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Abstract: Dynamic spectrum access is a must-have ingredient for future sensors that are ide-

ally cognitive. The goal of this paper is a tutorial treatment of wideband cognitive radio and

radar—a convergence of (1) algorithms survey, (2) hardwareplatforms survey, (3) challenges

for multi-function (radar/communications) multi-GHz front end, (4) compressed sensing for

multi-GHz waveforms—revolutionary A/D, (5) machine learning for cognitive radio/radar,

(6) quickest detection, and (7) overlay/underlay cognitive radio waveforms. One focus of this

paper is to address the multi-GHz front end, which is the challenge for the next-generation

cognitive sensors. The unifying theme of this paper is to spell out the convergence for cogni-

tive radio, radar, and anti-jamming. Moore’s law drives thesystem functions into digital parts.

From a system viewpoint, this paper gives the first comprehensive treatment for the functions

and the challenges of this multi-function (wideband) system. This paper brings together the

inter-disciplinary knowledge.
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1. Introduction

In the most general sense, cognitive radio takes advantage of the Moore’s law to capitalize on the

computational power of the semiconductor industry. When information is accessible in digital domain,

the force driver behind this novel radio is computationallyintelligent algorithms. Machine learning and

artificial intelligence have become the new frontier towardthis vision—analogy of robotics. Converting

information from analog domain to digital domain plays a central role in this vision: revolutionary com-

pressed sensing is, therefore, critical to expanding the territory of this new system paradigm. The agile,

software defined radios that can perform according to algorithms are basic building blocks. When each

node is computationally intelligent, wireless networkingfaces a novel revolution. At the system level,

functions such as cognitive radio, cognitive radar and anti-jamming (even electronic warfare) have no

fundamental difference and are unified into a single framework that requires inter-disciplinary knowl-

edge. Radar and communications should be unified since both require dynamic spectrum access—the

bottleneck. Spectrum agile/cognitive radio is a new paradigm in wireless communications—a special

application of the above general radio.

Spectrum agile/cognitive radio is a new paradigm in wireless communications [1], as illustrated by

DARPA XG radio [2] in Figure 1. Cognitive radios can opportunistically use spectrum white space

and increase usage by ten times [3]. One ingredient of this paper is to investigate a novel, wideband

(multi-GHz) system architecture enabled by compressive sampling (or compressed sensing)—a revolu-

tionary breakthrough in applied mathematics and signal processing. The other is to design multi-GHz

spectrum sensing and experimental system testbeds. These ingredients share the same goal of bringing

together three separate system paradigms: cognitive radio, cognitive radar and electronic warfare.

The Department of Defense (DoD) is transforming the military into a more responsive digitized force

capable of of rapidly deploying and effectively operating in all types of military operations, which makes

an intensive information network critical [4, 5, 6]. Wireless sensor networks in Figure2 is such an

example [7]. A 2003 Congressional Budget Office report [8] concluded: “current demand within the

Army is larger than the supply byan order of magnitudeand these shortfalls will continue into and after

2010 with shortage as high as30 timesat some command levels.” To solve this bandwidth shortage,

improvements in spectrum usage are required. These bandwidth shortages take place even though a

vast amount of the allocated spectrum is virtually unused orunder-used. This paradox results from the

current static and inefficient allocation process. In response, the Federal Communication Commission

(FCC) [9] and US DoD [10] recently issued separate challenges to address the poor efficiency of static

spectrum assignment in licensed bands.

A recent study conducted by Shared Spectrum shows that average spectrum occupancy in the fre-

quency band from 300 MHz to 3000 MHz over multiple locations is merely 5.2%. The maximum

occupancy is about 13% in New York City [11, 12]. It can be found that the spectrum scarcity is mostly

caused by the fixed assignment to the wireless service operators, and there exist spectrum opportuni-

ties both spatially and temporally. Therefore, the interest in allowing access to unutilized spectrum by
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unlicensed user (second user) has been growing in several regulatory bodies and standardization groups,

e.g., the FCC and IEEE 802.22—the first complete cognitive radio-based international standard [13].

In particular, the spectrum scarcity is the most severe problem for US for wireless services, partially

due to the fact that US has the densest spectrum usage. There is a common belief that we are running out

of usable radio frequencies. Cognitive radio (CR) providesan alternative (a new paradigm) to systems

such as the third generation (3G) and the fourth generation (4G). As a result of the Department of

Defense (DoD) focusing on the Joint Tactical Radio System (JTRS), US has a clear technical leadership

in cognitive radio.

Cognitive radar [14], on the other hand, has similar demand for dynamic spectrumsharing. It is

our conviction that it is, indeed, feasible to build a cognitive radar system using today’s technology.

The advent of (multi-GHz) arbitrary waveform generators has made it possible to change waveforms

from pulse to pulse [15]. Until recently, sensor hardware was not capable of changing the transmitted

waveform in real time. We believe that the sensor hardware can be leveraged by jointly considering

wideband spectrum sensing and waveform design.

Figure 1. DARPA XG cognitive radio.
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Anti-jamming—an example of electronic warfare—is critical. The multi-GHz wideband platform

proposed for both cognitive radio and cognitive radar may befurther leveraged by including anti-

jamming strategy (e.g., frequency hopping): it is much harder to jam the multi-GHz wideband commu-

nication and radar, compared with their multi-MHz counterparts. Our proposed experimental platform

is one of the first of such integrated platforms.

There are two frequency bands where the cognitive radios might operate in the near future [11, 13]:

54–862 MHz (VHF and UHF TV bands) and 3–10 GHz (Ultra-wideband (UWB) radios) [16]. The FCC

has noted that in the lower UHF bands almost every geographicarea has several unused 6 MHz-wide

TV channels. In 2002, the FCC approval of UWB underlay networks in 3–10 GHz indicates that this

frequency range might be opened for opportunistic use.
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Figure 2. Embedded web server (EWS) for wireless sensor networks (WSN).
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Since CR uses opportunistic transmission, it is desirable to operate over the widest possible bandwidth

to give the highest probability of detecting unused spectra[17]. The unique sensing function forces the

front-end to have several GHz sampling rate with high resolution (of 12 or more bits), if GHz bandwidths

are to be searched [18]. One of the most demanding challenge is posed by wide bandwidth: make UWB

RF front-end able to access spectrum dynamically.

There exist two basic problems for system concepts: (1) How do we deal with baseband signals of

several GHz bandwidth, say 3 GHz (0–3 GHz) or 7.5 GHz (3.1–10.6 GHz)? (2) How do we handle the

dynamic range of spectrum sensing over the bandwidth of several GHz? The objective of this paper is to

address these two problems.

The system is designed using a revolutionary new theory, also known as compressed

sensing [19, 20, 21]. By exploiting thestructureof the natural signal, a sampling rate that is much

lower than the Shannon/Nyquist rate can be used to recover the “information” of the analog signal with

overwhelming probability. We have demonstrated a UWB system baseband bandwidth (5 GHz) that

would take decades for the industry to reach with the conventional sampling technology. We could

use standard converters at the level of 125 megasamples per second (MS/s), for which excellent high

dynamic range commercial solutions are available—a big advantage of the proposed approach.

UWB radios are revolutionary due to its unprecedented bandwidth—three orders of magnitude higher

than the typical wireless systems. Their signals exhibit many unique properties such as transient and

impulsiveness—they are sparse in some domain (e.g., time).The sparseness—the very fundamental

notion underlying compressed sensing—can be exploited to reduce sampling rate. Compressed sens-

ing framework provides a universal measurement approach for signal detection and estimation, without

reconstructing the signal—a quasi-digital receiver. Unlike the analog-intensive correlation receivers

(popular for UWB), extremely wideband analog delay elementis not required.

The fact that space-time signals are essentially always significantly compressible in some represen-

tation promises huge benefits. These compressive sampling protocols are noteworthy for the relatively

limited prior knowledge about the class of the signal to be acquired: basically just the knowledge that

the signal of interest would be compressible within a certain representation—theoretically demonstrated,



Sensors2009, 9 6534

for a class of UWB radio and acoustic signals, by the first author recently [22]. These classes are quite

large and, in principle, one compressive sampling protocolworks for the whole class. This paper focus

on the rigorous determination of the potential impact of these and other fundamental research concepts

on practical communications approaches. The proposed research will uncover significant opportunities

and establish various important bounds on the sampling required, as a function of prior and ancillary

information, about the RF environment and the particular application (UWB cognitive radio).

2. Summary of the Paper

The objective is to seamlessly integrate (into a single platform) three system ingredients: cognitive

radio, cognitive radar and anti-jamming. One primary task of this proposed research is to provide new

analytical and computational tools to allow for practical implementation of compressed sensing and,

eventually, to aid the design of sensors that are capable of carrying out direct measurements motivated

by the established theoretical bounds. Radar is a remote sensing system well suited for cognition [14].

The knowledge-based cognition is inherent in cognitive radio and radar, and can therefore be jointly de-

signed together with anti-jamming. For example, waveform designs for radar sensing [15] and cognitive

radio [23, 24] can, indeed, be co-designed in the same framework. Both underlay scheme (e.g., UWB

radio IEEE 802.15.4a [16, 25, 26, 27]) and overlay scheme (e.g., TV band cognitive radio IEEE 802.22)

can be studied in the unified framework for both cognitive radio and cognitive radar. Anti-jamming is

the prerequisite for most DoD communication and radar applications, and can be naturally fitted into

the unified framework. The focus is on the basics and proving the concept: multi-GHz waveforms and

spectrum sensing, theoretical framework, and hardware testbed. The primary challenge is caused by the

wideband (multi-GHz) nature of the problem at hand. Compressive sampling provides a new paradigm

to greatly relax the ADC, which simplifies the front end. Compressed sensing can be also used to reduce

the ADC for radar sensing [28]. On the other hand, wideband (multi-GHz) spectrum sensing—very

challenging—is used for dynamic spectrum access. New anti-jamming capabilities can be explored in

this novel framework. Experimental systems with real life imperfections are proposed Figure3.

Below is a list of topics being discussed extensively in the following sessions:

• Spectrum Sensing for Cognitive Radio

• A Survey on Cognitive Radio Implementation Research

• Multi-Giga-Hertz Agile Radio Front-End Design

• A Compressed Sensing Based Ultra-Wideband Cognitive Radio

• Wideband Waveform Optimization for Multiple Input Single Output Cognitive Radio Using Time

Reversal

• A Unified Framework for Cognitive Radio and Cognitive Radar

• Quickest Spectrum Sensing

• Soft Decision Cognitive Radio and Hybrid Overlay/UnderlayCognitive RadioWaveform Design
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Figure 3. Experimental systems.
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(a) Waveform system model

  

(b) FPGA system model

2.1. Compressed Sensing

Compressed sensing builds upon a core tenet of signal processing and information theory: that signals,

images, and other data often contain some type ofstructurethat enables intelligent representation and

processing. For example, in imaging compressing, a correlated signal’s energy can be compacted into

just a few essential coefficients. Such transform coders exploit the fact that manynaturalsignals have a

sparserepresentation in terms of some basis (e.g., Fourier, wavelet).

Fortunately, by the first author [22, 29, 30], transient electromagnetic signals and acoustic signalsare

rigorously shown to have such a structure, called compressibility. UWB signals (used for communica-

tions and radar) belong to this class of transient signals. This theoretical work paves the way for the

practical application, since the prerequisite for using the CS principle is that channel impulse response is

compressible in some basis, either frame or dictionary. Using singular value decomposition (SVD) —an

orthogonal basis—of the channel impulse response, the firstauthor has proved that the SVD coefficients

follow a power-law decay and thus satisfy the definition of compressibility [22, 30]. The focus of this

proposal is to demonstrate the real-world UWB system, designed by using a CS principle.

2.2. A Compressed Sensing Based Ultra-Wideband System

The concept of the compressed sensing based UWB system is illustrated in Figure26. The core of

the system lies in compressed sensing [19, 20, 21, 31]. For example, for an RF bandwidth of 5 GHz, a

sampling rate of 125 MHz is sufficient for a measured channel impulse response indoors. This example

has demonstrated the power of the CS principle to reduce the receiver complexity by simplifying the

mixed signal processing. Related concept is used in radar [28] and imaging [32].
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2.3. Wideband (Multi-GHz) Spectrum Sensing

There are two classes of cognitive radios: (1) narrowband cognitive radio; (2) wideband cognitive

radio. This classification is purely for the convenience of description in the context of spectrum sensing.

Two motivating examples are given to illustrate this fundamental difference: (1) 6 MHz cognitive radio

for unlicensed digital TV band—IEEE 802.22 [33]; (2) wideband tunable (over several GHz bandwidth)

cognitive radio—evolution beyond 802.22.

The narrowband cognitive radio—band specific (TV band)—is much easier for spectrum sensing. It

can exploita prior information about one particular system configuration, such as air interface, modula-

tion format, symbol rate, pilot, etc. Its wideband counterpart generally has not so much information to

use. Spectrum is like disk space, the more one has, the more applications that will use it [3]. The front-

end, including A/D, filters, wideband and real-time sensing, is the primary challenge for the wideband

case. Spectrum sensing for the physical layer design is another challenge [3]. The wideband CR is the

primary focus of this proposed research. We will systematically evaluate the 802.22 technologies of the

narrowband CR [3, 34, 35, 36, 37, 38] before their use in the wideband CR.

Spectrum sensing is one of the major challenges for cognitive radio, since the signal is weak to detect

and protect (at low SNRs) [36, 39]. For example, TV broadcasters have set a stringent limit for the

digital TV signals to be reliably detected (probability of detection> 90% with probability of false alarm

> 10%) at a signal strength of 116 dBm translating to roughly -21 dB of signal-to-noise ratio (SNR)

based on the receiver noise figure (NF) of around 11 dB and the use of omnidirectional antenna for

spectrum sensing [6].

2.4. Waveform System Model and FPGA System Hardware Testbed

Wideband (multi-GHz) cognitive radio is in its infancy, compared with its narrowband counterpart

IEEE 802.22. It is critical to test key system components in different system settings. Three system

models are proposed: (1) MATLAB/C simulation model; (2) Waveform model; (3) Real-time FPGA

system model.

Most research is carried out in the domain of MATLAB/C simulation model. This approach is simple.

But many real-world limitations cannot be simulated. The unique approach of this proposal is to combine

these three models. Real-time FPGA model (Figure3(b)) is the ultimate test, but time-consuming. We

will use this model when the system is very stable. As a result, most system emulations are based on the

waveform model in Figure3(a). A waveform of 9.6 GHz effective RF bandwidth with 10-bitresolution

can be transmitted over the air, and captured after transmission. This system produces high-speed serial

waveforms with real life imperfections including noise, jitter, pre/de-emphasis, and multi-level signaling

up to 8 Gb/s. This waveform model is made available only recently (to the best knowledge of the first

author, this is available less than one year), with the latest A/D conversion. TTU’s lab is fortunate to

have the NSF MRI grant to make this possible.

2.5. Challenges of the Wideband Front End

The main components of a cognitive radio transceiver are theradio front-end and the baseband pro-

cessing unit. Each component can be reconfigured via a control bus to adapt to the time-varying RF
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environment. In the RF front-end, the received signal is amplified, mixed and A/D converted. In the

baseband processing unit, the signal is modulated/demodulated and encoded/decoded. The baseband

processing unit of a cognitive radio is essentially similarto existing transceivers. However, the novelty

of the cognitive radio is the RF front-end. So we will first focus on the RF front-end of the cognitive

radios [40].

For wideband (multi-GHz) cognitive radio, there may be interfering signals that are much stronger

than the CR signal of interest, resulting in signal to interference ratios as low as−50 dB. This requires a

large dynamic range for the front-end circuitry and in particular for the ADC which must accommodate

the large interfering signals while still provides sufficient quantization performance for the weak CR sig-

nal [18]. In typical cognitive radio sensing scenario, the RF signal presented at the antenna includes sig-

nals from closely and widely separated transmitters, and from transmitters operating at widely different

power levels and channel bandwidths. As a result, the large dynamic range becomes the main challenge

as it sets the stringent requirements on circuit linearity and resolution of A/D converters [11, 41].

Generally, a wideband front-end architecture of the cognitive radio has the following structure

(Figure 3(b)). The components of a cognitive radio RF front-end are asfollows: (1) RF filter: the

RF filter selects the desired band by bandpass filtering the received RF signal. (2) Low noise amplifier

(LNA): the LNA amplifies the desired signal while simultaneously minimizing noise component. The

LNA should have minimal noise figure (e.g., 2–3 dB) in order tohave good sensitivity at low power. (3)

Mixer: in the mixer, the received signal is mixed with locally generated RF frequency and converted to

the baseband or the intermediate frequency (IF). The mixershave to maintain the linearity across entire

dynamic range and bandwidth. However, these are also conflicting requirement with respect to power

consumption. (4) Voltage-controlled oscillator (VCO) andphase locked loop (PLL): the VCO and PLL

need to quickly generate a signal at a specific frequency withfine resolution. This is a key challenge for

wideband spectrum sensing. (5) Channel selection filter: The channel selection filter is used to select

the desired channel and to reject the adjacent channels. (6)Automatic gain control (AGC): The AGC

maintains the gain or output power level of an amplifier constant over a wide range of input signal levels.

Furthermore, large dynamic range and sampling of wideband signals further require high precision

and high speed A/D converters. Unfortunately, the design ofhigh speed A/D converters has funda-

mental limits in terms of achievable resolution. The requirement of a multi-GHz speed A/D converter

necessitates the dynamic range of the signal to be reduced before A/D conversion.

In summary, the key challenge of the physical architecture of the cognitive radio is an accurate de-

tection of weak signals of licensed users over a wide spectrum range. Hence, the implementation of RF

wideband front-end and A/D converter are critical issues that will be addressed in this paper.

2.6. Cognitive Radar and Anti-Jamming

Three ingredients are fundamental to the cognitive radar [14]: (1) intelligent signal processing, which

builds on learning through interactions of the radar with the surrounding environment; (2) feedback

from the receiver to the transmitter, which is a facilitatorof intelligence; and (3) preservation of the

information content of radar returns, which is realized by the Bayesian approach to target detection

through tracking.
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This cognitive cycle performed by a cognitive radar system—a two-way process—is similar to the

time reversal communication system [42], in the spirit that the environment has a strong and continuous

influence on the radar returns (i.e., multipath echoes). In doing so, the radar builds up its knowledge of

the environment from one scan to another and make decisions of interest on possible targets at unknown

locations in the environment. Unlike a communication system, the feedback mechanism, which is a nec-

essary requirement of the cognitive system, is easier to implement, as the radar transmitter and receiver

are usually co-located.

To simplify the description, we will use the cognitive radioas the motivating system; most of contents

are, however, valid to cognitive radar. For anti-jamming (shared by both communication and radar), we

emphasize the new possibility enabled by wideband (multi-GHz) front end. Hardware is our primary

concern in the concept proof stage. New algorithms will be developed when more experimental results

are available.

2.7. Significance and Related Work

For wideband (GHz) spectrum sensing, there is no practical way to locate all receivers of commu-

nications from the transmitter [43]. One challenge is wideband RF front-end capable of simultaneous

sensing of several GHz wide spectrum [11, 17, 18, 41, 44, 45].

ADC implementations—trade sampling frequency against dynamic range—are the bottleneck of

some emerging applications such as wideband cognitive radios and cognitive radar. Emerging appli-

cations require conversion of instantaneous bandwidth in the gigahertz range with dynamic range of up

to 16 bits. This translates to ADC sampling rates of multiplegigasamples per second (GS/s) with a

sample aperture jitter held to one-tenth of a picosecond. Current capabilities fall well short of needs

and are advancing at a rather slow rate—improving about 1.5 bits in eight years. For example, UWB is

allowed to operate from 3.1 to 10.6 GHz (a bandwidth of 7.5 GHz). ADC speed is far behind the need for

digital receivers.

Compressed sensing principles enable the design of flexibleimaging devices and techniques [32]. By

time multiplexing a single detector, they can employ a less expensive and yet more sensitive photo sensor.

Their new camera architecture that employs a digital micromirror array to perform optical calculations

of linear projections of an image onto pseudo-random binarypatterns. Its hallmark includes the ability to

obtain an image with a single detector element, while sampling the image fewer times than the number of

pixels. The idea is to off-load processing from data collection into data reconstruction. Not only will this

lower the complexity and power consumption of the device, but it will enable adaptive new measurements

schemes. The most intriguing feature of their system is that, since it relies on a single photo detector, it

can be adapted toimage at wavelengths that are currently impossible with conventional imagers.

This surprising feat of the single-detector camera has inspired this research. A natural question arises

from this observation. Can one use the same principle for wideband (multi-GHz) communication and

radar? The UWB signal at the receiver consists of short, transient pulses with huge bandwidth that is

impossible for the current semiconductor industry to handle. The UWB signal, however, issparsein time

domain (like Dirac pulses). Can this signal sparsity be exploited in a novel UWB system design? This

idea appears very promising, according to preliminary investigations. For example, a system bandwidth

of 5 GHz has been achieved over the wireless channel, by usingan A/D converter of 125 MHz (as
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described above). As in the case of the one-detector camera,the most important advantage is to adapt

this system architecture to work at bandwidths that are currently impossible with conventional designs

(based on Shannon/Nyquest sampling). For example, the mostadvanced A/D can sample at 10 GS/s with

8 bits (www.Maxtek.com), and D/A (model DX-10G) can reach a clock rate of 10 GS/s with 10 bits.

Assuming analog processing is available at the transmitter, the system bandwidth can go much higher.

This implies digital signal processing will, thus, be feasible at the receiver.

On the other hand, there is some sparsity in spectrum that canbe exploited in the framework of

CS [46]. This potential is not as large as the signal domain since wecan pre-code the transmitted

waveform in a way suitable for CS.

2.8. Quickest Detection for Spectrum Sensing

Spectrum sensing is the (instead of ‘a’) key problem in cognitive radio systems. Secondary users

need to monitor the spectrum occupancy in order to use the spectrum when there is no primary user

or quit the spectrum when primary users emerge. Like all other detection (or equivalently, hypotheses

testing) problems, the spectrum sensing needs to find a tradeoff between miss detection (not detecting

the primary user when it emerges) and false alarm (claiming that a primary user exists when there is

actually no primary user). Due to the requirements of tolerable violation to primary users and tolerable

interruption to the communication of secondary users, the spectrum sensing has substantial impact on

the overall performance of cognitive radio systems.

In most existing publications on spectrum sensing, traditional block detection is used, in which the

observations are grouped into blocks and decision is made atthe end of each block based on the obser-

vations of the corresponding block (illustrated in Figure4 (a)). The advantage of such a block detection

is easy implementation. However, it is difficult to determine the size of each block: if the block size is

small, the decision will be unreliable; if the block size is large, then the detection delay may be large

(e.g., a primary user emerges at the beginning of a block and can be detected only at the end of the block;

then the delay will be the block duration).

Figure 4. Illustrations of block and sequential detections.

Therefore, a more suitable framework for spectrum sensing is sequential detection (illustrated in

Figure4 (b)), in which the decision could be made when each new observation arrive. Moreover, we

notice that the observation distribution could change (e.g., the average received power is increased when

primary user emerges), which is different from traditionaldetection problems (the distribution is static).

Hence thespectrum sensing is essentially to detect the change of observation distribution. A powerful

tool for such a problem of change detection isquickest detection(also called quickest change detection or
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abrupt change detection). As illustrated in Figure5, we assume that the original observation distribution

isP0 and the distribution is changed toP1 at a time unknown to the detector. The job of quickest detection

is to detect the change as quickly as possible under the constraint of tolerable false alarm rate. We coin

the spectrum sensing within the framework of quickest detection asquickest spectrum sensing.

Research on quickest detection dates back to 1931 [47] and has attracted substantial research since

then. Quickest detection is useful in tasks like remote sensing [48, 49, 50], financial decision making [51,

52, 53, 54, 55], medical diagnosis [56, 57, 58, 59], signal segmentation [60, 61, 62, 63], environmental

monitoring [64, 65], and network security [66, 67, 68, 69, 70, 71]. In recent years, decentralized quickest

detection has received plenty of studies [72, 73, 74]. Comprehensive introductions on quickest detection

can be found in [75] and [76].

Figure 5. Illustration of quickest detection.

The quickest spectrum sensing can be categorized accordingto the following criterions:

• Bayesian vs. non-Bayesian: thea priori probability of primary user activity is available [77] in

the former case and unavailable in the latter case [78];

• Single channel vs. multiple channels: whether the secondary user could monitor one channel or

multiple channels in the frequency spectrum;

• Completely observable vs. partially observable: this applies to only the case of multiple channels;

in the former situation, the secondary user can get observations from all channels whereas it can

monitor only a subset of channels in the latter case.

In the remainder of Section9., we will discuss two typical scenarios of quickest spectrumsensing:

single channel with non-Bayesian detection and multiple channels with Bayesian detection based on

partial observations.

2.9. Overlay and Underlay Transmission for Cognitive Radio

In current cognitive radio, there are two approaches to use the spectrum more efficiently: the overlay

cognitive radio transmission and the underlay cognitive radio transmission (UWB). In underlay CR, a

very wide bandwidth is occupied by the transmission with a very low power spectrum density. This

extremely low spectrum density of underlay CR transmissionavoids significant interference to existing

primary users operating in the range of the underlay CR transmission. In overlay cognitive radio, fre-

quency agile transmitters discover unused spectrum “holes” and transmit over those unused frequency

bands. By doing so, interference to existing wireless systems is avoided.

However, both underlay CR transmission and overlay CR transmission are not without drawbacks. In

underlay CR, the transmission power is extremely limited inorder to avoid interference to primary users,

which significantly decreases the available channel capacity. In overlay CR, only unused frequency
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bands are exploited to transmit signal and all underused bands are not touched at all, which decreases

the available bandwidth and channel capacity. In Section10., we will address this issue.

3. Spectrum Sensing for Cognitive Radio

A CR dynamically alters its own frequency assignment after sensing its local spectrum and ultimately

does not impact the performance of the primary network [4]. Physical (PHY) layer issues include spec-

trum sensing algorithms, low SNR signal detection, wideband or narrowband sensing, adaptive modula-

tion and coding, waveform shaping, ADC, programmable filters. Medium access control (MAC) issues

include coordination of quiet periods, spectrum sensing management, contiguous multichannel opera-

tion, inter-channel synchronization, real-time dynamic resource allocation, and multi-channel access.

Spectrum Sensing for Narrowband Cognitive Radio

Figure 6. Digital TV Signal. Pilot is noticed in the left.
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An exhaustive review of spectrum sensing in IEEE 802.22 is given in [39]. A good survey of cognitive

radio is [40]. Energy detection, pilot detection and collaborative detection are experimentally studied

in the context of DTV [79]. Dynamically selecting one out of six (1.75 MHz) channels within 225–600

MHz was field tried within DARPA’s XG program [80, 81]. Pilot-based sensing is used for fine sensing

in IEEE 802.22, but is non-blind (ATSC -specific). A distributed approach is used [82].

Cyclostationary Sensing The inherent spectral redundancy (in cyclostationary signals [83]) caused by

the use of a cyclic prefix in OFDM signals may be exploited, first by [11, 44] and then [84, 85, 86]. A

unified approach to the recognition of signals belonging to the three basis air interfaces categories: single

carrier TDMA, OFDM systems, single carrier CDMA systems [87]. It is also used to WCDMA [88]. It

has been used in a framework of overlay/underlay cognitive radio [23, 24].

This unified approach may be the most promising, if there is some prior information about com-

munication such as modulation format [83]. Although valid for some commercial systems above, this

is generally not true for DoD systems. Higher-order statistics (HOS) of the cyclostationary signals

is needed.
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Non-Gaussian Nature of the Frequency Domain Signals No prior knowledge of the type of signals

present in the spectrum is often known. Signal detection in Gaussian noise can be carried out using

HOS [6]. The fact that the cumulants of the order higher than two fora Gaussian process are zero can

be used to detect the signals in the Gaussian noise. The received waveform samples can be grouped into

segments, and higher order cumulants for each of these segments can be estimated. The detection thresh-

olds are defined after a period of learning the distributionsof the moments and cumulants, and a decision

is made whether a particular segment of the received samplescontains meaningful information or not.

This is a test (also known as bi-coherency, tri-coherency, etc.) to determine if the received waveform

belongs to the DTV signal or noise. In the time domain, DTV signals show Gaussian characteristics. In

the frequency domain, however, they are non-Gaussian. We will exploit such characteristics to detect the

signals in AWGN.

Spectrum Sensing for Wideband Cognitive Radio

Wideband (e.g., from 0 to 3 GHz) spectrum sensors scanning multiple licensed bands may not be able

to include all feature detection algorithms necessary to identify all incumbents operating in the measured

band [43]. In this case, it may be preferred to use energy detection. Other wideband sensing techniques

are needed.

At the cognitive radio (CR) transmitter, this sensing and transmission function is performed over the

widest possible bandwidth to give the highest probability of detecting unused spectra—opportunistic

transmission [17]. The unique sensing function forces the front-end to have several GHz sampling rate

with high resolution (of 12 or more bits), if GHz bandwidths are to be searched [18].

The main limitation in a radio front-end’s ability to detectweak signals is its dynamic range, which

dictates the requirement for number of bits in A/D converter. Since it is difficult to design high-resolution

A/D converters—the pricing will not follow Moore’s law, it is highly desirable to relax the A/D require-

ment. Also, the power and A/D complexity rises almost exponentially with the number of bits.

There is a synergy between compressed sensing and spectrum sensing. The former enables the use of

a bigger signal bandwidth to fully exploit the potential of the 7.5 GHz unlicensed spectrum allocated by

FCC. The latter enhances the opportunity of the system to useunoccupied spectra.

Operation of WiMax in the 3.5 GHz band is susceptible to interference from UWB devices [89].

Energy-Based Sensing The non-coherent energy based approach does not requirea prior knowledge

of the signal to detect, and results in far fewer calculations to reach decision, enabling a larger band-

width to be surveyed at all times. The disadvantages are its lower sensitivity to the weak signal and the

requirement for the adaptive threshold setting.

Eigenvalue-based sensing The advantage of the autocorrelation matrix approach is to rely on the

spectrum only. Using the Wiener-Khintchine theorem, the autocorrelation estimate at lagτ in the band

of interest defined byωm,m ∈ [1,M ] is given by [4]

Rxx(τn) =
2

M

M
∑

m=1

|S(ωm)|2ej2πωmτn (1)
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whereτn = nδt = n
Fs

with δt the sampling period equal to the inverse of the sampling frequencyFs. A

a result, only the spectrum is used. In other words, the coherent information or phase has been removed.

Once the autocorrelation is collected, its matrix can be formed and its eigenvalues can be used to detect

the unused/under-used spectrum [90].

Measurement Systems for Sensing

Measurements of spectrum for interference temperature arebasic to cognitive radio, as is channel

sounding to wireless communications. A measurement systemusing spectrum analyzer controlled by

Labview has been developed for 9 kHz–26.5 GHz—Figure6 is a sample of collected data. The delay for

each snapshot of the spectrum is in the level of 40 ms.

Since sensing window is in the level of 5–25 ms for IEEE 802.22[34, 35, 36, 38, 39], much quicker

measurements are required. For this purpose, we will use real-time spectrum analyzer Tektronix RSA

6114A. Multiple correlated views are available in all domains (frequency, time, amplitude, phase, mod-

ulation). The statistics of the spectrum will be essential to future system designs. For example, quickest

detection [91] is a framework to incorporate the statistics into the algorithms for wideband (several GHz)

spectrum sensing [92].

Preliminary Results and Proposed Tasks

Roughly speaking, TTU’s Lab has developed the necessary equipment infrastructure for long-term

research in the area of wideband cognitive radio. The measurement equipment is available for spectrum

statistics study. Proposed tasks are to answer the following questions: (1) What are the long-term and

short-term statistics of the wideband spectra? (2) How doesthe statistics change with the geo-location?

(3) What algorithms are suitable for wideband spectrum sensing? (4) How is the statistics incorporated

into algorithms?

How does a CR select the best portions of the spectrum to use [4]? What amount of spectrum will a

CR be able to harvest in urban/sub-urban areas? How can a CR limit the risk of using spectrum that only

appears to be unused locally but is indeed being used nearby (hidden-node problem)?

4. A Survey on Cognitive Radio Implementation Research

For cognitive radio, ultimately, the ability to reliably recognize the communication environment and

agilely adapt the transmission parameters to maximize the quality of service (QoS) while minimizing

the interference to the primary users can only be addressed and justified by real working systems [93].

However, for now it is far from clear what mechanisms are bestsuited to implement cognitive radios,

both with respect to preventing interference and with respect to efficiency and performance. There are a

plethora of techniques (cooperative sensing, cyclostationary detectors, Higher Order Statistics Sensing,

etc.) that have been proposed to enhance detection. None of these techniques have been tested in

real world scenarios and their performance has yet to be characterized [94]. Thus, the cognitive radio

implementations research becomes a significantly important part in this area.
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Currently, there are a bunch of testbeds/platforms have been developed and used for cognitive ra-

dio experiments by industry and academia. A subset of most recent platforms that are mostly widely

available will be covered in this paper.

4.1. GNU/USRP Radio Platform

GNU/USRP radio is one of the largest scale open source software defined radio platform today

[95, 96]. It consists of GNU software package and the USRP hardware platform, Figure7 shows a

typical block diagram for a the GNU/USRP radio. The GNU radiois a free/open-source software toolkit

for building software radios, in which software defines the transmitted waveforms and demodulates

the received waveforms. The USRP (Universal Software RadioPeripheral) is the associated hardware

platform, which is completely open to the public, includingthe circuit schematic and FPGA source

code [95, 96].

Figure 7. Architecture of GNU software Radio.

With GNU radio’s open architecture, open source code, available functionalities developed by devel-

opers from all over the world grows quickly. Because it is based on general purpose processor (GPP)

architecture, it is flexible, extensible and portable. Currently, the GNU radio software capabilities sup-

port the development of various waveforms including AM and FM analog waveforms, narrowband dig-

ital waveforms of GMSK, BPSK, QPSK, and even multi-carrier waveforms [95]. GNU radio is written

in both C++ and Python language, and programs can be compiledand run on most GPPs and operat-

ing systems including Linux, Mac OSX, and Windows XP. Typically GNU radio is used with a USRP

radio front-end.

The USRP, whose architecture and layout are as described in Figure 8, consists of a small mother-

board containing up to four 12-bit 64M sample/s ADCs for receive functions, four 14-bit, 128M sample/s

DACs for transmit functions, a million gate Altera Cyclone FPGA and a programmable USB 2.0 con-

troller. Each fully populated USRP motherboard supports four daughterboards, two for receiving and

two for transmission. RF front ends are implemented on the daughterboards. Depending on the specific

daughterboards added, it can cover a variety of frequency bands. A list of current available daughter-

boards with specification is shown in Table1 [96].

Hardware drivers for the USRP are included in the standard build of GNU radio software package by

default, most of the USRP settings, such as center frequency, PGA gain, interpolation, decimation, and

other transmission and receiving path options on the USRP can be controlled using GNU Radio. The

drivers for the USRP in the GNU radio package are provided both at elementary C++ class level and

Python API function level [96].
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GNU/USRP radio provides great flexibility to support various independent cognitive radio devel-

opments through software. However, it cannot support high computational throughput for real-time

processing and controlled physical and network layer integration.

Figure 8. USRP architecture.

Table 1. USRP daughterboard list with specifications.

Board Rx / Tx Frequency Range Tx Power

Basic Tx/Rx Tx/Rx 1 MHz to 250 MHz N/A

LF Tx/Rx Tx/Rx DC to 30 MHz N/A

TVRX Rx 50 MHz to 860 MHz N/A

DBSRX Rx 800 MHz to 2.4 GHz N/A

WBX0510 Transceiver 50 MHz to 1 GHz 100mW (20dBm)

RFX900 Transceiver 750 to 1050 MHz 200mW (23dBm)

RFX1200 Transceiver 1150 to 1450 MHz 200mW (23dBm)

RFX1800 Transceiver 1.5 to 2.1 GHz 100mW (20dBm)

RFX2400 Transceiver 2.3 to 2.9 GHz 50mW (17dBm)

XCVR2450 Transceiver 2.4 to 2.5 GHz, and 4.9 to 5.9 GHz100mW (20dBm)

4.2. Cognitive Radio Platform from UC Berkeley

The BWRC (Berkeley Wireless Research Center) cognitive radio testbed hardware architecture con-

sists of Berkeley Emulation Engine (BEE2) [97], reconfigurable 2.4 GHz radio modems, and fiber link

interface for connection between BEE2 and radios. The software architecture consists of Simulink-based

design flow and BEE2 specific operating system that provide anintegrated environment for implemen-

tation and simple data acquisition during experiments [94].

The BEE2 contains 5 Vertex-2 Pro FPGAs, each FPGA embeds a PowerPC 405 core, which min-

imizes the latency between the microprocessor and reconfigurable logic while maximizing the data

throughput. Furthermore, with FPGAs running at clock ratessimilar to that of the processor cores, sys-
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tem memory, and communication subsystems, all data transfers within the system have tightly bounded

latency. BEE2 is therefore well suited for high throughput real-time applications [97].

In order to interface this real-time processing engine withradios and other high throughput devices,

multi-gigabit transceivers (MGTs) on each FPGA are utilized together with physical XAUI 4X electrical

connection to form a 10 Gbps full-duplex links. There are a total of 18 such interfaces per BEE2 board

allowing independent connections of 18 radios. Each individual MGT channel is software configurable

to communicate and exchange data at any rate below 10 Gbps. The board also contains USB and JTAG

interfaces. Figure9 shows the architecture and a picture of the BEE2 board. Details about BEE2 can be

found in [97].

Figure 9. BEE2 system architecture (left) and BEE2 implementation (right).

The reconfigurable wireless modem consists of the filters, ADC/DAC chips and a Xilinx Vertex-II

Pro FPGA. Digital-to-analog conversion is performed by a 14-bit DAC running at 128 MHz, while

analog-to-digital conversion is performed by a 12-bit ADC running up to 64 MHz. The FPGA performs

data processing and control, and supports 10 Gbps full duplex XAUI link for transmitting and receiving

data to/from BEE2. The RF modem module is capable of up/down converting 20 MHz RF bandwidth

at 2.4 GHz. The RF frequency is fully programmable in the entire 80MHz ISM band using LMX2326

synthesizer [98].

Top level block diagram and implementation of the wireless modem are presented in Figure10. Both

received signal strength (RSSI) and automatic gain control(AGC) are measured in real-time to support

optimal signal conditioning on the receiver end. It also features dual antenna configuration for switched

antenna diversity [98].

Figure 10. The BWRC Reconfigurable wireless modem.
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Software design is built around Matlab/Simulink from Mathworks [99] coupled with the Xilinx Sys-

tem Generator [100] for mapping high-level block diagrams and state machine specifications to FPGA

configurations. This environment supports simultaneous development of signal processing algorithms

and digital design description for their hardware realization. Therefore no translation is required and al-

lows signal processing researchers to realize hardware implementation of developed

algorithms [94, 98, 101].

One of the key features in the design flow is the ability to communicate and control hardware registers,

block RAMs, DRAMs, and software running on control FPGA in real-time. BEE2 can be connected to

the local area network, so that registers and memory can be accessed and transferred to laptops or PCs

via Ethernet. Figure11 illustrates the mapping process of algorithms and protocols on BEE2 as well as

experiment control via Ethernet [98, 101].

Figure 11. Software design flow for mapping of algorithms and protocolson BEE2.

4.3. ORBIT Platform from Rutgers University

The Orbit (Open Access Research Testbed for Next-Generation Wireless Networks) testbed devel-

oped by WinLab at Rutgers University is a large-scale wireless network testbed which can be dynami-

cally interconnected into specified topologies for wireless network experiments with reproducibility for

quantitative evaluation of various new protocols, or application and system concepts [102, 103]. The

radio grid emulator as shown in Figure12 currently consists of 400 wireless nodes having 802.11a/b/g

wireless cards laid out in a20 × 20 grid separated by about 1 m between adjacent nodes. Each node

is built on a standard PC platform with multiple wireless andwired network interfaces, some of these

nodes can support mobility. The selection of a subset of gridnodes yields a configuration that aims to

emulate a wireless network in the real world [102, 103, 104].

As shown in Figure13, the Orbit testbed uses a two-tier architecture with a lab emulator/field trial

network architecture to deal with the important issue of reproducibility in experimentation, while at

the same time supporting the ability to evaluate protocol and application performance in real-world
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settings [103]. A user-defined protocol is migrated to the field test after it is validated by the matrix.

Users on the Internet can have remote access to the ORBIT [104].

As shown in Figure14, the radio nodes in ORBIT testbed form the grid and serve as the pri-

mary platform for user experiments. Each radio node is a custom wireless node which consists of:

(1) 1-GHz VIA C3 processor with 512 MB of RAM and a 20 GB local hard disk, (2) two wireless

mini-PCI 802.11a/b/g interfaces, and (3) two 100BaseT Ethernet ports for experimental data and control

respectively. The hardware components also include Instrumentation subsystem, Independent WLAN

monitor system and support server. These components provide the testbed with power abilities such as

radio measurements, MAC/network layer view of the radio grid’s components and huge data storage

support [102, 103, 104].

Figure 12. Orbit system architecture.

Figure 13. High-level view of proposed 2-tier system architecture forORBITs.

The Orbit testbed has a software framework as shown in Figure15, which consists of manage-

ment/control software as well as user level application. The software packages and libraries support

both application/protocol evaluations. These include common libraries for traffic generation, measure-

ment collection, etc., and also provide easy hooks to enableexpert users to develop their own applica-

tions, protocol stacks, MAC layer modifications and/or other experiments on the testbed. The manage-

ment/control software include node handler, collection server and disk-loading server. The software for
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radio nodes include node agent, ORBIT Measurement Library (OML) and Libmac. These components

and libraries were developed based on Linux kernel 2.6.4 as the target platform to support the experiment

and to provide libraries and interfaces for the user application development [102, 103, 104].

Figure 14. Orbit radio node.

Figure 15. Software architecture of ORBIT testbed.

The ORBIT testbed can be used to evaluate various concepts and network applications in real radio-

device situations. However, such testbed is primarily applicable to experimentation with higher level

networking protocols. The radio node is more like a computerthan a real RF radio and does not have the

ability to do spectrum sensing experiments. At the same time, the use of only a single vector analyzer

limits the exploration of distributed spectrum sensing protocols. Also, the use of standard 100BaseT

Ethernet overhead can be a limiting factor in study of channel switching algorithms [94, 103].

4.4. WARP platform from Rice Univ

The WARP (Wireless Open-Access Research Platform) developed by CMC lab at Rice University

is a scalable and configurable platform to develop, implement and test advanced wireless algorithms
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for educational and research oriented applications at bothphysical layer and MAC layer. The platform

architecture, depicted in Figure16, consists of four key components: custom hardware, platform sup-

port packages, open-access repository and research applications; all together providing a reconfigurable

wireless testbed [105, 106, 107].

Figure 16. Architecture of the WARP platform.

The hardware components include a FPGA motherboard and up tofour peripheral daughterboards

hosted by the FPGA board in its four daughterboard slots as Figure 17 shows. The Xilinx Virtex-

II Pro FPGAs is the heart of the hardware and serves as the primary communication processor, the

embedded PowerPC core in the Xilinx FPGA was programmed to implement a flexible medium access

development framework, which enables researchers to develop network layer designs while abstracting

away the physical layer. The four daughterboard slots on theWARP board can be used to build 4

multiple-input multiple-output (MIMO) system [105, 106, 107]. With the radio boards, the testbed may

be used for wideband wireless communications in the 2.4 GHz/5 GHz ISM/UNII bands.

Figure 17. WARP custom hardware, including the Virtex-II Pro FPGA board and radio boards.

Between multiple FPGA boards, the multi-gigabit transceivers (MGTs) built into the Xilinx FPGAs

are utilized to provide high speed board-to-board connections which make the WARP platform scalable,

each MGT provides a full duplex 3+ Gb/s connection between two FPGAs. The daughterboards can

provide analog video capture, playback capabilities, six channels of fast analog I/O (2 A/D and 4 D/A).

They can therefore enable the implementation of wireless algorithms in real-time at baseband frequen-

cies, which decouples the processes of algorithmic and RF interface debugging [106].
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For software development, the platform supports differentlevels of design flows from low level

VHDL/Verilog RTL coding to system level MATLAB modeling. Xilinx ISE design tools are used to

synthesize hand-coded HDL and map the designs to hardware. Xilinx System Generator, integrated in

MATLAB Simulink, provides abstractions for building and debugging high performance DSP systems

in MATLAB/Simulink using the Xilinx blockset. Moreover, Simulink hardware co-simulation that ex-

pedites the simulation and debugging steps is also supported for MAC and network layer design, the

WARP platform supports C language based applications on thePowerPC while interfacing the physical

layer implementations in the FPGA fabric [105, 106, 107]. Figure18 shows how researchers design the

various layers of a custom wireless network while using the platform interface tools to integrate different

layer implementations.

Figure 18. WARP design flows.

Rice university also held workshops to further expand the use of the WARP platform at Rice Uni-

versity as well as other universities and research centers.The online open-access repository [108] is the

central archive for all source codes, models, platform support packages, application building blocks, re-

search applications, design documents and hardware designfiles associated with WARP. The researchers

can discuss problems and exchange ideas about different algorithmic and hardware implementations.

4.5. SFF SDR Platform from Texas Instruments

The Small Form Factor (SFF) Software Defined Radio (SDR) development platform provided by

Lyrtech in collaboration with Texas Instruments (TI) and Xilinx is a self-contained platform consisting

of three separate modules: the digital processing module, the data conversion module and the RF module

as shown in Figure19 [109].

The baseband processing part is designed around the TMS320DM6446 System on Chip (SoC) [110]

from TI and Virtex-4 SX35 FPGA from Xilinx. The DM6446 SOC is equipped with a DSP core and

a ARM9 general-purpose processor(GPP) core on a single chip, it also comes with a complete set of

peripherals necessary for SDR development, including serial, USB and Ethernet ports, as well as DDR2

memory and NAND flash memory [109]. The data conversion module is equipped with a 125 MSPS,

14-bit dual channel ADC and a 500 MSPS 16-bit dual channel interpolating DAC provided by TI. The

RF module is configured to have either 5 or 20 MHz bandwidth with working frequencies of 200–930

MHz for the transmitter and 30–928 MHz for the receiver, other higher band products with working
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frequency from 1.6–2.3 GHz and Wi-Fi band, Wi-Max band are also optional [109]. The platform also

uses TI’s MSP430 ultra low-power MCU and power management technology [111].

Figure 19. SFF SDR platform and the functional block diagram.

Lyrtech selected the real-time operating system INTEGRITYfrom Green Hills Software as the un-

derlying software foundation of the SFF SDR development platforms and integrated various compo-

nents such as System Generator for DSP from Xilinx, as well asMATLAB, Simulink, and Real-Time

Workshop from The MathWorks. These components provide the board’s development package with a

module-based design ability. Model-based design supportsIP reuse by being able to include legacy code

among the other blocks. In the Simulink environment, this isdone by using S-functions for the DSP, and

black boxes for the FPGA. On the other hand, a developer can integrate his or her model-based algo-

rithms to the low-level coded design of the rest of the team with the use of Embedded Coder, another tool

from the Mathworks tailored for embedded processors [109, 111]. The software design flow is shown as

Figure20.

Figure 20. Using SFF SDR platform in module-based design flow.

The platform also integrates Software Communications Architecture (SCA) that specifies interactions

between hardware and software elements and Common Object Request Broker Architecture (CORBA)

communications middleware standard for the SFF SCA Development Platform. This makes the devel-

opment process much easier [111].
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4.6. Some TV Band White Space Devices for Cognitive Radio

For years, cognitive radio research has focused on TV band (VHF and UHF spectrum) because this

band provides superior propagation and building penetration compared to other unlicensed spectrum in

other bands like the 2.4 and 5 GHz bands. After two years whitespace devices (WSD) testing, the Fed-

eral Communications Commission (FCC) in the United States issued a report and order which permits

cognitive use of the TV white space spectrum. These new regulatory rules open up an opportunity to

develop new wireless networks to utilize this spectrum [112]. The following section will give a brief

introduction of the most recent WSD devices from commercialcompanies such as Motorola, Inc., Adap-

trum, Inc. and Philips, Inc. In addition, engineers at the University of Kansas (KU) have built and tested

a simulated WSD transmitter and successfully demonstratedhow WSD transmissions can be structured

to avoid causing harmful interference to licensed broadcasts on adjacent channels.

Motorola WSD device

The Motorola WSD platform can operates on channels 21–51 (512 MHz–698 MHz) and includes

capabilities for geo-location and sensing of digital TV signals. The system consists of a Cognitive Radio

Rack and a laptop computer host connected via Ethernet. The rack consists of a UHF radio and two

PRO-3500 carrier boards co-located in a compact PeripheralComponent Interconnect (PCI) chassis.

The cognitive engine runs on the lower board [113].

This WSD implements a geo-location-based approach as its primary method for the determination of

occupied TV channels with a spectrum-sensing capability used to refine the results of the geo-location

solution and to prioritize those channels found to be available. This WSD exhibited the fastest scan

execution time of 0.1 s/channel [112, 113].

In DYSPAN 2008, Motorola WSD platform’s demonstration shows that individual video streams from

Client Cognitive radio as transmitter to Master Cognitive radio and displayed on a local terminal. Each

of the radios uses a non-proprietary 802.11 MAC/PHY that hasbeen rebanded to UHF. Figure21shows

the TV white space cognitive radio demonstration architecture.

Adaptrum WSD device

Adaptrum Inc.’s Cognitive Radio Platform is an integrated hardware and software development sys-

tem that has been designed for TV white space operation on UHFtelevision channels 21–51

(512 MHz–698 MHz). The system is capable of various forms of TV signal sensing including wave-

form/signature sensing, spectral identification, signal power estimation, and network-level cooperative

sensing. It detects both analog and digital TV signals. The system is also capable of signal transmission

in the TV bands with flexible waveform, modulation and signalbandwidth construction. It incorporates

transmit power control and chain linearization to reduce adjacent channel interference. The maximum

transmitter output power specification is 100 mW (+20 dBm) over the selected bandwidth [113, 114].

Key components of the development platform include a wide-band high dynamic-range RF transceiver

operating over the frequency range 400–1000 MHz and an FPGA-based hardware development board

with integrated high-speed ADCs and a high-density FPGA where the baseband and protocol–layer

functions can be implemented. The software design is based on Matlab-based integrated development
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environment (IDE) where CR hardware functions are controlled using Matlab GUI and Matlab scripts.

Figure22 shows a lab picture of the prototype system which includes the RF transceiver board and the

FPGA board [112, 113, 114].

Figure 21. Motorola TV white space cognitive radio demonstration architecture.

Figure 22. picture of Adaptrum CR prototype system.

In the 2008 FCC White Space Device testing, Adaptrum demonstrated its CR prototype system, which

is capable of reliably sensing ATSC and NTSC signals at very low detection threshold [112, 114]. More

details can be found in [113].

Philips WSD device

The Philips WSD platform is built using a combination of custom algorithms implemented on a

Field Programmable Gate Array (FPGA) and commercial off-the-shelf components. It consists of a

commercial TV tuner for tuning to a specified television channel and translating to IF. A digital signal
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processing board is used for ADC processing and a desktop computer is used to configure the hardware,

provide a GUI and store detection results. Figure23shows a picture of a cognitive radio node [112, 113].

Figure 23. Philips WSD cognitive radio node.

Philips claims that the prototype WSD will scan UHF channels21–51 and detect ATSC (DTV), NTSC

(analog TV) or wireless microphones to a level of at least−114 dBm over a 6 MHz television channel.

The channel scan time for this device varies between 8 and 50 s/ch due to the sequential application of

separate ATSC, NTSC and wireless microphone detection algorithms [113].

In the 2008 FCC White Space Device testing, the Philips device demonstrated the most sensitivity in

the laboratory tests, also performed best with respect to detecting occupied channels, however, it reported

a very high percentage of channels occupied that were potentially available [112, 113].

4.7. Other Cognitive Radio Implementation Researches

Other than all the platforms mentioned above, there are manyother research centers and universities

are involved in cognitive radio implementation research. However, not all of them can be covered in

this paper, notable are the platforms from NICT of Japan [115, 116], Shared Spectrum Company [117],

Georgia Institute of Technology [118], Virginia Tech University [119] and University of Utah [120].

5. Multi-Giga-Hertz Agile Radio Front-End Design

Demand for agile radio is increasing from applications in both communications and radar aspects. A

dream agile radio should be able to sense the frequency spectrum, make a best strategy and dynamically

access to a desired frequency band. These serial actions must be done as quickly as possible, which

poses design and implementation challenges.

In addition to the requirement for quick response, wide frequency range ability is another essential

requirement for an agile radio to take full advantage of widerange of spectral availability. A multi-

giga-Hertz frequency coverage may sound aggressive, but itis technically achievable, considering recent

advances in electronic devices and our experience in UWB radio.
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The key subsystem in a multi-giga-Hertz agile radio system is the front-end. The main challenges

in designing and implementing such a front-end include: (1)wideband amplifier with low noise fig-

ure and large dynamic range, and (2) fast switching between subbands in both transmitter and receiver

RF chains.

5.1. Potential Front-End Design Options

Scheme 1

Frequency sweeping: like a spectrum analyzer, too slow.

Scheme 2

With multiple narrowbands and working in a hybrid parallel/serial fashion: too many RF analog branches

including a filter bank, and band switching takes too much time.

Scheme 3

With a few wide bands and working in a hybrid parallel/serialfashion: less RF analog branches and less

band switching time; taking advantage of the power of digital signal process to achieve flexibility and

agility.

The scheme 3 seems the most attractive and it is considered inthe following.

5.2. A Design Example–GigaFront-1 Test-Bed Front-End

Proposed here is a multi-giga-Hertz agile radio front-end design as an optional design for our labora-

torial test-bed called GigaFront-1.

Philosophy of Design:

The following aspects are used as guidance in the design.

• cover all frequencies of interest, namely, the busy TV bandsand higher bands up to 5.4 GHz

• reduce RF circuit complexity by using large digital processing bandwidth

• achieve fast subband switching in digital domain

• flexible in system configuration and adding new functions/features

• use as many off-the-shelf products as possible

The major frequency parameters are listed in Tables2 and3. The proposed transmitter front-end and

receiver front-end are shown separately. The overall frequency span ranges from 400 MHz

through 5.4 GHz, divided into 10 bands in the transmitter and6 bands in the receiver. Each band can

be further divided into a number of subbands in digital domain. The digital processing bandwidth is

500 MHz, which does not put too much pressure on the data conversion section and digital back-end.

Band switching can be done by changing the analog switch positions, combined with local oscillator

(LO) frequency switching. In the transmitter, the analog mixer generates upper sidebands and lower

sidebands, and depending on the position of the second switch (SW2), one of side bands is utilized. This

design assumes a minimum transmit subband bandwidth of 10 MHz, and fast switching between the

subbands is achieved by changing the frequenciesf0, f1 andf2 in digital domain. Note thatf0, f1 and
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f2 range from−240 MHz to 240 MHz, resulting in a maximum frequency shift 480 MHz. It is expected

that switching between the subbands is much faster than switching between the bands. There are three

quadrature digital processing cores in parallel in either the transmitter or the receiver. The first digital

processing core is dedicated to the two lower busy bands ranging from 400 MHz through 1.4 GHz, while

the rest two cores are dedicated to the higher bands with a 4 GHz frequency span. The second and third

digital processing cores can work simultaneously to cover a1 GHz frequency range. In the receiver,

the bandwidths are 500 MHz for each of the first two bands and 1 GHz for each of the rest of the four

bands. This receiver band arrangement tries to reduce band switching effort in the higher frequency

range, assuming unbalanced utilizations in the lower and higher frequency ranges.

Table 2. Transmitter frequency parameters (GHz).

Band LO frequency combination center frequency SW position

1. 0.4 – 0.9 0.65 0.65 +f0 SW1 lower

2. 0.9 – 1.4 1.15 1.15 +f0 SW1 upper

3. 1.4 – 1.9 3.15, 1.5 1.65 +f1 SW2 lower

4. 1.9 – 2.4 3.65, 1.5 2.15 +f2 SW2 lower

5. 2.4 – 2.9 3.15, 0.5 2.65 +f1 SW2 lower

6. 2.9 – 3.4 3.65, 0.5 3.15 +f2 SW2 lower

7. 3.4 – 2.9 3.15, 0.5 3.65 +f1 SW2 upper

8. 2.9 – 4.4 3.65, 0.5 4.15 +f2 SW2 upper

9. 4.4 – 4.9 3.15, 1.5 4.65 +f1 SW2 upper

10. 4.9 – 5.4 3.65, 1.5 5.15 +f2 SW2 upper

Figure 24. Transmitter front-end architecture.
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Figure 25. Receiver front-end architecture.
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Table 3. Receiver frequency parameters (GHz).

Band Intermediate frequency (IF) Image frequency

1. 0.4 – 0.9 0

2. 0.9 – 1.4 0

3. 1.4 – 2.4 3.9, 0 5.4 – 6.4

4. 2.4 – 3.4 3.9, 0 4.4 – 5.4

5. 3.4 – 4.4 3.9, 0

6. 4.4 – 5.4 3.9, 0 2.4 – 3.4

5.3. Remarks

The multi-giga-Hertz agile radio is a new technical trend incommunications and radar applica-

tions, in response to the need for efficiently sharing the scarce spectral resource. The front-end de-

sign and implementation is the most difficult part in this revolutionary radio. High level front-end de-

sign has been proposed through an example. The methodology used here can be applied to different

situations, depending on specific frequency band planning,required minimum signal bandwidth, and

hardware availability.

6. A Compressed Sensing Based Ultra-Wideband Cognitive Radio

Ultra-wideband (UWB) [121, 122, 123, 124] represents a new paradigm in wireless communication.

The unprecedented radio bandwidth provides advantages such as immunity from flat fading. However,
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extremely high sampling rate analog to digital conversion (A/D) becomes a major challenge in UWB

communication systems. According to Nyquist sampling theorem, the sampling rate should be at least

twice the bandwidth of the signal, and oversampling is required for better quality. For example, a 5 GHz

UWB signal needs over 10 Gsps A/D if oversampling is considered, which is not feasible even for the

state-of-art hardware.

Compressed Sensing (CS) [21, 125] gives an opportunity to overcome this challenge. The sampling

rate can be reduced to less than one tenth of the Nyquist rate,as long as the transmitted signal is sparse

in some aspect. CS has been used to UWB communications [126, 127]. A novel CS based UWB

communication system is proposed. The channel itself is considered as part of compressed sensing. The

hardware complexity of the receiver is moved to the transmitter side. The A/D sampling rate for a 5 GHz

UWB signal, covering the 3–8 GHz frequency band, is reduced to as low as 125 Msps [128].

Cognitive Radio (CR) is another challenge in the UWB system.The ultra wide spectrum a UWB

system occupied will interfere or be interfered by other narrowband or wideband systems sharing the

same spectrum. A simple method is suggested and verified in the CS based UWB communication system.

6.1. Compressed Sensing Background

Reference [129] gives a most succinct highlight of the CS principles and will be followed here for a

flavor of this elegant theory. Consider the problem of reconstructing anN × 1 signal vectorx. Suppose

the basisΨ = [ψ1, ..., ψN ] provides aK-sparse representation ofx, whereK << N ; that is

x =

N−1
∑

n=0

ψnθn =

K
∑

l=1

ψnl
θnl

(2)

Herex is a linear combination ofK vector chosen fromΨ; {nl} are the indices of those vectors;{θnl
}

are the coefficients. Alternatively, we can write in matrix notation

x = Ψθ (3)

whereθ = [θ0, θ1, ..., θN−1]
T . In CS,x can be reconstructed successfully fromM measurements and

M << N . The measurement vectory is done by projectingx over another basisΦ which is incoherent

with Ψ, i.e.,y = ΦΨθ. The reconstruction problem becomes anl1 − norm optimization problem:

θ̂ = arg min ||θ||1 s.t. y = ΦΨθ (4)

This problem can be solved by linear programming techniqueslike basis pursuit (BP) or greedy

algorithms such as matching pursuit (MP) and orthogonal matching pursuit (OMP).

When applying the CS theory to communications, the samplingrate can be reduced to sub-Nyquist

rate. In [130] and [131] a serial and a parallel system structure were proposed, respectively. Sampling

rate can be reduced to less than 20% of the Nyquist rate. However, they were designed for signals that

are sparse in frequency domain. In this paper we propose a serial system structure which is suitable

for pulse-based UWB communications, which is sparse in timedomain. The analog-to-information

converter (AIC) structure in [130] is not suitable for UWB communications. The 3–8 GHz UWB signal

is considered as an example in describing the reasons:
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• The multiplier, which can be a mixer, supporting such high bandwidth for 3–8 GHz UWB signal

is difficult to implement.

• The system is time-variant. Each measurement is the productof a streaming signal and a changing

PN sequence. This requires a huge amount of storage space andcomplex computation.

A simple architecture that is suitable for UWB signals is proposed using a finite impulse response

(FIR) filter-based architecture.

6.2. Filter-based Compressed Sensing

Random filter based CS system for discrete time signals was proposed in [132]. This idea can be

extended to continuous time signals. We use∗ to denote the convolution process in a linear time-invariant

(LTI) system. Assume that there is an analog signalx(t), t ∈ [0, Tx] which isK-sparse over some

basisΨ:

x (t) =

N−1
∑

n=0

Ψn (t) θn = Ψ (t) θ (5)

where

Ψ (t) = [Ψ0 (t) ,Ψ1 (t) , ...,ΨN−1 (t)] (6)

θ = [θ0, θ1, ..., θN−1]
T (7)

Note that there are onlyK non-zeros inθ. x(t) is then fed into a length-L FIR filter h(t):

h (t) =
L−1
∑

i=0

hiδ (t− iTh) (8)

whereTh is the time delay between each filter tap.

The outputy(t) = h(t) ∗ x(t) is then uniformly sampled with sampling periodTs. Ts follows the

relationTs/Th = q, whereq is a positive integer.M samples are collected so thatM ·Ts = ⌊L · Th + Tx⌋,
where(L · Th + Tx) is the duration ofy(t).

Now we have the down-sampled output signaly(mTs), m = 1, 2, ...,M − 1:

y (mTs) = h (mTs) ∗ x(mTs)

=
∫ Ty

0
h (mTs − τ) x (τ) dτ

=
∫ Ty

0

[

L−1
∑

i=0

hiδ (mTs − iTh − τ )

]

x (τ) dτ

=
L−1
∑

i=0

hix (mTs − iTh)

= Φx

(9)

whereΦ is aquasi− Toeplitz matrix and

x = [x (0) , x (Th) , ..., x ((M − 1) qTh)]
T = Ψθ (10)
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Ψ = [Ψ (0) ,Ψ (Th) , ...,Ψ ((M − 1) qTh)]
T (11)

A quasi− Toeplitz matrix has such property: each row ofΦ hasL non-zero entries and each row is

a copy of the row above, shifted right byq places.

Let ym = y(mTs), we have

y = [y0,y1, ..., yM−1]
T (12)

Combining Equations5, 6, 7, 9, 10, 11 and12, we have:

y = ΦΨθ = Θθ (13)

Now the problem becomes recoveringN × 1 vectorθ from theM × 1 measurement vectory, which

is exactly the same as the problem posed in Equation4. The number of measurements for successful

recovery depends on the sparsityK, duration of the analog signalTx, filter lengthL and the incoherence

betweenΦ andΨ. Numerical results in Section6.3. show that whenx(t) is sparse andh(t) is a PN

sequence,θ can be reconstructed successfully with a reduced sampling rate, requiring onlyM << N

measurements. Note that measurementy is a projection fromx via an FIR filter. We use this feature to

design our proposed system.

6.3. Compressed Sensing Based UWB Communication System

Communication system architecture

With the knowledge of Sections6.1. and6.2., we propose a CS-based UWB communication system

which is able to reduce the sampling rate to 1.25% of the Nyquist rate. The system architecture is

illustrated in Figure26. A UWB signal is transmitted by feeding a sparse bit sequencethrough a UWB

pulse generator and an pre-coding filter. Then, the receivedsignal is directly sampled after the channel,

using a low-rate A/D and then processed by a recovery algorithm.Φ is the projection matrix consisting of

the pre-coding filter and the channel. It can be noticed that channel itself is part of the projection matrix

in CS, so the receiver is very simple, with only one low-rate A/D to collect measurement samples. For

example, a 3–8 GHz UWB signals can be successfully recoveredby a 125 Msps A/D.

K-pulse position modulation (PPM) is used to modulate sparsebit sequence. Each PPM sym-

bol is K-sparse: there areN positions and onlyK << N pulses in each symbol, as illustrated in

Figure27. The output of the UWB pulse generator can be written using the notations in Equations5

and6, with Ψn (t) = p (t− nTp), wherep(t) is the function of the UWB pulse andTp is the period

of the pulse. Pre-coding filter and channel are modeled as FIRfilters, with combined impulse response

h(t) = f(t)∗ c(t), wheref(t) andc(t) are the impulse response for the pre-coding filter and the channel,

respectively. Hereh(t) is equivalent to theh(t) in Equation8. The received signaly(t) = h(t) ∗ x(t) is

then uniformly sampled by an A/D with sampling periodTs. Similar to Equations9 and12, the down-

sampled measurements form theM × 1 vectory = ΦΨθ = Θθ, whereΦ is aquasi− Toeplitz matrix.

Now, the communication problem becomes a problem of estimating θ̂ from M << N measurements,

which is again identical to the problem described as Equation 4.
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Figure 26. The system architecture of the proposed CS based UWB system.The communi-

cation problem of recovering the transmitted information can be modeled as a CS problem.
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Figure 27. The structure of theK-sparse transmitted symbol.
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The success of recovery relies on the sparsityK and the incoherence betweenΨ andΦ. Sparsity is

easily met by controlling the transmitted sequence. In a simple case, we setK = 1, which means that

there is only one pulse in PPM symbol. The incoherence property can be met by proper selection of the

pre-coding filterf(t). If f(t) is a PN sequence whose chip rate is equal to the bandwidth of the UWB

pulsep(t), thenθ can be successfully recovered using recovery algorithms. So far the discussion is in

baseband. If the transmitted UWB is passband, then up-conversion is applied after the pre-coding filter.

PN chip rate and the receiver structure remain the same. No down-conversion is required at the receiver.

For example, a 3–8 GHz UWB pulse requires a 5 GHz PN chip rate, which is the same as the signal

bandwidth, not the Nyquist rate of the maximum signal frequency, as required by the AIC system. A/D

at the receiver directly samples the received signal, without doing down-conversion.

The number of measurementsM and sampling rate are related and determined by the length ofthe

combined filterh(t). If h(t) is long, the received signal is “spread out” in the time domain, therefore

sufficient measurements can be made under a lower sampling rate.

Cognitive radio capability

CR concept can be integrated within the CS based architecture in the pre-coding filter, since the

spectrum of the transmitted signal is dominated by the spectrum of the pre-coding filter. Suppose the

system has the knowledge of the interference frequencies atthe receiver and a spectrum mask to avoid

interfering other systems. Then, a notch filter will be addedat the receiver to cancel the interference. A

spectrum mask will be added at the transmitter. From the structure of CS based UWB system, the recover

matrix at the receiver should be identical to the pre-codingfilter matrix. As a result, the transfer function
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of the pre-coding filter will notch out some frequencies and set a spectrum mask in a prior manner, as

shown in Figure28. The pre-coding filter is then modified to have the capabilityto avoid interfering the

primary users and canceling the interference from them.

Figure 28. Spectrum Mask of the transmitted signal. The ’notch’ part isset to cancel the

interference at the receiver. Transmitter also has the ’notch’ part because CS requires consis-

tency at the receiver and transmitter. The ’mask’ part is setto avoid interfering primary users.
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Channel estimation

After down-sampling,y is processed at the receiver withΘ using BP. In constructingΘ, f(t), c(t)

andΨ(t) are required.f(t) andΨ(t) are fixed and can be considered as prior knowledge at the receiver.

The channel,c(t), however, needs to be estimated. A CS based channel estimation method is proposed.

A 3–8 GHz channel can be estimated by a 500 Msps A/D.

Similar to Equation8, the UWB channel can be modeled as:

c (t) =
L−1
∑

i=0

ciδ (t− iTh) (14)

The channel estimation block diagram is illustrated in Figure 29. A UWB probing pulsep(t) ∗ f(t)

is transmitted to “probe” the channel, wherep(t) is a UWB pulse andf(t) is a PN sequence. At the

receiver, sub-Nyquist rate A/D collectsM uniform measurements. This process can be represented as

y = D ↓ (c(t) ∗ f(t) ∗ p(t)), whereD ↓ denotes a down-sampling factor of⌊N/M⌋ andy denotes the

measurement vector. Since the system is LTI, an alternativeblock diagram can be drawn as Figure30.

Then,y = D ↓ ((f(t) ∗ p(t)) ∗ c(t)). In matrix notation,y = Θc, whereΘ is aquasi− Toeplitz matrix

derived fromf(t) ∗ p(t) andc = [c0, c1, ..., cL−1]
T . The channel estimation problem is to getĉ from

measurementsy, which is identical to the CS problem described in Equation4.

Successful recovery requiresc to be sparse and the incoherent property of measurement

matrixΘ [21]. Indoor UWB channel is sparse and PN sequence structuredΘ has the incoherent property.

PN chip rate should be the same as the bandwidth of the channelunder estimation. We demonstrate an

estimation result in the following.
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Figure 29. Block diagram of channel estimation.
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Figure 30. An equivalent block diagram of channel estimation.
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First, we need to set up the real channelc(t) as the estimation target. Vector network analyzer (VNA)

is used to get the real indoor channel coefficientc. The 3–8 GHz channel is measured by VNA with 1

MHz frequency step and 128 averages.c(t) (Figure31) is derived from the VNA data using CLEAN

algorithm with a rectangular window. There are about 50 non-zero entries inc. PN chip rate is 5 GHz and

length off(t) is 1µs. Baseband Gaussian UWB pulsep(t) has 5 GHz bandwidth. Since the measured

channel is in passband, up-conversion is applied after the PN filter. At the receiver, 500 Msps A/D is

used to get measurements. BP is then used to get the estimatedvectorĉ with the knowledge off(t), p(t)

andy only. Additive white Gaussian noise (AWGN) is added at the received samples asy = Θc + w,

wherew is the noise vector. Basis pursuit denoising (BPDN) is used to solve the recovery problem with

noise. Figure32(a) shows the estimation result and Figure32(b) shows the zoomed in result. It can be

seen that althougĥc is a little noisy, all major paths in̂c perfectly match toc. Only the amplitudes are

slightly different.

Figure 31. Time domain channel derived from VNA measurement. The sparsity of this

channel is 50.
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6.4. Discussion

Our proposed approach is to exploit the projection matrix with channel itself and a waveform-based

pre-coding at the transmitter. Taking the channel as part ofCS results in a very simple receiver design,

with only one low-rate A/D. The pre-coding is implemented ina natural way using an FIR filter. The
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Figure 32. (a) Channel estimation result. (b) Zoomed in version of the result.
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concept has been demonstrated, through simulations, usingreal-world measurements. Realistic channel

estimation is also considered. The philosophy is to trade computation complexity for hardware complex-

ity, and move receiver complexity to the transmitter.

This work is just the beginning of the pre-coded CS. Future work includes reduction of algorithm com-

plexity. Much quicker algorithms are required for real-time applications such as UWB communications.

7. Wideband Waveform Optimization for Multiple Input Singl e Output Cognitive Radio Using
Time Reversal

Waveform design or optimization is a key research issue in the current wireless communication sys-

tem. Waveform should be designed according to the differentrequirements and objectives of system

performance. For example, the waveform should be designed to carry more information to the receiver

in terms of capacity. For navigation and geo-location, the ultra short waveform should be used to increase

the resolution. If the energy detector is employed at the receiver, the waveform should be optimized such

that the energy of the signal in the integration window at thereceiver should be maximized. In the con-

text of cognitive radio, waveform design or optimization give us more flexibilities to design radio, which

can coexist with other cognitive radios and primary radios.From cognitive radio’s point of view, spectral

mask constraint at the transmitter and the influence of Arbitrary Notch Filter at the receiver should be

seriously considered for waveform design or optimization,except for the consideration of the traditional

communication objectives. Spectral mask constraint is imposed on the transmitted waveform such that

cognitive radio has no interference to primary radio, whereas Arbitrary Notch Filter at the receiver is

used to cancel the interference from primary radio to cognitive radio.

This section deals with wideband waveform optimization formultiple input single output (MISO)

cognitive radio using time reversal. The system architecture is shown in Figure33. We limit our discus-

sion to a single user scenario. There areN antennas at the transmitter and one antenna at the receiver.

OOK modulation is used for transmission. Thus the transmitted signal at the transmitter antennan is,
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Figure 33. System architecture.
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sn (t) =

∞
∑

j=−∞

djpn (t− jTb) (15)

whereTb is the bit duration,pn(t) is the transmitted bit waveform defined over[0, Tp] at the transmitter

antennan anddj ∈ {0, 1} is j-th transmitted bit. Without loss of generality, the minimal propagation

delay is assumed to be zero. The energy of transmitted waveforms isEp,

N
∑

n=1

∫ Tp

0

p2
n (t) df = Ep (16)

The received noise-polluted signal at the output of low noise amplifier (LNA) is,

r(t) =
N

∑

n=1

hn (t) ⊗ sn (t) + n (t) (17)

=

∞
∑

j=−∞

dj

N
∑

n=1

xn (t− jTb) + n (t) (18)

wherehn (t) , t ∈ [0, Th] is the multipath impulse response that takes into account the effect of channel

impulse response, the RF front-ends in the transceivers such as Power Amplifier, LNA and Arbitrary

Notch Filter as well as antennas between the transmitter antennan and the receiver antenna.hn(t) is

available at the transmitter.
∫ Th

0
h2

n (t) dt = Enh. “⊗” denotes convolution operation.n(t) is AWGN.

xn(t) is the received noiseless bit-“1” waveform defined as

xn(t) = hn(t) ⊗ pn(t) (19)

We further assume thatTb ≥ Th + Tp
def
= Tx, i.e., no existence of ISI.

If the waveforms at different transmitter antennas are assumed to be synchronized, thek-th decision

statistic is,

r(kTb + t0) =
∞

∑

j=−∞

dj

N
∑

n=1

xn (kTb + t0 − jTb) + n (t) (20)

= dk

N
∑

n=1

xn (t0) + n (t) (21)
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In order to maximize the system performance,
N
∑

n=1

xn (t0) should be maximized. Thus the optimiza-

tion problem can be formulated as follows to get the optimal waveformspn(t),

max
N
∑

n=1

xn (t0)

s.t.
N
∑

n=1

∫ Tp

0
p2

n (t) df ≤ Ep

0 ≤ t0 ≤ Tb

(22)

An iterative algorithm is proposed here to give the optimal solution to the optimization problem,

which is a computationally efficient algorithm. For the simplicity of the following presentation,t0 is

assumed to be zero. Meanwhile,

x (t) =

N
∑

n=1

xn (t) (23)

From inverse Fourier transform,

xnf (f) = hnf (f) pnf (f) (24)

and

xf (f) =

N
∑

n=1

hnf (f) pnf (f) (25)

wherexnf (f), hnf (f) andpnf (f) are the frequency domain representations ofxn(t), hn(t) andpn(t)

respectively.xf (f) is frequency domain representation ofx(t). Thus,

x (0) =
N

∑

n=1

xn (0) (26)

and

xn (0) =

∫ ∞

−∞

xnf (f) df (27)

If there is no spectral mask constraint, then according to the Cauchy–Schwarz inequality,

x (0) =

N
∑

n=1

∫ ∞

−∞

hnf (f) pnf (f) df (28)

≤
N

∑

n=1

√

∫ ∞

−∞

|hnf (f)|2 df
∫ ∞

−∞

|pnf (f)|2 df (29)

≤

√

√

√

√

N
∑

n=1

∫ ∞

−∞

|hnf (f)|2 df

√

√

√

√

N
∑

n=1

∫ ∞

−∞

|pnf (f)|2 df (30)

=

√

√

√

√Ep

N
∑

n=1

Enh (31)

whenpnf (f) = αhnf (f) for all f andn, two equalities are obtained.

α =

√

√

√

√

√

Ep

N
∑

n=1

∫ ∞

−∞
|hnf (f)|2 df

(32)
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In this case,pn (t) = αhn (−t), which means the optimal waveformpn(t) is the corresponding time

reversed multipath impulse responsehn(t).

If there is spectral mask constraint, then the following optimization problem will become more com-

plicated,
maxx (0)

s.t.
N
∑

n=1

∫ Tp

0
p2

n (t) df ≤ Ep

|pnf (f)|2 ≤ cnf (f)

(33)

wherecnf(f) represents the arbitrary spectral mask constraint at the transmitter antennan.

Becausepnf (f) is the complex value, the phase and the modulus ofpnf (f) should be determined.

Meanwhile,

x (0) =

∫ ∞

−∞

xf (f) df (34)

and

xf (f) =
N

∑

n=1

|hnf (f)| |pnf (f)| ej2π(arg(hnf (f))+arg(pnf (f))) (35)

where the angular component of the complex value isarg (•).
For the real value signalx(t),

xf (f) = x∗f (−f) (36)

where “∗” denotes conjugate operation. Thus,

xf (−f) =

N
∑

n=1

|hnf (f)| |pnf (f)| e−j2π(arg(hnf (f))+arg(pnf (f))) (37)

andxf (f) + xf (−f) is equal to

N
∑

n=1

|hnf (f)| |pnf (f)| cos(2π (arg (hnf (f)) + arg (pnf (f)))) (38)

If hnf(f) and|pnf (f)| are given for allf andn, maximizationx(0) is equivalent to setting,

arg (hnf (f)) + arg (pnf (f)) = 0 (39)

which means the angular component ofpnf(f) is the negative angular component ofhnf (f).

The optimization problem (33) can be simplified as,

max
N
∑

n=1

∫ ∞

−∞
|hnf (f)| |pnf (f)| df

s.t.
N
∑

n=1

∫ ∞

−∞
|pnf (f)|2 df ≤ Ep

|pnf (f)|2 ≤ cnf (f)

(40)

Because

|hnf (f)| = |hnf (−f)| (41)
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|pnf (f)| = |pnf (−f)| (42)

|cnf (f)| = |cnf (−f)| (43)

for all f andn. Thus uniformly discrete frequency pointsf0, . . ., fM are considered in the optimization

problem (40). Meanwhile,f0 corresponds to the DC component andf1, . . ., fM correspond to the

positive frequency components.

Define column vectorshf , h1f , . . ., hNf ,

hf = [hT
1f hT

2f · · · hT
Nf ]

T (44)

(hnf )i
=

{

|hnf (fi−1)| , i = 1√
2 |hnf (fi−1)| , i = 2, . . . ,M + 1

(45)

where “T ” denotes transpose operation.

Define column vectorspf , p1f , . . ., pNf ,

pf = [pT
1f pT

2f · · · pT
Nf ]

T (46)

(pnf)i
=

{

|pnf (fi−1)| , i = 1√
2 |pnf (fi−1)| , i = 2, . . . ,M + 1

(47)

Define column vectorscf , c1f , . . ., cNf ,

cf = [cT
1f cT

2f · · · cT
Nf ]

T (48)

(cnf)i
=

{

√

|cnf (fi−1)|, i = 1
√

2 |cnf (fi−1)|, i = 2, . . . ,M + 1
(49)

Thus, the discrete version of the optimization problem (40) is shown below,

maxhT
f pf

s.t. ‖pf‖2
2 ≤ Ep

0 ≤ pf ≤ cf

(50)

An iterative algorithm is shown as follows.

1. Initialization:P = Ep andp∗
f is set to be all-0 column vector.

2. Solve the following optimization problem to get the optimal q∗
f using Cauchy–Schwarz inequality.

maxhT
f qf

s.t. ‖qf‖2
2 ≤ P

(51)

3. Findi such that
(

q∗
f

)

i
is the maximal value in the set

{

(

q∗
f

)

j

∣

∣

∣

(

q∗
f

)

j
> (cf)j

}

. If {i} = ∅, then

the algorithm is terminated andp∗
f := p∗

f + q∗
f . Otherwise go to step 4.

4. Set
(

p∗
f

)

i
= (cf)i

.

5. P := P − (cf)
2
i

and set(hf)i
to zero. Go to step 2.

Whenp∗
f is obtained for the optimization problem (50), the optimalpnf(f) and the corresponding

pn(t) can be smoothly achieved.
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8. A Unified Framework for Cognitive Radio and Cognitive Radar

8.1. A Unified Framework for Cognitive Radio and Cognitive Radar

Cognitive Radio (CR) evolves from Software Defined Radio (SDR) and it introduces intelligence to

radio systems. One of the key features of cognitive radio is the capability of learning. A framework

for cognitive radio is shown in Figure34, which includes four units: cognizer, decision maker, executer,

and database.

Figure 34. A unified framework for cognitive radio and cognitive radar.

Radio Spectrum
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and reasoning)
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 Executer


Database


(Knowledge base,

policy base, etc.)


A cognizer has the capability of perceiving the radio spectrum. Moreover, it can learn and even

reason from what it perceives. The spectrum sensing of cognitive radio, which senses the availability

of certain frequency segments of the radio spectrum with certain time slot, is included in this unit.

Some mathematical tools for the cognizer can be borrowed from other disciplines, such as machine

learning and aritficial intellegence [133, 134, 135]. At the perception phase, the spectrum is perceived

with certain time slot and the perceived signals are furtherprocessed (including transformations and

modeling). Furthermore, feature parameters can be extracted. At the learning and reasoning phase, the

processed perceived signals or the extracted feature parameters are used for learning the spectrum (e.g.,

by training) and further reasoning (such as predicting the status of channel and recognizing the extracted

feature parameters). In a word, the cognizer perceives the radio spectrum, and learns and reasons from

it. The cognizer outputs reference information of the radiospectrum to decision maker. The following

mathematical tools can work for the cognizer.

Hidden Markov Model

Hidden Markov Model (HMM) is a widely-used statistics modelfor sequential data. It maps observa-

tions to hidden states with probabilities and supports transitions of hidden states. Basically, it deals with

three kinds of problems. One is called learning (or training) which is the generation of HMM parameters

using one or more sequences of observations. The second kindof problem is to find the probability

of a sequence of observation with given HMM parameters. The third one is decoding, i.e., finding the
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sequence of hidden states with a given sequence of observations. Our work on spectrum recognition

using HMM can be found in [136].

Bayesian Network

Bayesian Network (BN) is a graphic model which explicitly uncovers the probabilistic structure of

dependency in a set of random variables. It uses a direct acyclic graph (DAG) to represent the depen-

dency structure, in which each node denotes a random variable and each edge denotes the relation of

dependency. The key difference between BN and HMM is that theformer represents the hidden states

using a set of random variables instead of a single random variable [137, 138, 139]. BN is a static

model. While Dynamic Bayesian Network (DBN) is a powerful tool to model the sequential data or the

dynamic system. DBN can be employed in the context of cognitive radio or cognitive radar to model

the spectrum. For modeling the spectrum, the main task is learning, which means statistic information

is extracted from the measured training data and DBN is built. There are two stages of learning. One is

structure learning, i.e., topology selection. The other isparameter learning, i.e., parameter estimation. In

the stage of structure learning, we need to determine the topology of DBN, i.e., the structure of depen-

dency. In the stage of parameter learning, the conditional probability distribution (CPD) of each node

should be estimated. After DBN is built, we can use it to do filtering, prediction, classification and so

on, all of which can be called inference. In our work, DBN is exploited to predict the state of the specific

spectrum. The results of prediction will be conveyed to decision maker and decision maker will make

the control decision for the behavior of cognitive radio or cognitive radar.

Logistic Regression

In contrast to BN, which models the dependency explicitly, logistic regression models the dependency

in an implicit and linear manner and provides a direct prediction of spectrum activity. The advantage of

logistic regression is that it is simple and can give the probability of prediction. Mathematically, logistic

regression can be written as,

log

(

p (Si = 1)

p (Si = 0)

)

=
N

∑

k=1

βkf (Si−k) (52)

whereβks are regression coefficients to be estimated from training data. f is a function of state.

The database in the proposed framework provides a storage for knowledge, policy and other data.

The decision maker in Figure34 chooses a policy for execution based on the information provided

by the cognizer and the knowledge from the database. Partially Observable Markov Decision Process

(POMDP) can be used for the decision process [140]. POMDP models the interaction procedure of an

agent with outside world. The solution of POMDP is the optimal policy for choosing actions. Solving

a POMDP is not easy. The first detailed algorithms for finding exact solutions of POMDP were intro-

duced in [141]. There exists some software tools for solving POMDPs, suchas pomdp-solve [142],

MADP [143], ZMDP [144], APPL [145], and Perseus [146]. Among them, APPL is the fastest one in

most cases [145].

The idea of cognitive radar was put forward in [147]. The framework shown in Figure34 can also

be applied to cognitive radar. The major difference betweencognitive radio and cognitive radar is the
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implementation of executer. For cognitive radio, a traditional wireless communication device or SDR

can be used as the executer. While for cognitive radar, the executor can be the current radar system.

8.2. Measurements of Wideband Time-domain Signals

Wideband time-domain signals were measured in Tennessee Technological University using Digital

Phosphor Oscilloscope (DPO). The model of DPO that we used isTektronix DPO72004, which supports

a maximum bandwidth of 20 GHz and a maximum sampling rate of 50GS/s. Figure35depicts the setup

of the measurement. In the measurement, a laptop accessed the internet through a wireless Wi-Fi router.

An antenna whose frequency range is 800–2500 MHz was placed near the laptop and connected to DPO.

The measured time-domain signals are shown in Figure36. Fast Fourier Transform (FFT) was applied

to the measured signals and the resulting time-frequency graph is shown in Figure37.

Figure 35. Setup of the measurement.
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Figure 36. Measured wideband time-domain signals.
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The measured data were used to evaluate our prediction algorithms for spectrum sensing in cognitive

radio. One prediction algorithm is based on HMM. The other one is based on Logic Regression [148].

The research of BN based prediction is currently underway.
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Figure 37. Time-frequency graph of measured sigals.

9. Quickest Spectrum Sensing

9.1. Single Channel and Non-Bayesian Case

In this subsection, we consider the case of monitoring a single frequency channel in which the detector

has noa priori information about the emergence time of primary user. For simplicity, we assume that,

at the beginning, there is no primary user and the primary user could emerge at any timeT (it is also

possible that it never emerges, thenT = ∞). We denote byXt the t-th observation. Meanwhile, the

probability density functions (we assume that they exist) of observation when primary user exists or not

are denoted byp1 andp0, respectively.

Performance Metrics

We denote byT ∗ the time that the secondary user claims that the primary useremerges. As illustrated

in Figure38, whenT ∗ < T , false alarm happens (e.g.,T1 in Figure38); and whenT ∗ > T , there is a

detection delay (e.g.,T2 in Figure38). Both incur performance penalties. Then, we define the following

two performance metrics:

Figure 38. Illustration of detection delay and false alarm.

• Detection delay average run length (ARL) ((x)+ equalsx whenx > 0 and 0 otherwise):

d , E
[

(T ∗ − T )+]

(53)

• False alarm ARL

f , E [T ∗|T = ∞] (54)
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CUSUM Test

A popular approach for detecting the change is cumulative sum (CUSUM) test, originally proposed by

Page in 1954 [78, 149]. The asymptotic optimality of CUSUM test was proved by Lorden in 1971 [150].

As a more difficult problem, the non-asymptotic optimality of CUSUM test was proved by Moustakides

in 1986 [151]. In CUSUM test, the test statistic, denoted bymt at time slott, is given by

mt = max(0, mt−1 + L(t)) (55)

whereL(t) is the log likelihood of observation received at time slott, which is given by

L(t) = log
P1(Xt)

P0(Xt)
(56)

Intuitively, the test statisticmt is the sum of log likelihood bounced by the boundarymt = 0. Obviously,

the largermt is, the more probably the change has happened (since the distribution is more biased to that

after change). Then, the random stopping time of claiming the change is given by

s = min {t|mt ≥ γ} (57)

whereγ is a predetermined threshold.

Another equivalent form of CUSUM test is to set a random walk for every time slot: for timet, we

define random walk

qt(τ) =

τ
∑

n=t

L(n) (58)

and stopping time

st = min {τ |qt(τ) ≥ γ} (59)

where the thresholdγ is the same as that in (57). From the family of stopping times{st}t=1,2,..., we

choose the earliest one as the time claiming the change of distribution, i.e.,

s′ = min {st, t = 1, 2, ...} (60)

It is easy to verify thats = s′. Therefore, both approaches are equivalent. In contrast tothe for-

mer approach (we call itsingle metricapproach), the latter (we call itmultiple random walkapproach)

requires infinite memory (for each time slot, we need some memory to store the updated random walk

value). Therefore, the former is more suitable for practical systems. However, the latter approach can

provide some hints to approximate algorithms, as we will see.

Quickest Detection with Unknown Parameters

In the standard CUSUM test, it is assumed that the distributions before and after the change are

perfectly known to the detector. Unfortunately, in many situations, the distribution after the change

in cognitive radio systems is not completely known. For example, if we use received power as the
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observation, the exact value of average received power after the change is unknown although we know

that the average received power is increased.

Let us take the detection of pilot in digital TV (DTV) systemsfor instance. On ignoring the interfer-

ence leaked from signals in neighboring spectrum, the expressions of received signal are given by
{

H0 : r(t) = n(t)

H1 : r(t) = A sin (ωtTO + φ) + n(t)
(61)

wheren(t) is additive white Gaussian noise (AWGN) with zero mean and varianceσ2
n (we assume that

σ2
n is known to the detector),A is the received amplitude of pilot,ω is the angular frequency of pilot,TO

is the time interval between two consecutive observations andφ is the phase. Note thatω can be found

from the DTV system specification while bothA andφ are unknown. Therefore, we cannot apply the

CUSUM test directly.

One approach to tackle the unknown parameter is to apply the generalized likelihood ratio (GLR), in

which the unknown parameters are replaced with their maximum likelihood estimation. Another alter-

native is to adopt the philosophy of multiple random walk approach of CUSUM test [75]. In such an ap-

proach, called parallel CUSUM test, we set a family of (say,N) parameter candidates{(An, φn)}n=1,...,N .

We do CUSUM test for each parameter candidate by assuming that the candidate is the true value of the

parameter. Then, we obtain a family of stopping times{sn}n=1,2,...,N . The stopping time of the parallel

CUSUM test is obtained by choosing the earliest stopping time, i.e.,

s∗ = min {sn, n = 1, 2, ..., N} (62)

The procedure of parallel CUSUM test is illustrated in Figure 39. The left part shows a possible

selection of parameter candidates (we choose a grid in the product space of amplitude and phase). The

right part shows the competition of several parameter candidates.

Figure 39. Illustration of parallel CUSUM test.

One disadvantage of the parallel CUSUM test is that the parameter candidates do not change through-

out the test. When there are sufficiently many observations (e.g., when the threshold is large), the pa-

rameters can be almost perfectly estimated and then be applied to the quickest detection. Therefore, it is

more reasonable to estimate the parameters simultaneouslyand change the set of parameter candidates.

As illustrated in Figure40, when we have more precise estimation for the parameters, wecan narrow

down the range of parameter candidates. Based on this philosophy,successive refinementis proposed

in [152], in which the test is divided into multiple stages. In stage1, parallel CUSUM test is applied

with thresholdγ1. When the corresponding stopping time is reached, we have some confidence on the
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distribution change. Then, we begin stage 2 during which parallel CUSUM test (with thresholdγ2 > γ1)

and parameter estimation are simultaneously carried out. When stage 2 is completed (the corresponding

stopping time is reached), we use the parameter estimate to narrow down the range of parameter candi-

dates and begin stage 3. Such a test-while-estimate procedure is repeated for certain times and then we

claim that the change has happened. Such a successive refinement procedure is illustrated in Figure41.

Figure 40. Illustration of parallel CUSUM test with successive refinement.

Figure 41. Illustration of multiple stages in successive refinement.

Performance Analysis

When the threshold is not large, performance metrics can be obtained via numerical simulations.

For large threshold case (this is reasonable since we want tokeep a low false alarm rate), an effective

approach for analyzing the performance metrics is to apply Brownian motion approximation. Notice that

B(t) =
1√
N

Nt
∑

n=1

L(n) (63)

converges to a Brownian motion asN → ∞ when the distribution remainsp1 or p0. Then, by applying

the theory of Brownian motion, we can obtain the detection delay ARL, which is given by

d ≈ γ

D(P1||P0)
(64)

whereD(P1||P0) is the Kullback-Leibler distance betweenP1 andP0. For the DTV case, the detection

delay ARL is explicitly given by

d ≈ 4γσ2
n

A2
(65)

For the false alarm ARLf , we can obtain thatf increases exponentially with respect toγ, i.e.,

f = O (eγ) (66)
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Collaborative Quickest Spectrum Sensing

When multiple secondary users collaborate for spectrum sensing, they can exchange their observa-

tions to enhance the reliability and agility. One difficultyis to tackle the delay incurred by communica-

tions since the quickest detection is real-time. We consider a two-node (denoted byA andB) case and

assume that the transmission of an observation needsD time slots. In [153], a two-thread CUSUM test

is proposed to tackle the communication delay, in which the stopping time claiming the change is the

earlier one of two stopping times:

T ∗
A = min

(

T α
A , T

β
A

)

(67)

where the stopping timesT α
A andT β

A are defined as follows (note that we use subscriptA andB to

distinguish the two nodes):

• Stopping TimeT α
A : T α

A can be obtained similarly to CUSUM test, namely

T α
A = inf

{

t
∣

∣mα
A(t−D) +

t
∑

r=t−D+1

LA(r) ≥ γA

}

(68)

where

mα
A(t) = max {mα

A(t− 1) + LA(t) + LB(t), 0} (69)

• Stopping TimeT β
A: ForT β

A, only observations at node A during time slotst − D + 1 to t can be

used. ThenT β
A can be written as

T β
A = inf

{

t

∣

∣

∣

∣

max
t−D+1≤k≤t

t
∑

r=k

LA(r) ≥ γA

}

(70)

The detailed explanation for the two stopping times and the extension to multiple nodes can be found

in [153, 154].

9.2. Multiple Channels and Bayesian Case with Partial Observation

When there are multiple frequency channels (e.g., in DTV systems, there are multiple available fre-

quency bands; if wider frequency band, e.g., 1000 MHz, is open for cognitive radio systems, we can

divide the wide band into multiple frequency bins and consider each bin as a channel). It may be diffi-

cult for the secondary user to monitor all these channels since it requires high sampling rate and may not

be supported by current commercial analog-digital converters (ADC). Therefore, the secondary user can

monitor a subset of channels simultaneously and needs to jump across different channels. For simplicity

of analysis, we assume that only one channel can be monitoredat a time.

For simplicity, we considerM channels and assume that the secondary user can monitor one channel

at a time. We denote the observation distributions over channelm with and without primary user byP1m

andP0m, respectively. Again, we assume that there are no primary users over theM channels at the

beginning. At time slott, primary user may emerge over channelm with a priori probabilityρ(1−ρ)t−1
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(ρ is known to secondary users; thus the quickest detection is Bayesian) and the activities over different

channels are mutually independent (note that the geometrical distribution of primary user emergence

coincides with a two-state Markov model in which the probability of transmitting from idle to busy isρ).

We also assume that it requiresds time slots for switching between two channels.

Elements of Markov decision process

For such a Bayesian quickest spectrum sensing, we can apply the framework of Markov decision

process, whose elements are given below

• State space: we denote a state bySΩ
m, whereΩ denotes the set of bands being used for data

communication andm ∈ Ω denotes the band being sensed. WhenΩ is an empty set, the state,

denoted byS0, means that all frequency bands are not being used by the secondary user. The state

transition diagram for the case ofM = 2 (2 channels) is illustrated in Figure42. For example, the

transition from stateS{1,2}
1 to stateS{2}

2 means that the secondary user claims that primary user

has emerged over channel 1, stops communication over channel 1 and then monitor channel 2; the

transition from stateS{1,2}
1 to stateS{1,2}

2 means switching to monitor channel 2 without stopping

the communications over channel 1.

Figure 42. State transition diagram whenM = 2.

• Action space: for each state (exceptS0), the secondary user can take three types of actions,

which are illustrated in Figure43, namely continuing transmitting and monitoring the current

channel, switching to monitor another channel without stopping the communication over the cur-

rent channel, and switching to monitor another channel while stopping the communication over the

current channel.

Figure 43. Three possible actions for each state.
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• Cost function: we define a single cost function which leads tothe corresponding optimal control
policy. As mentioned before, we need to consider the penalties incurred by both detection delay
and false alarm. Therefore, we define the cost function as follows (note that all the probabilities
are conditioned on the observations; for simplicity, we ignore the condition in the expression of
probabilities):

R =

M
∑

m=1

P (Tm > T
∗
m) + c

M
∑

m=1

E
[

(T ∗
m − Tm)+

]

=

M
∑

m=1

P (Tm > T
∗
m) + c

M
∑

m=1

E





T ∗

m−1
∑

k=1

P (Tm ≤ k)





wherec is a weighting factor balancing the penalties from detection delay and false alarm and

subscriptm denotes the index of channels (recall thatT ∗ means the time claiming the emergence

of primary user andT is the actual emergence time). Therefore, for time slotk (suppose that the

current channel ism), we have

– if not stopping communication over the current channel, we get penaltycP (Tm < k) (detect-

ing delay);

– if stopping transmission over the current channel, we get penaltyP (Tm > T ∗
m) (false alarm).

• Control policy: we consider a stationary control policy, i.e. the action is dependent on only the

current state and is independent of time.

Dynamic Programming

It is well known that the optimal control policy of Markov decision process can be solved by dynamic

programming [155, 156, 157]. A general formulation for a Markov decision process is

st+1 = f(st, ut, wt) (71)

wherest is the state at timet, ut is the control policy andwt is random perturbation. Suppose that the

corresponding cost function is given by

J =
Γ

∑

t=1

E [g(st, ut, wt)] (72)

whereg is the function of cost for each time slot andΓ is the final time slot (here we consider finite

horizon case).

A fundamental concept in dynamic programming is cost-to-gofunction (also called value function if

we use reward instead of cost), which is defined as the sum of cost from timet to Γ, denoted byJt(s)

when the current state iss, i.e.

Jt(s) =

Γ
∑

τ=t

E [g(sτ , uτ , wτ)|st = s] (73)
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With the tool of cost-to-go functions, we can obtain that theoptimal control policy must satisfy the

Bellman’s equation, which is given by

J∗
t (st) = min

ut

E
[

c(st, ut, wt) + J∗
t+1(st+1)

]

(74)

The corresponding optimal control policy is obtained via

µ∗
t = arg min

ut

E
[

c(st, ut, wt) + J∗
t+1(st+1)

]

(75)

The computation of cost-to-go functions is in a backward order. At the beginning, we compute the

cost-to-go function at the final time slotΓ. The computation is straightforward since it is a one-snapshot

optimization and need not look into the future. Then, we substituteJ∗
Γ(s) into the right hand side of (74)

and carry out optimization forJ∗
Γ−1(s). Once we obtainJ∗

Γ−1(s), we can computeJ∗
Γ−2(s). We repeat

the procedure until we obtainJ∗
1 (s) and consequently the whole optimal control policy.

Finite Horizon Case

Now, we can apply the powerful tool of dynamic programming toour problem. We first consider finite

horizon case, i.e., we consider a time window[1,Γ] and close the communications over all channels after

timeΓ. Then, it is easy to verify that

JΓ

(

SΩ
m|XΓ

0

)

=
∑

m∈Ω

P (Tn > Γ) (76)

i.e., the sum of false alarm probabilities for the remainingactive channels. For1 ≤ t < Γ, we can

apply the Bellman’s equation to compute the cost-to-go function Jt

(

SΩ
m|X t

0

)

. The details can be found

in [158].

One problem with the above approach of dynamic programming is that we need to record all obser-

vationsXΓ
0 , which requires prohibitively large memory. Fortunately,we can show that thea posteriori

probabilities{P (Tm ≤ t|X t
0)}m=1,...,M are sufficient statistics for the cost-to-go functions, i.e., for time

slot t, the cost-to-go functionJt

(

SΩ
m|X t

0

)

can be written asJt

(

SΩ
m|pt

)

, where

(pt)m = P
(

Tm ≤ t|X t
0

)

(77)

Therefore, we need to record and update only theM-vectorpt, which requires only constant amount of

memory. Thea posterioriprobabilities can be computed in a recursive manner (the recursive expression

can be found in [158]), thus being quite efficient. Note that each cost-to-go function is a function of

pt, instead of a constant. Therefore, in numerical computation of the cost-to-go functions, we need to

discretize theM-vectorpt first.

Infinite Horizon Case

A drawback of the finite horizon case is that we need to computea cost-to-go function for each

combination of time and state. For the case ofM = 2, we have four non-trivial states. Therefore, if

we consider a time window of 500 time slots, we need to compute2000 cost-to-go functions, which
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brings substantial computational cost to the system. Meanwhile, the assumption of finite horizon is

unreasonable since the spectrum sensing may last for any arbitrarily long period of time.

Therefore, it is more desirable to study the infinite horizoncase, i.e.,Γ → ∞. An advantage of

considering infinite horizon case is that we can ignore the subscript of time in the cost-to-go functions

because it is easy to show that, asΓ → ∞,

Jt

(

SΩ
m|pt

)

→ J
(

SΩ
m|pt

)

, ∀t (78)

By considering infinite horizon, the number of cost-to-go functions is reduced to 4 whenM = 2. We

can further simplify the cost-to-go functions using the following two features (the details can be found

in [158]):

• Symmetry : frequency bands are symmetric, the permutation of the frequency bands yields the

same cost-to-go function.

• Argmin : If transiting to another frequency band, the secondary node should always choose the

frequency band having the largesta posterioriprobability.

After simplifying the cost-to-go functions, we can apply the Bellman’s equation to compute the opti-

mal cost-to-go functions and the corresponding optimal control policy.

Combating the Curse of Dimensions

Although we have simplified the cost-to-go functions, the number of states still becomes intolerably

large whenM becomes large. The discretization of theM-vectorpt adds more dimensions to the cost-

to-go functions. Such a curse of dimensions is an inherent difficulty for Markovian decision process.

Therefore, it is desirable to apply techniques in approximate dynamic programming such as Rollout,

approximate cost-to-go function, open look feedback control or model prediction control.

In [156], two simple principles are applied to obtain simplified control policy:

• Limited lookahead policy (LLP): in standard dynamic programming, the optimal control policy

needs to look into the future; we can relax this requirement and look ahead for only limited time

slots.

• Certainty equivalent control (CEC): we can replace the random variables in the optimization prob-

lem with their expectations. Surprisingly, such an operation still yields the optimal control policy

for linear control problems. Since our problem is non-linear, the resulted control policy is subop-

timal.

By using the LLP principle, we consider only two most ‘dangerous’ channels, i.e., the channel being

monitored and the channel having the largesta posterioriprobability that the primary user has emerged

among the channels not being sensed (for simplicity, we assume that they are channel 1 and channel 2).

Then, we reduce the problem to a much simpler case ofM = 2. By applying the CEC principle, we

compute the expected time of primary user emergence over channels 1 and 2, denoted bȳT1 and T̄2.
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Since we need to consider the impact of false alarm and transition timeds, we compensate these two

expectation by

T̃ t
1 = T̄ t

1 +
1

c
(1 − (pt)1) (79)

and

T̃ t
2 = T̄ t

2 +
1

c
(1 − (pt)2) + ds (80)

Then, we consider the compensated times as their true values. A heuristic decision rule is given by

• If T̃ t
1 ≤ t, stop the communication over channel 1 (the current channel) and switch to channel 2;

• If T̃ t
1 ≥ T̃ t

2 ≥ t, stop sensing channel 1 and switch to sense channel 2.

• If T̃ t
2 ≥ T̃ t

1 ≥ t, continue to sense channel 1;

The three cases are illustrated in Figure44.

Figure 44. Illustration of three cases in the heuristic decision rule.

10. Soft Decision Cognitive Radio and Hybrid Overlay/Underlay Cognitive Radio Waveform Design

10.1. Overview

Here, we present a novel soft decision cognitive radio paradigm to combine the benefits of under-

lay CR and overlay CR to maximize the channel capacity and spectrum efficiency. Specifically, the

soft decision CR will detect not only if one spectrum block isused or unused as in current spectral

sensing, but detect if it isunderused. Moreover, the instantaneous interference tolerance level of all

underused bands will be determined by weighted spectrum estimate (WSE). Based on the instantaneous

interference tolerance level, we employ a soft decision spectrally modulated spectrally encoded (SMSE)

framework to design hybrid overlay/underlay waveform to distribute transmission power over the entire

bandwidth including both unused bands and underused bands to maximize the channel capacity. Current

overlay CR and underlay CR can be viewed as two extreme cases of the general soft decision cognitive

radio paradigm.
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Figure 45. Underlay CR transmission.

Figure 46. Overlay CR transmission.

10.2. Underlay CR and Overlay CR

Figures45 and46 illustrate the concepts of underlay CR transmission and overlay CR transmission.

We start with the famous Shannon channel capacity equation:

C = W log

(

1 +
S

N

)

(81)

It is well known that to increase the channel capacity in a communication system, we need to increase

the SNR (signal to noise ratio)S
N

or the bandwithW , or both.

In underlay CR transmission, a very large contiguous bandwidth is used for secondary user’s trans-

mission, with the primary users operating within the same bandwidth. In this way, we maximize the

bandwidthW in (81). However, to avoid interferences to primary (licensed) users, the underlay CR

transmission has to limit its transmission power density ata very low level. Hence, the channel capacity

of underlay CR transmission is extremely limited although it has maximized the transmission bandwidth.

Specifically, the channel capacity of underlay CR transmission is

CUnderlay = W log













1 +
ΦUnderlayW

n0W +
M

∑

i=1

Φpi
Wpi













(82)
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wheren0 is the additive Gaussian noise power spectrum density,ΦUnderlay is the average power spec-

trum density of underlay CR transmission,M is the total number of primary users operating within the

bandwidthW , Φpi
is the average power spectrum density of theith narrowband primary user’s transmis-

sion andWpi
is the corresponding bandwidth ofith primary user. Notice that underlay CR transmission

suffers interference from all primary users, which is characterized by
M

∑

i=1

Φpi
Wpi

. Since (1) the power

spectrum density of underlay CR transmissionΦUnderlay is very low and (2) the primary narrowband

users have much higher power spectrum densityΦpi
, the signal to interference and noise ratio (SINR)

is significantly decreased. As a direct result, even though underlay CR transmission has a very large

bandwidth, its channel capacity is very limited.

On the other hand, overlay CR transmission finds the unused frequency bands and only transmits

over those bands, totally avoiding interference to primaryusers. The channel capacity of cognitive radio

transmission is characterized as

COverlay =

N
∑

k=1

Wuk
log















1 +

N
∑

k=1

ΦCRk
Wuk

n0

N
∑

k=1

Wuk















(83)

whereN is the total number of unused bands in the entire bandwidthW , Wuk
is the bandwidth of the

kth unused band,ΦCRk
is the power spectrum density of cognitive radio transmission on thekth unused

band. It is evident that in cognitive radio transmission, the total bandwidth exploited is less than the total

bandwidthW . However, since (1) there is no interference from primary users to cognitive radio and (2)

there is no limit in the cognitive radio transmission power spectrum densityΦCRk
, the signal to noise

ratio is much improved (compared to underlay CR transmission). As a direct result, the channel capacity

of cognitive radio is much higher than that of underlay CR transmission.

10.3. Soft Decision Cognitive Radio

In cognitive radio, the transmitter continuously monitorsthe radio spectrum and dynamically identify

frequency bands into two categories: used bands or unused bands. In other words, the cognitive radio

makes the usability of one frequency band by employing a harddecision based on spectrum sensing

result. However, the coexistence of underlay CR transmission and primary users indicates that all the

primary users’ transmissions can tolerate some level of interference. Hence, we can further increase the

channel capacity of cognitive radio by making a soft decision on the usability of each and every used

band. If we can determine the interference tolerance level of each primary user, the cognitive radio can

transmit over both the unused bands and the used bands to optimize the spectrum usage and maximize

the channel capacity. We name this system Soft Decision Cognitive Radio. Figure47 shows such

a system.
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Figure 47. Soft decision cognitive radio.
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Assume the interference tolerance level (the maximum allowed interference power spectrum density)

of theith used band isIi. Current cognitive radio assumes thatIi = 0, i.e., no transmission is allowed if

the band is being used. Employing knowledge of the interference tolerance levelIi, the channel capacity

of such a proposed system is

Cnew = W log















1 +

N
∑

k=1

ΦCR1k
Wuk

+

M
∑

i=1

ΦCR2i
Wpi

n0W +

M
∑

i=1

Φpi
Wpi















(84)

whereΦCR1k
is the cognitive radio transmission power spectrum densityonkth unused band, andΦCR2i

is the cognitive radio transmission power spectrum densityon ith used band.

To maximize the channel capacity of the proposed system, we need to maximizeCnew subject to the

following constraints:

ΦCR2i
≤ Ii, ∀i

ΦCR1k
≤ φk, ∀k (85)

N
∑

k=1

ΦCR1k
Wuk

+
M

∑

i=1

ΦCR2i
Wpi

≤ S (86)

whereIi is the interference tolerance level atith used band,φk is the maximum allowed transmission

power spectrum density regulated by FCC atkth unused band,S is the total transmission power.

Since the number of unused bandsN and the number of used bandsM are not gigantic numbers,

this optimization is relatively small scale and a Lagrange multiplier method with numerical optimization

could quickly generate a solution.

It is evident that current overlay CR transmission and underlay CR transmission are just two special

cases of the general soft decision cognitive radio paradigm: if we force Ii = 0, the system reduces to

current cognitive radio; if we forceIi andφk to be FCC UWB spectrum mask, the system reduces to

underlay CR transmission.

Figure48 illustrates a block diagram of the proposed soft decision cognitive radio system:
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Figure 48. Cognitive radio.
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10.4. Hybrid Overlay/Underlay Waveform Design for Soft Decision Cognitive Radio

Previous work provides a general analytic framework for SMSE signals that accommodates multi-

carrier, CR-based waveforms [159]. Specifically, an arbitrary CR waveform can be expressed interms

of its amplitude (A), phase (Θ) and frequency (F) characteristics. These three factors aid in SMSE

waveform design through six design variables, namely data modulation (d), Code (c), window (w), or-

thogonality (o) and two frequency allocation variables. An in-depth treatment of the SMSE analytic de-

velopment and the family of SMSE waveforms is provided in [159, 160]. ConsideringNf total frequency

components, the codingc = [c1, c2, . . . , cNf
], ci ∈ C, data modulation,d = [d1, d2, . . . , dNf

], di ∈ C,

and windowing,w = [w1, w2, . . . , wNf
], wi ∈ C vectors account for component-by-component ampli-

tude and/or phase variations. A phase only variableø = [o1, o2, . . . , oNf
], oi ∈ C is used for orthogonality

between symbol streams and facilitate multiple access.

The analytic SMSE framework development begins by considering data, code and window variables.

Themth frequency component of thekth symbol is given by

Sk[m] = cmdm,kwme
j(θdm,k

+θcm+θwm ) (87)

wherem = 0, 1, ..., NF − 1 is the frequency index andcm, dm are magnitude and phase design variables.

The expression in (87) is next modified to incorporate frequency and orthogonality variables. Fre-

quency component selection is a function of two factors, including anavailablevariablea = [a1, a2, . . . , aNf
],

ai ∈ {0, 1} and ausevariableu = [u1, u2, . . . , uNf
], ui ∈ {0, 1}. Given anNf -point fast Fourier trans-

form (FFT) process,Nf frequency components or spectral bands are available for waveform design. It

is important to note that the frequency assignment variabletakes on binary values0 or 1 to indicate

the spectrum availability for secondary users. As a direct result, this pool of frequencies is reduced by

component selection to create a number of CR available frequenciesand usable frequencies. Themth

component of thekth CR symbol corresponds to

Sk[m] = amumcmdm,kwme
j(θdm,k

+θcm+θwm+θom,k) (88)

where the productaiui ∈ {0, 1}. The discrete time domain SMSE waveform is obtained by taking the

Inverse Discrete Fourier Transform (IDFT) of (88) according to

sk[n] =
1

Nf

Re







Nf−1
∑

m=0

amumcmdm,kwm e
j(2πfmtn+θdm,k

+θcm+θwm+θom,k)
}

(89)
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wheretk ≤ tn ≤ tk + T , fm = fc + m∆f , T is the symbol duration and∆f = 1/T is the frequency

resolution [159].

The SMSE framework provides a unified expression for generating and implementing a host of multi-

carrier type waveforms (e.g., OFDM [161], MC-CDMA [162], CI/MC-CDMA [163, 164],

TDCS [165, 166], etc.) and satisfies current CR goals of exploiting unused spectral bands. However, it

does not exploitunderusedspectrum. This section re-visits the original SMSE framework development

and the frequency assignment variables to exploit bothunusedandunderusedspectrum to generate both

overlay-CR and underlay-CR type waveforms.

Figure49 illustrates a conceptual view of the unused andunderusedspectrum utilization using an

arbitrary interference threshold (IT). IT is assumed to be alimit set forth by the primary users based

on the measured power spectrum density in a given bandwidth.Two cases of under utilized spectrum

are demonstrated: (1) when the spectral assignment is basedon a binary decision, the bands adjacent

to the primary users are unavailable to overlay-CR users and(2) primary users bands below the IT

are unavailable to CR users. A soft decision CR (SDCR) will beable to exploit theseunderusedfre-

quency bands to improve spectral efficiency and increase channel capacity. To support the envisioned

SDCR system, the original SMSE framework is extended to account for bothunusedandunderused

frequency bands.

Figure 49. Identification of primary users, unused and underused spectral region .

The proposed SD-SMSE framework is first illustrated using Figures50 and51, then the design vari-

ables are re-defined to extend the SMSE expression to accountfor both unused andunderusedspectrum.

Figure50a,b shows how the current CR framework identifies the used andunused spectrum based on

binary decisions. Figure50c shows the weighted spectrum estimation resulted from spectrum sensing

block in Figure51. The weighted spectrum estimate (WSE) (a) is further processed by taking into

account inputs from the IT estimator, primary users, other secondary users requirements and channel

conditions. Specifically, the weighted spectrum estimate provides a metric of the allowable transmis-

sion power density at each and every frequency component in the entire bandwidth. Hence, the WSE

divides the entire bandwidth into unused (u) andunderused(b) frequency components and both the un-

used andunderusedspectrum can be exploited. Notice in Figure50 that differentunderusedfrequency
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components have different allowable CR transmission powerdensities. It is envisioned that a CR-based

SDR will have the option to choose an overlay-CR, underlay-CR or hybrid overlay/underlay waveform

to improve performance based on the scenario, situation andneed.

Figure 50. Spectrum parsing using weighted spectrum estimation in realization of SD-

SMSE waveform.

Figure 51. Block diagram representation of SD-SMSEframework [167].

The first step in SD-SMSE framework development is to re-examine the design variables in the orig-

inal SMSE framework. For the SD-SMSE development, frequency related factors are termed primary

variables, whereas amplitude and phase related factors aretermed secondary variables. Since the ob-

jective here is to optimize the spectrum usage, only frequency components related design variables are

considered. From this point forward the SD-SMSE framework development is based on the scenario

depicted in Figure50. As shown in Figure50c, the weighted spectrum estimate represents all frequency

components, which can be utilized for secondary user applications. It is represented by variablea with

the range changed from binary values (hard decision) to realvalues (soft decision), i.e.,

a = [a0, a1, . . . , aNf−1], 0 ≤ am ≤ 1 (90)
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From the weighted spectrum estimatea, theunusedspectrum vectoru can be derived as

u = [u0, u1, . . . , uNf−1] (91)

where,

um =

{

1 ifam = 1

0 else
m = 0, 1, · · ·Nf − 1 (92)

The original SMSE hard decision CR design transmits over theunused spectrum specified byu. Now

introducing a new design variableb to account for theunderusedspectrum,

b = [b0, b1, . . . , bNf−1] (93)

where

bm =

{

0 am = 1

am am 6= 1
(94)

for m = 0, 1, · · ·, Nf − 1. Note that whenam = 1 the value ofbm = 0. This is because whenam = 1,

the spectral component isunusedand accounted for in the assignment ofum. It is obvious that if one

frequency component isunderused, it cannot also be counted as unused and vice versa, i.e.,um = 0 if

bm > 0 andbm = 0 if um = 1.

The remaining waveform design variables, i.e., code (c), data (d), window (w) and orthogonality (o),

remain unchanged from the original SMSE framework.

Applying all these design variables, themth component of thekth data symbol of the SD-SMSE can

be expressed as

Sk[m] = amcmdm,kwme
j(θdm,k

+θcm+θwmθom,k)
=

{

umcmdm,kwme
j(θdm,k

+θcm+θwmθom,k)
am = 1

bmcmdm,kwme
j(θdm,k

+θcm+θwmθom,k) am 6= 1
(95)

The expression in (95) can be decomposed intounusedandunderusedSMSE waveform representing

the new SDCR architecture shown in Figure51. Applying the IDFT to (95) results in the discrete time

domain waveform given by

sk[n] =
1

Nf

Re







Nf−1
∑

m=0

amcmdm,kwme
j(2πfmtn+θdm,k

+θcm+θwm+θom,k)







(96)

sk[n] =
1

Nf

Re







Nf−1
∑

m=0

umcmdm,kwme
j(2πfmtn+θdm,k

+θcm+θwm+θom,k)







(97)

+
1

Nf

Re







Nf−1
∑

m=0

bmcmdm,kwme
j(2πfmtn+θdm,k

+θcm+θwm+θom,k)






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where the first summation in (97) represents theunusedfrequency components and the second summa-

tion accounts forunderusedfrequency components.

The SMSE expression in (96) was demonstrated by applying it to a number of OFDM based multi-

carrier signals [159, 168, 169]. The process of generating these waveforms can be viewed asa two

step approach: (1) generating the frequency related primary variables, and (2) applying the secondary

variables such as the code code, data modulation, windowingand orthogonality to the frequency vec-

tor. Since the SD-SMSE only focused on manipulating the primary variables, all of the OFDM based

multi-carrier modulations expression such as NC-OFDM, NC-MC-CDMA, NC-CI/MC-CDMA and NC-

TDCS are applicable to both overlay-CR and underlay-CR scenarios.

10.5. SD-SMSE Overlay Waveform

Current overlay CR transmission employs a waveform to exploit unused spectral bands and thus

represent a special case (subset) of SDCR with nounderusedfrequency components being exploited. In

the SMSE framework, forcing theunderusedvariableb to be zero and the frequency assignment variable

a to take on binary values results in,

b = [0, 0, . . . , 0] (98)

a = [a0, a1, . . . , aNf−1], am ∈ {0, 1} (99)

where the second summation in (97) is eliminated and reduces to current hard decision CR overlay:

sk[n] =
1

Nf

Re







Nf−1
∑

m=0

umcmdm,kwme
j(2πfmtn+θdm,k

+θcm+θwm+θom,k)







(100)

10.6. SD-SMSE Underlay Waveform

Unlike overlay-CR waveforms that only operate in unused spectrum bands, underlay-CR waveform

operates inunderusedspectrum regions. An underlay-CR waveform spreads its signal over a wide band-

width to minimize interference to existing primary users and to achieve the required processing gain

to improve its own performance. Underlay-CR approaches have been generally associated with UWB

technology. By definition, a signal is defined as UWB if it occupies a bandwidth that is greater than 500

MHz. Therefore, not all underlay-CR waveforms can be classified as UWB per this definition. For exam-

ple, a low data rate underlay waveform used as a control channel might only require a few mega hertz of

bandwidth. In the SD-SMSE context, UWB is a special implementation of an underlay-CR waveform.

An UWB transmission uses underlay waveform which operates across all spectral components while

minimizing interference to primary users by limiting its transmission power spectral density. Hence, its

allowable transmission power spectral density is dictatedby the primary user (among all those present)

that is most sensitive to interference. In this case, all frequency components are treated asunderused

components. Hence, by setting

u = [0, 0, . . . , 0] (101)
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b = [K,K, . . . , K], 0 < K < 1 (102)

The first summation in (97) can be eliminated which results in a CR underlay waveform corresponding

to an UWB transmission:

sk[n] =
1

Nf

Re







Nf−1
∑

m=0

Kdm,kwme
j(2πfmtn+θdm,k

+θcm+θwm+θom,k)







(103)

whereK is a constant obtained by taking the minimum value of the weighted power spectral den-

sity shown in Figure50. Note thatb was assumed to constant for simplicity purpose, in general

eachunderusedspectral components can have different spectral weights capable of employing adaptive

baseband modulations.

10.7. Hybrid Overlay/Underlay

For the soft decision CR, the waveform achieves benefits of both overlay-CR and underlay-CR wave-

forms by exploiting bothunusedandunderusedspectral regions. This is done by employing soft de-

cision criteria at each distinct frequency component whileminimizing the interference to primary users

[170, 171, 172]. The expression in (97) represents the hybrid overlay/underlay waveform utilizing the

SD-SMSE framework.

11. Vision and Future Work

There is a trend to integrate cognitive radio with cognitiveradar, together with anti-jamming ca-

pabilities. The advent of multi-GHz arbitrary waveform generators and the need for cognitive radio

make this integration attractive. The multi-GHz waveform provides super anti-jamming capabilities.

The objective of this proposal is to investigate a novel paradigm of integrating the three ingredients; the

multi-GHz waveform (through the use of revolutionary compressive sampling) is jointly considered with

the dynamic spectrum access (through a novel system architecture for spectrum sensing). The primary

challenge is caused by the wideband (multi-GHz) nature of the problem at hand.

One of the central tenets of communications is the Shannon/Nyquist sampling theory, which states

that the number of samples required to capture a signal is dictated by its bandwidth. It is well known

today, however, the Nyquist rate is a sufficient but by no means necessary condition. Compressive

sampling or compressed sensing (CS) enables of the faithfulrecovery of signals, images, and other

data, from what appear to be highly sub-Nyquist-rate samples. At the heart of the new approach are

two crucial observations. (1) The Shannon/Nyquist signal representation exploits only minimal prior

knowledge about the signal being sampled, namely its bandwidth. Most objects of our interest, however,

are structured and depend upon a smaller number ofdegrees of freedomthan the bandwidth suggests. In

other words, most objects aresparseor compressiblein the sense that they can be encoded with just a few

numbers without much numerical or perceptual loss. (2) The useful information content in compressible

signals can be captured via sampling protocols that directly condense signals into a small amount of data.

In short, and in stark contrast with conventional wisdom, the theory of CS asserts that one can combine

“low-rate sampling” with computation power for efficient and accurate signal acquisition.
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On the other hand, at the heart of this cognitive radio, thereis spectrum sensing: narrowband and

wideband. The narrowband spectrum sensing—represented byIEEE 802.22—is mature and adopted by

the Federal Communication Commission (FCC). The wideband spectrum sensing, in particular multi-

GHz, seems be in its infancy. The FCC has abandoned the concept of interference temperature that may

be a candidate. As a result, the proposed research may have potential impact on the future policy on

spectrum sharing for wideband cognitive radio.

Roughly speaking, if there isa prior information of the primary radio such as modulation format,

pilot, symbol rate, etc., spectrum sensing—that enables the secondary radio for dynamic spectrum access

(DSA)—can be implemented using approaches such as matched filter, energy detection, cylcostationary

sensing, eigenvalue based sensing, etc. For wideband (multi-GHz) spectrum sensing, however, there is

no practical way to locate unused white spectra. Another critical challenge is wideband RF front-end

capable of simultaneous sensing of several GHz wide spectrum.

It is critical to test key system components in different system settings. Three system models are

proposed: (1) MATLAB/C simulation model, (2) waveform model, and (3) real-time FPGA system

model. The majority of the research results are obtained in the domain of MATLAB/C simulation model.

This approach is simple. But many real-world limitations cannot be simulated. The unique approach of

this proposal is to combine these three models. Real-time FPGA model is the ultimate test, but time-

consuming. We will, thus, use this model when the system concept is very stable. As a result, most

system emulations are based on the waveform model. This waveform model is made available only

recently, with the latest A/D conversion for 9.6 GHz signalswith 10-bit resolution. The TTU’s lab is

fortunate to be awarded the NSF MRI grant that makes this possible.

12. Conclusion

Dynamic spectrum access is a must-have ingredient for future sensors that are ideally cognitive. The

goal of this paper is a tutorial treatment of wideband cognitive radio and radar—a convergence of (1) al-

gorithms survey, (2) hardware platforms survey, (3) challenges for multi-function (Radar/Comms) multi-

GHz front end, (4) compressed sensing for multi-GHz waveforms—revolutionary A/D, (5) machine

learning for cognitive radio/radar, (6) quickest detection, and (7) overlay/underlay cognitive

radio waveforms.

One focus of this paper is to address the multi-GHz wideband front end that is the challenge for the

next-generation cognitive sensors. This unifying theme ofthis paper is to spell out the convergence for

cognitive radio, radar, and electronic warfare.

The future work lies in two aspects: (1) multi-GHz wideband platforms, and (2) intelligently leaning

algorithms. The first aspect requires new front end design. Compressive sampling is important in this

context. The second aspect requires the integration of machine learning and artificial intelligence into

communications and network. It is believed that networkingfor cognitive radio nodes is open: network

testbed is required to gain more experimental knowledge—necessary for future rigorous science.
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