tf C2Tf C%f]T (48)
Cn fi— =1
() =] et (49)
|Cnf (fifl)‘,l = 2, .. .,M + 1
Thus, the discrete version of the optimization probld®) {s shown below,
max hijfp2f
st pslly < Ep (50)
0<py=<cs

An iterative algorithm is shown as follows.
1. Initialization: P = E,, andp} is set to be all-0 column vector.
2. Solve the following optimization problem to get the oping; using Cauchy—Schwarz inequality.

max h?q ¥

(51)
st laglls < P

3. Findi such that(qj;) . is the maximal value in the s{t(q})j ’(q’})j > (cy); } If {i} = 0, then
the algorithm is terminated angl := p} + q;. Otherwise go to step 4.

4. Set(p})i = (cy),

5. P := P — (c;)? and seth;), to zero. Go to step 2.

Whenp} is obtained for the optimization problersd), the optimalp,(f) and the corresponding

pn(t) can be smoothly achieved.
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8. A Unified Framework for Cognitive Radio and Cognitive Rada
8.1. A Unified Framework for Cognitive Radio and Cognitivel&a

Cognitive Radio (CR) evolves from Software Defined Radio Rp@nd it introduces intelligence to
radio systems. One of the key features of cognitive raditiéscapability of learning. A framework
for cognitive radio is shown in Figur@4, which includes four units: cognizer, decision maker, exeg
and database.

Figure 34. A unified framework for cognitive radio and cognitive radar.

/ Radio Spectrum \

Cognizer

_— Decision maker _— Executer
(Perception, learnini g,

and reasoning)

L

(Knowledge base,
policy base, etc.)

A cognizer has the capability of perceiving the radio speutr Moreover, it can learn and even
reason from what it perceives. The spectrum sensing of tegmadio, which senses the availability
of certain frequency segments of the radio spectrum witkacetime slot, is included in this unit.
Some mathematical tools for the cognizer can be borrowed wther disciplines, such as machine
learning and aritficial intellegencd33 134, 135. At the perception phase, the spectrum is perceived
with certain time slot and the perceived signals are furfirecessed (including transformations and
modeling). Furthermore, feature parameters can be eattaéit the learning and reasoning phase, the
processed perceived signals or the extracted feature pteesrare used for learning the spectrum (e.g.,
by training) and further reasoning (such as predicting thtus of channel and recognizing the extracted
feature parameters). In a word, the cognizer perceivestttie spectrum, and learns and reasons from
it. The cognizer outputs reference information of the ragpectrum to decision maker. The following
mathematical tools can work for the cognizer.

Hidden Markov Model

Hidden Markov Model (HMM) is a widely-used statistics moétal sequential data. It maps observa-
tions to hidden states with probabilities and supportssiteoms of hidden states. Basically, it deals with
three kinds of problems. One is called learning (or traihimigich is the generation of HMM parameters
using one or more sequences of observations. The secondkimblem is to find the probability
of a sequence of observation with given HMM parameters. Tird bne is decoding, i.e., finding the



Sensor009 9 6571

sequence of hidden states with a given sequence of obsersatOur work on spectrum recognition
using HMM can be found in136].

Bayesian Network

Bayesian Network (BN) is a graphic model which explicitlyconers the probabilistic structure of
dependency in a set of random variables. It uses a directiagyaph (DAG) to represent the depen-
dency structure, in which each node denotes a random varaaial each edge denotes the relation of
dependency. The key difference between BN and HMM is thafdhmer represents the hidden states
using a set of random variables instead of a single randomblar[137, 138 139. BN is a static
model. While Dynamic Bayesian Network (DBN) is a powerfudltto model the sequential data or the
dynamic system. DBN can be employed in the context of cognitadio or cognitive radar to model
the spectrum. For modeling the spectrum, the main task isileg which means statistic information
is extracted from the measured training data and DBN is.bUflere are two stages of learning. One is
structure learning, i.e., topology selection. The oth@aisameter learning, i.e., parameter estimation. In
the stage of structure learning, we need to determine thradgp of DBN, i.e., the structure of depen-
dency. In the stage of parameter learning, the conditioraability distribution (CPD) of each node
should be estimated. After DBN is built, we can use it to defiitg, prediction, classification and so
on, all of which can be called inference. In our work, DBN ipkxted to predict the state of the specific
spectrum. The results of prediction will be conveyed to siec maker and decision maker will make
the control decision for the behavior of cognitive radio oguitive radar.

Logistic Regression

In contrast to BN, which models the dependency explicitlgjstic regression models the dependency
in an implicit and linear manner and provides a direct prigaticof spectrum activity. The advantage of
logistic regression is that it is simple and can give the pbility of prediction. Mathematically, logistic
regression can be written as,

o (2541 ) - S s (510 (52
0g 2 (S: = 0) —kZI kJ \Pi—k
where,.s are regression coefficients to be estimated from training. ¢as a function of state.

The database in the proposed framework provides a storaden@evledge, policy and other data.
The decision maker in Figurd4 chooses a policy for execution based on the information igeal
by the cognizer and the knowledge from the database. Pai@alservable Markov Decision Process
(POMDP) can be used for the decision procds)]. POMDP models the interaction procedure of an
agent with outside world. The solution of POMDP is the optipalicy for choosing actions. Solving
a POMDP is not easy. The first detailed algorithms for findirgce solutions of POMDP were intro-
duced in L41]. There exists some software tools for solving POMDPs, sagipomdp-solvel4?2,
MADP [143, ZMDP [144], APPL [145, and Perseusldg. Among them, APPL is the fastest one in
most casesl45.

The idea of cognitive radar was put forward t[]. The framework shown in Figurg4 can also
be applied to cognitive radar. The major difference betwammitive radio and cognitive radar is the
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implementation of executer. For cognitive radio, a tradfisil wireless communication device or SDR
can be used as the executer. While for cognitive radar, teeutar can be the current radar system.

8.2. Measurements of Wideband Time-domain Signals

Wideband time-domain signals were measured in Tennessdadlegical University using Digital
Phosphor Oscilloscope (DPO). The model of DPO that we uséekisonix DPO72004, which supports
a maximum bandwidth of 20 GHz and a maximum sampling rate @SG. Figure85 depicts the setup
of the measurement. In the measurement, a laptop accessedetimet through a wireless Wi-Fi router.
An antenna whose frequency range is 800-2500 MHz was plaaadime laptop and connected to DPO.
The measured time-domain signals are shown in Fi§6rd-ast Fourier Transform (FFT) was applied
to the measured signals and the resulting time-frequeraghgs shown in Figurd7.

Figure 35. Setup of the measurement.
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Figure 36. Measured wideband time-domain signals.
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The measured data were used to evaluate our predictiontalgsrfor spectrum sensing in cognitive

radio. One prediction algorithm is based on HMM. The othex mnbased on Logic Regressiaig.
The research of BN based prediction is currently underway.
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Figure 37. Time-frequency graph of measured sigals.
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9. Quickest Spectrum Sensing
9.1. Single Channel and Non-Bayesian Case

In this subsection, we consider the case of monitoring deifngquency channel in which the detector
has noa priori information about the emergence time of primary user. Fopscity, we assume that,
at the beginning, there is no primary user and the primary csald emerge at any timeé (it is also
possible that it never emerges, thHEn= oc). We denote byX; the ¢-th observation. Meanwhile, the
probability density functions (we assume that they exiEhservation when primary user exists or not
are denoted by, andp,, respectively.

Performance Metrics

We denote by™ the time that the secondary user claims that the primaryamerges. As illustrated
in Figure38, whenT™ < T, false alarm happens (e.d’, in Figure38); and whenl™ > T, there is a
detection delay (e.g75 in Figure38). Both incur performance penalties. Then, we define thevoiig
two performance metrics:

Figure 38. Illustration of detection delay and false alarm.

False alarm delay
HO
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e Detection delay average run length (ARL): (" equalst whenz > 0 and O otherwise):

d2E[(T"—T)"] (53)

e False alarm ARL

f2 E[T*|T = o0 (54)
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CUSUM Test

A popular approach for detecting the change is cumulative(€IUSUM) test, originally proposed by
Page in 195478, 149. The asymptotic optimality of CUSUM test was proved by Lemdn 1971 150.
As a more difficult problem, the non-asymptotic optimalifyGiJSUM test was proved by Moustakides
in 1986 [L5]]. In CUSUM test, the test statistic, denotedsby at time slott, is given by

my = max(0,m;_; + L(t)) (55)
whereL(t) is the log likelihood of observation received at time slawhich is given by

L(t) = log Zﬁgiﬁ;

(56)

Intuitively, the test statistie, is the sum of log likelihood bounced by the boundary= 0. Obviously,
the largemn; is, the more probably the change has happened (since théutisin is more biased to that
after change). Then, the random stopping time of claimiegctiange is given by

s = min {t|m; > 7} (57)

where~ is a predetermined threshold.
Another equivalent form of CUSUM test is to set a random walkdvery time slot: for time, we
define random walk

a(t) = L(n) (58)
and stopping time
s¢ = min{7]q(7) > 7} (59)

gooe

choose the earliest one as the time claiming the changetobdison, i.e.,
s =min{s;,t=1,2,..} (60)

It is easy to verify that = s’. Therefore, both approaches are equivalent. In contrathtetdor-
mer approach (we call gingle metricapproach), the latter (we callnultiple random wallapproach)
requires infinite memory (for each time slot, we need some omgno store the updated random walk
value). Therefore, the former is more suitable for pratsyatems. However, the latter approach can
provide some hints to approximate algorithms, as we will see

Quickest Detection with Unknown Parameters

In the standard CUSUM test, it is assumed that the distobstibefore and after the change are
perfectly known to the detector. Unfortunately, in manwations, the distribution after the change
in cognitive radio systems is not completely known. For eplanif we use received power as the
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observation, the exact value of average received powartaechange is unknown although we know
that the average received power is increased.

Let us take the detection of pilot in digital TV (DTV) systeffas instance. On ignoring the interfer-
ence leaked from signals in neighboring spectrum, the ssas of received signal are given by

Hy: r(t) =n(t) (61)
Hy: r(t) = Asin (wtTp + ¢) + n(t)

wheren(t) is additive white Gaussian noise (AWGN) with zero mean anihnaes? (we assume that
o2 is known to the detector) is the received amplitude of pilat, is the angular frequency of pildty,
is the time interval between two consecutive observationisfas the phase. Note that can be found
from the DTV system specification while bothand¢ are unknown. Therefore, we cannot apply the
CUSUM test directly.

One approach to tackle the unknown parameter is to applyaherglized likelihood ratio (GLR), in
which the unknown parameters are replaced with their maxirikelihood estimation. Another alter-
native is to adopt the philosophy of multiple random walkm@agh of CUSUM test{9]. In such an ap-

.....

.....

CUSUM test is obtained by choosing the earliest stopping tire.,
s* =min{s,,n=1,2,..., N} (62)

The procedure of parallel CUSUM test is illustrated in F®@B. The left part shows a possible
selection of parameter candidates (we choose a grid in thaupt space of amplitude and phase). The
right part shows the competition of several parameter ckatels.

Figure 39. lllustration of parallel CUSUM test.

phase

amplitude

One disadvantage of the parallel CUSUM test is that the pet@mcandidates do not change through-
out the test. When there are sufficiently many observatiergs,(when the threshold is large), the pa-
rameters can be almost perfectly estimated and then beesdpplthe quickest detection. Therefore, it is
more reasonable to estimate the parameters simultaneanighange the set of parameter candidates.
As illustrated in Figure40, when we have more precise estimation for the parametersaweaarrow
down the range of parameter candidates. Based on this pplgssuccessive refinemeist proposed
in [152], in which the test is divided into multiple stages. In stdgearallel CUSUM test is applied
with thresholdy;. When the corresponding stopping time is reached, we hawe sonfidence on the



Sensor009 9 6576

distribution change. Then, we begin stage 2 during whichlICUSUM test (with thresholgy > ~;)
and parameter estimation are simultaneously carried oberVgtage 2 is completed (the corresponding
stopping time is reached), we use the parameter estimagitomdown the range of parameter candi-
dates and begin stage 3. Such a test-while-estimate pnecestepeated for certain times and then we
claim that the change has happened. Such a successive mfingrocedure is illustrated in Figudd.

Figure 40. Illustration of parallel CUSUM test with successive refirem

phase phase

amplitude amplitude

Figure 41. Illustration of multiple stages in successive refinement.

stagel stage? ‘ stage3 ‘ stage4 ‘
6 6 | 6 | 0, |
change change
parameter parameter

Performance Analysis

When the threshold is not large, performance metrics canbbered via numerical simulations.
For large threshold case (this is reasonable since we wam@ep a low false alarm rate), an effective
approach for analyzing the performance metrics is to appbyveian motion approximation. Notice that

B(t) = —= L) (63

converges to a Brownian motion &5 — oo when the distribution remains or p,. Then, by applying
the theory of Brownian motion, we can obtain the detectidaydARL, which is given by
g
d~ ———— 64
(AR (©4

whereD(P,|| ) is the Kullback-Leibler distance betweéh and 1. For the DTV case, the detection
delay ARL is explicitly given by
2

4

A2
For the false alarm ARLf, we can obtain thaf increases exponentially with respectia.e.,

f=0(e) (66)

d =~
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Collaborative Quickest Spectrum Sensing

When multiple secondary users collaborate for spectruraisgnthey can exchange their observa-
tions to enhance the reliability and agility. One difficuiyto tackle the delay incurred by communica-
tions since the quickest detection is real-time. We comsaadevo-node (denoted by and B) case and
assume that the transmission of an observation n@etitme slots. In 153, a two-thread CUSUM test
is proposed to tackle the communication delay, in which tbheng time claiming the change is the
earlier one of two stopping times:

T = min (Tf{, Tﬁ) (67)

where the stopping timeg§ and Tff are defined as follows (note that we use subscdi@nd B to
distinguish the two nodes):

e Stopping TiImel'$: T'¢ can be obtained similarly to CUSUM test, namely

T3 = inf {t}m‘j‘(t - D)+ Z La(r) > 7,4} (68)
r=t—D+1
where
mS(t) = max {mS(t — 1)+ La(t) + Lp(t),0} (69)

e Stopping TiméTf: For Tj, only observations at node A during time slots D + 1 to t can be
used. Ther”? can be written as

Tg = inf {t

max ZLA(T’) > *yA} (70)
r=k

t—D+1<k<t

The detailed explanation for the two stopping times and ftension to multiple nodes can be found
in [153 154).

9.2. Multiple Channels and Bayesian Case with Partial Otaaton

When there are multiple frequency channels (e.g., in DT\esys, there are multiple available fre-
guency bands; if wider frequency band, e.g., 1000 MHz, isndpe cognitive radio systems, we can
divide the wide band into multiple frequency bins and coesihch bin as a channel). It may be diffi-
cult for the secondary user to monitor all these channetgstrrequires high sampling rate and may not
be supported by current commercial analog-digital coevefADC). Therefore, the secondary user can
monitor a subset of channels simultaneously and needs o fenoss different channels. For simplicity
of analysis, we assume that only one channel can be monigeetime.

For simplicity, we considef/ channels and assume that the secondary user can monitanameet
at a time. We denote the observation distributions overmélan with and without primary user by,
and F,,,, respectively. Again, we assume that there are no primagysusver thel/ channels at the
beginning. At time slot, primary user may emerge over chanmelith a priori probabilityp(1 — p)~*
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(p is known to secondary users; thus the quickest detectioayg®an) and the activities over different
channels are mutually independent (note that the georakttistribution of primary user emergence
coincides with a two-state Markov model in which the probgbof transmitting from idle to busy ig).
We also assume that it requiréstime slots for switching between two channels.

Elements of Markov decision process

For such a Bayesian quickest spectrum sensing, we can dppliyamework of Markov decision
process, whose elements are given below

e State space: we denote a state 4jy, where() denotes the set of bands being used for data
communication andn € 2 denotes the band being sensed. Wheis an empty set, the state,
denoted byS?, means that all frequency bands are not being used by thada&gouser. The state
transition diagram for the case of = 2 (2 channels) is illustrated in Figud2. For example, the
transition from states!"* to stateS{>) means that the secondary user claims that primary user
has emerged over channel 1, stops communication over cdhilhand then monitor channel 2; the
transition from states! " to states}"*’ means switching to monitor channel 2 without stopping
the communications over channel 1.

Figure 42. State transition diagram whev = 2.

e Action space: for each state (excefft), the secondary user can take three types of actions,
which are illustrated in Figurd3, namely continuing transmitting and monitoring the cutren
channel, switching to monitor another channel without piog the communication over the cur-
rent channel, and switching to monitor another channelengtbpping the communication over the
current channel.

Figure 43. Three possible actions for each state.

_/
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e Cost function: we define a single cost function which leadghé&corresponding optimal control
policy. As mentioned before, we need to consider the pasaiticurred by both detection delay
and false alarm. Therefore, we define the cost function d@wel(note that all the probabilities
are conditioned on the observations; for simplicity, weoignthe condition in the expression of
probabilities):

M
P (T >Th) + ¢ E[(T) —Tn)']
m=1
M
P(Tn>Ty)+c> E
1 m=1

M= 1=

m

wherec is a weighting factor balancing the penalties from detectielay and false alarm and
subscriptn denotes the index of channels (recall thatmeans the time claiming the emergence
of primary user and’ is the actual emergence time). Therefore, for time kl(guppose that the
current channel is2), we have

— if not stopping communication over the current channel, etpgnaltycP(7,, < k) (detect-
ing delay);

— if stopping transmission over the current channel, we geaipeP (7, > T7) (false alarm).

e Control policy: we consider a stationary control policg.ithe action is dependent on only the
current state and is independent of time.

Dynamic Programming

It is well known that the optimal control policy of Markov demn process can be solved by dynamic
programming 155 156 157]. A general formulation for a Markov decision process is

str1 = f (8¢, us, wy) (71)

wheres; is the state at time, u, is the control policy andv; is random perturbation. Suppose that the
corresponding cost function is given by

T = Elg(st,us, wy)] (72)
t=1
whereg is the function of cost for each time slot andis the final time slot (here we consider finite
horizon case).
A fundamental concept in dynamic programming is cost-tdugation (also called value function if
we use reward instead of cost), which is defined as the sumsbfimm timet to I', denoted by/,(s)
when the current state isi.e.

T

Ji(s) = ZE [9(sr, Ur, W) |8t = ] (73)

T=t
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With the tool of cost-to-go functions, we can obtain that déipgimal control policy must satisfy the
Bellman’s equation, which is given by

J/(s;) =min F [c(st, ug, wy) + Jtﬁrl(stﬂ)] (74)

Ut

The corresponding optimal control policy is obtained via
p; = arg HEHE [c(st, Ug, Wy) + J:+1(St+1):| (75)

The computation of cost-to-go functions is in a backwardeardit the beginning, we compute the
cost-to-go function at the final time slbt The computation is straightforward since it is a one-shaps
optimization and need not look into the future. Then, we stlis J;(s) into the right hand side of7d)
and carry out optimization fo¥;_,(s). Once we obtain/j:_,(s), we can compute;:_,(s). We repeat
the procedure until we obtaifi(s) and consequently the whole optimal control policy.

Finite Horizon Case

Now, we can apply the powerful tool of dynamic programminguo problem. We first consider finite
horizon case, i.e., we consider a time windaw"| and close the communications over all channels after
timeI'. Then, itis easy to verify that

Jr (SplXg) =>_ P(T,>T) (76)
mes2
l.e., the sum of false alarm probabilities for the remainamgjve channels. For < ¢t < IT', we can
apply the Bellman’s equation to compute the cost-to-gotionc/; (S52|X{). The details can be found
in [159.

One problem with the above approach of dynamic programnsrilgat we need to record all obser-
vations X}, which requires prohibitively large memory. Fortunatelg can show that tha posteriori
probabilities{ P (T,,, < t|X{)},,_, ,, are sufficient statistics for the cost-to-go functions, fer time
slot¢, the cost-to-go functiod, (S5 |X{) can be written ag, (S{|p;), where

(Pt),, = P (T, <t X)) (77)

Therefore, we need to record and update onlyth@ectorp,, which requires only constant amount of
memory. Thea posterioriprobabilities can be computed in a recursive manner (thesae expression
can be found in159), thus being quite efficient. Note that each cost-to-gacfiom is a function of
p:, instead of a constant. Therefore, in numerical computaiiche cost-to-go functions, we need to
discretize thel/-vectorp; first.

Infinite Horizon Case

A drawback of the finite horizon case is that we need to computest-to-go function for each
combination of time and state. For the case\of= 2, we have four non-trivial states. Therefore, if
we consider a time window of 500 time slots, we need to comBQ@0 cost-to-go functions, which
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brings substantial computational cost to the system. Madawthe assumption of finite horizon is
unreasonable since the spectrum sensing may last for aitgaatp long period of time.

Therefore, it is more desirable to study the infinite horizase, i.e.I' — oo. An advantage of
considering infinite horizon case is that we can ignore thissupt of time in the cost-to-go functions
because it is easy to show that,Jas- oo,

Jy (Sfilpt) — J (Splpy) Vit (78)

By considering infinite horizon, the number of cost-to-gndtions is reduced to 4 whel = 2. We
can further simplify the cost-to-go functions using thddwaling two features (the details can be found
in [159):

e Symmetry : frequency bands are symmetric, the permutation of theueegy bands yields the
same cost-to-go function.

e Argmin: If transiting to another frequency band, the secondaryersitbuld always choose the
frequency band having the largesposterioriprobability.

After simplifying the cost-to-go functions, we can applg tBellman’s equation to compute the opti-
mal cost-to-go functions and the corresponding optimatrobpolicy.

Combating the Curse of Dimensions

Although we have simplified the cost-to-go functions, thenber of states still becomes intolerably
large whenM becomes large. The discretization of thievectorp; adds more dimensions to the cost-
to-go functions. Such a curse of dimensions is an inherdfitulty for Markovian decision process.
Therefore, it is desirable to apply techniques in approx@entynamic programming such as Rollout,
approximate cost-to-go function, open look feedback abmir model prediction control.

In [156], two simple principles are applied to obtain simplified tohpolicy:

¢ Limited lookahead policy (LLP): in standard dynamic pragraing, the optimal control policy
needs to look into the future; we can relax this requiremedtlaok ahead for only limited time
slots.

e Certainty equivalent control (CEC): we can replace the camdariables in the optimization prob-
lem with their expectations. Surprisingly, such an operasitill yields the optimal control policy
for linear control problems. Since our problem is non-lméae resulted control policy is subop-
timal.

By using the LLP principle, we consider only two most ‘dar@ges’ channels, i.e., the channel being
monitored and the channel having the largepbsterioriprobability that the primary user has emerged
among the channels not being sensed (for simplicity, wenasghat they are channel 1 and channel 2).
Then, we reduce the problem to a much simpler cas&/ of 2. By applying the CEC principle, we
compute the expected time of primary user emergence ovanelml and 2, denoted & and 7.
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Since we need to consider the impact of false alarm and tramgime d,, we compensate these two
expectation by

Ti=T¢ 4 (1 - (pr),) (79)

c
and

Ty =T+ (1 - (p)y) + (80)
Then, we consider the compensated times as their true valugsuristic decision rule is given by
e If T! < ¢, stop the communication over channel 1 (the current chjuanel switch to channel 2;
o If TT > Tt > ¢, stop sensing channel 1 and switch to sense channel 2.

o If 7! > T > ¢, continue to sense channel 1;

The three cases are illustrated in Figdde

Figure 44. lllustration of three cases in the heuristic decision rule.
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10. Soft Decision Cognitive Radio and Hybrid Overlay/Undelay Cognitive Radio Waveform Design
10.1. Overview

Here, we present a novel soft decision cognitive radio pgnado combine the benefits of under-
lay CR and overlay CR to maximize the channel capacity andtspe efficiency. Specifically, the
soft decision CR will detect not only if one spectrum blockused or unused as in current spectral
sensing, but detect if it isnderused Moreover, the instantaneous interference tolerancd tdvall
underused bands will be determined by weighted spectrumast (WSE). Based on the instantaneous
interference tolerance level, we employ a soft decisioctsply modulated spectrally encoded (SMSE)
framework to design hybrid overlay/underlay waveform tstidpute transmission power over the entire
bandwidth including both unused bands and underused bamdaximize the channel capacity. Current
overlay CR and underlay CR can be viewed as two extreme cédlas general soft decision cognitive
radio paradigm.
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Figure 45. Underlay CR transmission.
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Figure 46. Overlay CR transmission.
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10.2. Underlay CR and Overlay CR
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Figures45 and46illustrate the concepts of underlay CR transmission anday€R transmission.
We start with the famous Shannon channel capacity equation:

C = Wlog (1 0 %) (81)

It is well known that to increase the channel capacity in amamication system, we need to increase
the SNR (signal to noise ratiqé or the bandwitHV/, or both.

In underlay CR transmission, a very large contiguous badtiws used for secondary user’s trans-
mission, with the primary users operating within the samedadth. In this way, we maximize the
bandwidthW in (81). However, to avoid interferences to primary (licensedrssthe underlay CR
transmission has to limit its transmission power density atry low level. Hence, the channel capacity
of underlay CR transmission is extremely limited althougdtaeis maximized the transmission bandwidth.
Specifically, the channel capacity of underlay CR transioisis

CUnderlay =W log 1+

(I)UnderlayW

(82)

M

ngW +> @, W,

i=1
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wheren,, is the additive Gaussian noise power spectrum denBityq.,.., IS the average power spec-
trum density of underlay CR transmissia¥i, is the total number of primary users operating within the
bandwidthiV, ®,, is the average power spectrum density ofthenarrowband primary user’s transmis-

sion andW,, is the corresponding bandwidth @f primary user. Notice that underlay CR transmission
M

suffers interference from all primary users, which is cbhtgazed byz ¢, W,.. Since (1) the power

spectrum density of underlay CR transmiss®, qe,q, IS vVery low Zﬁd (2) the primary narrowband
users have much higher power spectrum denBjty the signal to interference and noise ratio (SINR)
is significantly decreased. As a direct result, even thougtetlay CR transmission has a very large
bandwidth, its channel capacity is very limited.

On the other hand, overlay CR transmission finds the unusepgiéncy bands and only transmits
over those bands, totally avoiding interference to primesgrs. The channel capacity of cognitive radio
transmission is characterized as

N
N Z Cor W,
COverlay - Z Wuk 1Og 1+ kZIN— (83)
k=1

Ny E I/Vuk
k=1

where N is the total number of unused bands in the entire bandwidfiV,,, is the bandwidth of the
k™ unused bandpcr, is the power spectrum density of cognitive radio transroissin thek' unused
band. Itis evident that in cognitive radio transmissioe, tibtal bandwidth exploited is less than the total
bandwidthil’. However, since (1) there is no interference from primasgrsi$o cognitive radio and (2)
there is no limit in the cognitive radio transmission poweesrum densityp.r, , the signal to noise
ratio is much improved (compared to underlay CR transmmgsi@s a direct result, the channel capacity
of cognitive radio is much higher than that of underlay CRsraission.

10.3. Soft Decision Cognitive Radio

In cognitive radio, the transmitter continuously monittrs radio spectrum and dynamically identify
frequency bands into two categories: used bands or unusets b#n other words, the cognitive radio
makes the usability of one frequency band by employing a deaision based on spectrum sensing
result. However, the coexistence of underlay CR transomsand primary users indicates that all the
primary users’ transmissions can tolerate some level effi@tence. Hence, we can further increase the
channel capacity of cognitive radio by making a soft decigio the usability of each and every used
band. If we can determine the interference tolerance ldvehoh primary user, the cognitive radio can
transmit over both the unused bands and the used bands toizgthe spectrum usage and maximize
the channel capacity. We name this system Soft Decision @egrmRadio. Figure47 shows such
a system.
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Figure 47. Soft decision cognitive radio.
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Assume the interference tolerance level (the maximum &tbinterference power spectrum density)
of thei*" used band ig;. Current cognitive radio assumes tiat= 0, i.e., no transmission is allowed if
the band is being used. Employing knowledge of the intenfege¢olerance levdl;, the channel capacity
of such a proposed system is

N M
> Cop, W, + > opa, Wy,
Chaew = Wlog [ 14 +=! -1

(84)

wheredc g, is the cognitive radio transmission power spectrum demsity/” unused band, anflc o,
is the cognitive radio transmission power spectrum demsity” used band.

To maximize the channel capacity of the proposed systemesd to maximiz&,,.., subject to the
following constraints:

(I)CRQi S [Z,VZ

Sor, < o, VE (85)
N M

> Ocr, W + 3 Pore, Wy, < S (86)
k=1 =1

where]; is the interference tolerance level:&t used bandg, is the maximum allowed transmission
power spectrum density regulated by FCG4tunused bands is the total transmission power.

Since the number of unused bandisand the number of used band$ are not gigantic numbers,
this optimization is relatively small scale and a Lagrangatiplier method with numerical optimization
could quickly generate a solution.

It is evident that current overlay CR transmission and ulagleCR transmission are just two special
cases of the general soft decision cognitive radio paradigme force I, = 0, the system reduces to
current cognitive radio; if we forcé; and ¢, to be FCC UWB spectrum mask, the system reduces to
underlay CR transmission.

Figure48illustrates a block diagram of the proposed soft decisiamdoe radio system:
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Figure 48. Cognitive radio.
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10.4. Hybrid Overlay/Underlay Waveform Design for Soft Bien Cognitive Radio

Previous work provides a general analytic framework for Egnals that accommodates multi-
carrier, CR-based waveform$q9. Specifically, an arbitrary CR waveform can be expresseernms
of its amplitude A), phase ©) and frequencyl) characteristics. These three factors aid in SMSE
waveform design through six design variables, namely datduiation d), Code ¢), window (w), or-
thogonality ) and two frequency allocation variables. An in-depth tmreatt of the SMSE analytic de-
velopment and the family of SMSE waveforms is providedlifg 160. ConsideringV, total frequency
components, the coding= [c1, ¢, ..., cn,], ¢; € C, data modulationd = [d1,ds, ... ,dy,],d; € C,
and windowing,w = [wy,wy, ..., wy,],w; € C vectors account for component-by-component ampli-
tude and/or phase variations. A phase only variabt€o;, 0s, . . ., on,], 0; € Cis used for orthogonality
between symbol streams and facilitate multiple access.

The analytic SMSE framework development begins by considetata, code and window variables.
Them!" frequency component of thé" symbol is given by

Sklm] = oy a0y Ot tlem Fum) (87)

wherem = 0, 1, ..., Np — lis the frequency index angl,, d,,, are magnitude and phase design variables.
The expression in87) is next modified to incorporate frequency and orthogoyal#riables. Fre-
quency componentselection is a function of two factorduiiag anavailablevariablea = [ay, as, . . ., ax,],
a; € {0,1} and ausevariableu = [u1,uy, ..., uy,], u; € {0,1}. Given anN;-point fast Fourier trans-
form (FFT) process)N, frequency components or spectral bands are available feefaam design. It
Is important to note that the frequency assignment varitkes on binary valueg or 1 to indicate
the spectrum availability for secondary users. As a direstit, this pool of frequencies is reduced by
component selection to create a number of CR available érecjasand usable frequencies. The!"
component of thé!” CR symbol corresponds to

j (0 0 Oy, +0
Sk[m] - amumcmdm7kwm€]( dm,k+ erm 0w +00m k) (88)

where the product;u; € {0,1}. The discrete time domain SMSE waveform is obtained by takive
Inverse Discrete Fourier Transform (IDFT) &8) according to

Ny—1
1 ,
= E 527 fmtn+0a,,  +0c+0wm +00m )
Sk [n] - FfRe amumcmdm,kwm € men m,k T em TV wm m (89)
m=0



Sensor009 9 6587

wheret, < t, < tx + T, f. = fc + mAf, T is the symbol duration andf = 1/7 is the frequency
resolution [L59.

The SMSE framework provides a unified expression for geimgraind implementing a host of multi-
carrier type waveforms (e.g., OFDM161, MC-CDMA [162, CI/MC-CDMA [163 164,
TDCS [165, 164, etc.) and satisfies current CR goals of exploiting unugetsal bands. However, it
does not exploitinderusedgspectrum. This section re-visits the original SMSE framewaevelopment
and the frequency assignment variables to exploit botlsedandunderusedpectrum to generate both
overlay-CR and underlay-CR type waveforms.

Figure 49 illustrates a conceptual view of the unused amdierusedspectrum utilization using an
arbitrary interference threshold (IT). IT is assumed to Wend set forth by the primary users based
on the measured power spectrum density in a given bandwidto. cases of under utilized spectrum
are demonstrated: (1) when the spectral assignment is loasadinary decision, the bands adjacent
to the primary users are unavailable to overlay-CR users(ang@rimary users bands below the IT
are unavailable to CR users. A soft decision CR (SDCR) wilabke to exploit thesenderusedre-
quency bands to improve spectral efficiency and increasenehaapacity. To support the envisioned
SDCR system, the original SMSE framework is extended to @wactor bothunusedand underused
frequency bands.

Figure 49. Identification of primary users, unused and underused sgeegion .
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The proposed SD-SMSE framework is first illustrated usirguFes50 and51, then the design vari-
ables are re-defined to extend the SMSE expression to adoolntth unused andnderusedspectrum.
Figure50a,b shows how the current CR framework identifies the useduanded spectrum based on
binary decisions. FigurB0c shows the weighted spectrum estimation resulted fromtepacensing
block in Figure51. The weighted spectrum estimate (WSB) (s further processed by taking into
account inputs from the IT estimator, primary users, otleeoadary users requirements and channel
conditions. Specifically, the weighted spectrum estimateigdes a metric of the allowable transmis-
sion power density at each and every frequency componeheientire bandwidth. Hence, the WSE
divides the entire bandwidth into unused @ndunderusedb) frequency components and both the un-
used andunderusedspectrum can be exploited. Notice in Figi@that differentunderusedrequency
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components have different allowable CR transmission pa#&asities. It is envisioned that a CR-based
SDR will have the option to choose an overlay-CR, underl&eC hybrid overlay/underlay waveform
to improve performance based on the scenario, situatiomeed.

Figure 50. Spectrum parsing using weighted spectrum estimation ilizeg@mn of SD-
SMSE waveform.
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Figure 51. Block diagram representation of SD-SMSEframewdr&7.
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The first step in SD-SMSE framework development is to re-erarthe design variables in the orig-
inal SMSE framework. For the SD-SMSE development, frequenatated factors are termed primary
variables, whereas amplitude and phase related factortem@ned secondary variables. Since the ob-
jective here is to optimize the spectrum usage, only frequeomponents related design variables are
considered. From this point forward the SD-SMSE framewaketbpment is based on the scenario
depicted in Figur&0. As shown in Figuré&0c, the weighted spectrum estimate represents all frequency
components, which can be utilized for secondary user agpies. It is represented by variakdevith
the range changed from binary values (hard decision) tovedaés (soft decision), i.e.,

a = [ap,a,...,an,-1},0 < a, <1 (90)
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From the weighted spectrum estimatgheunusedspectrum vecton can be derived as

u = [Uo, Uy - - 7uNf—1] (91)
where,
1 ifa, =1
Uy = ifa m=0,1,---N;—1 (92)
0 else

The original SMSE hard decision CR design transmits oveuthesed spectrum specified ny Now
introducing a new design variabteto account for theinderusedpectrum,

b = [bo,bl,...,b]\ff,l] (93)
where
0 m =1
%:{ ¢ (94)
Ay Ay £ 1

form =0,1,---, Ny — 1. Note that whem,, = 1 the value of,, = 0. This is because when,, = 1,
the spectral component iswusedand accounted for in the assignmentgf. It is obvious that if one
frequency component isnderuseglit cannot also be counted as unused and vice versayj,e= 0 if
b,, > 0 andb,, = 0 if u,, = 1.

The remaining waveform design variables, i.e., cagedata ), window (w) and orthogonalityd),
remain unchanged from the original SMSE framework.

Applying all these design variables, thé” component of thé& data symbol of the SD-SMSE can
be expressed as
§(0a,, . H0em +0uwm B0 k)

m,k

Ay =1

_ J
Sk [m] — amcmdmykwme (Hdm k+90m+9wm90m,k) 1
: Ay F

’(de7k+9cm+9wm90m,k) _ {umcmdm,kwme (95)

b Con o kWi €

The expression in9B) can be decomposed intmusedand underusedSMSE waveform representing
the new SDCR architecture shown in Figéie Applying the IDFT to @5) results in the discrete time
domain waveform given by

Ny—1
1 E j(2 tn+0 0 0 0
Sk[n] = FR@ a/mcmdikwmej( ﬂ'fm nt dm,k+ em T0wm + Om,k) (96)
f =0
1 fol
E j (2 tn+0 0 0 0
Sk[n] = FfRe umcmdm,kwmej( T fmtn+ dm,k+ em T0wm, + Om,k) (97)
m=0
Ny—1
1 E J 27 fmtn+04 0y, 0w +00m 1)
+FR€ bmcmdm,kwme m,k m m m,
f m=0
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where the first summation i®7) represents thenusedrequency components and the second summa-
tion accounts founderusedrequency components.

The SMSE expression i96) was demonstrated by applying it to a number of OFDM basedimul
carrier signals 159, 168 169. The process of generating these waveforms can be viewadtas
step approach: (1) generating the frequency related pyinerables, and (2) applying the secondary
variables such as the code code, data modulation, windoandgorthogonality to the frequency vec-
tor. Since the SD-SMSE only focused on manipulating the annvariables, all of the OFDM based
multi-carrier modulations expression such as NC-OFDM,MC-CDMA, NC-CI/MC-CDMA and NC-
TDCS are applicable to both overlay-CR and underlay-CRates

10.5. SD-SMSE Overlay Waveform

Current overlay CR transmission employs a waveform to ekploused spectral bands and thus
represent a special case (subset) of SDCR withmaerusedrequency components being exploited. In
the SMSE framework, forcing thenderusedariableb to be zero and the frequency assignment variable
a to take on binary values results in,

b =[0,0,...,0] (98)

a= [a07a17 . '7aNf71]7am € {07 1} (99)

where the second summation Bvj is eliminated and reduces to current hard decision CR ayerl

Ny—1
1 ‘ (27 fntn 00 +0er +Ou +0

sk[n] _ FRe § : umcmdm,kwmej( T fmtn+0a,,  F0em+0wy +600m k) (100)
! m=0

10.6. SD-SMSE Underlay Waveform

Unlike overlay-CR waveforms that only operate in unusedspen bands, underlay-CR waveform
operates iunderusedpectrum regions. An underlay-CR waveform spreads itasmyrer a wide band-
width to minimize interference to existing primary userslda achieve the required processing gain
to improve its own performance. Underlay-CR approacheg lh@en generally associated with UWB
technology. By definition, a signal is defined as UWB if it opms a bandwidth that is greater than 500
MHz. Therefore, not all underlay-CR waveforms can be cfeestsas UWB per this definition. For exam-
ple, a low data rate underlay waveform used as a control @amght only require a few mega hertz of
bandwidth. In the SD-SMSE context, UWB is a special impletagon of an underlay-CR waveform.
An UWB transmission uses underlay waveform which operatessa all spectral components while
minimizing interference to primary users by limiting itetismission power spectral density. Hence, its
allowable transmission power spectral density is dictatethe primary user (among all those present)
that is most sensitive to interference. In this case, atjiescy components are treatedumslerused
components. Hence, by setting

u=10,0,...,0] (101)
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b=[KK,. . K,0<K<]I1 (102)

The first summation in97) can be eliminated which results in a CR underlay waveformesponding
to an UWB transmission:

Ny—1
1 .
— ](27Tfmtn+9dm’ +0Cm+9wm+00m,k)
sk[n] = NfRe mZ:O Kd,, ywne k (103)
where K is a constant obtained by taking the minimum value of the tteid power spectral den-
sity shown in Figure50. Note thatb was assumed to constant for simplicity purpose, in general
eachunderusedpectral components can have different spectral weiglipsida of employing adaptive

baseband modulations.
10.7. Hybrid Overlay/Underlay

For the soft decision CR, the waveform achieves benefits thf éiwerlay-CR and underlay-CR wave-
forms by exploiting bothunusedand underusedspectral regions. This is done by employing soft de-
cision criteria at each distinct frequency component wimirimizing the interference to primary users
[170 171, 172. The expression in97) represents the hybrid overlay/underlay waveform utiligthe
SD-SMSE framework.

11. Vision and Future Work

There is a trend to integrate cognitive radio with cognitiaear, together with anti-jamming ca-
pabilities. The advent of multi-GHz arbitrary waveform geators and the need for cognitive radio
make this integration attractive. The multi-GHz wavefornoypdes super anti-jamming capabilities.
The objective of this proposal is to investigate a novel gigira of integrating the three ingredients; the
multi-GHz waveform (through the use of revolutionary coegsive sampling) is jointly considered with
the dynamic spectrum access (through a novel system astthigefor spectrum sensing). The primary
challenge is caused by the wideband (multi-GHz) nature®ptioblem at hand.

One of the central tenets of communications is the Shannauist sampling theory, which states
that the number of samples required to capture a signal fatdat by its bandwidth. It is well known
today, however, the Nyquist rate is a sufficient but by no meagcessary condition. Compressive
sampling or compressed sensing (CS) enables of the faitbfalvery of signals, images, and other
data, from what appear to be highly sub-Nyquist-rate sasnphd the heart of the new approach are
two crucial observations. (1) The Shannon/Nyquist sigeptesentation exploits only minimal prior
knowledge about the signal being sampled, namely its battbwiMost objects of our interest, however,
are structured and depend upon a smaller numbeegriees of freedomhman the bandwidth suggests. In
other words, most objects asparseor compressiblén the sense that they can be encoded with just a few
numbers without much numerical or perceptual loss. (2) Hedul information content in compressible
signals can be captured via sampling protocols that dyreocthdense signals into a small amount of data.
In short, and in stark contrast with conventional wisdore, ttieory of CS asserts that one can combine
“low-rate sampling” with computation power for efficientdaaccurate signal acquisition.
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On the other hand, at the heart of this cognitive radio, tiespectrum sensing: narrowband and
wideband. The narrowband spectrum sensing—representi&tHiy802.22—is mature and adopted by
the Federal Communication Commission (FCC). The widebaedtsum sensing, in particular multi-
GHz, seems be in its infancy. The FCC has abandoned the darfaeterference temperature that may
be a candidate. As a result, the proposed research may heamipbimpact on the future policy on
spectrum sharing for wideband cognitive radio.

Roughly speaking, if there ia prior information of the primary radio such as modulation format,
pilot, symbol rate, etc., spectrum sensing—that enabkesdghondary radio for dynamic spectrum access
(DSA)—can be implemented using approaches such as mattfleedeinergy detection, cylcostationary
sensing, eigenvalue based sensing, etc. For wideband{@ti#t) spectrum sensing, however, there is
no practical way to locate unused white spectra. Anotheicatichallenge is wideband RF front-end
capable of simultaneous sensing of several GHz wide spactru

It is critical to test key system components in differentteys settings. Three system models are
proposed: (1) MATLAB/C simulation model, (2) waveform madand (3) real-time FPGA system
model. The majority of the research results are obtaindakidomain of MATLAB/C simulation model.
This approach is simple. But many real-world limitationsmat be simulated. The unique approach of
this proposal is to combine these three models. Real-tin@A-Rodel is the ultimate test, but time-
consuming. We will, thus, use this model when the system eqinis very stable. As a result, most
system emulations are based on the waveform model. Thisfaravenodel is made available only
recently, with the latest A/D conversion for 9.6 GHz signalth 10-bit resolution. The TTU’s lab is
fortunate to be awarded the NSF MRI grant that makes thisipless

12. Conclusion

Dynamic spectrum access is a must-have ingredient fordigensors that are ideally cognitive. The
goal of this paper is a tutorial treatment of wideband cagaitadio and radar—a convergence of (1) al-
gorithms survey, (2) hardware platforms survey, (3) cimgés for multi-function (Radar/Comms) multi-
GHz front end, (4) compressed sensing for multi-GHz wave+revolutionary A/D, (5) machine
learning for cognitive radio/radar, (6) quickest detectioand (7) overlay/underlay cognitive
radio waveforms.

One focus of this paper is to address the multi-GHz widebemtt £nd that is the challenge for the
next-generation cognitive sensors. This unifying themthisf paper is to spell out the convergence for
cognitive radio, radar, and electronic warfare.

The future work lies in two aspects: (1) multi-GHz widebaratforms, and (2) intelligently leaning
algorithms. The first aspect requires new front end desigmmiessive sampling is important in this
context. The second aspect requires the integration of imaddarning and artificial intelligence into
communications and network. It is believed that networkorgcognitive radio nodes is open: network
testbed is required to gain more experimental knowledgesessary for future rigorous science.
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