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Abstract: Collecting raw data from a wireless sensor network for emmmental monitor-
ing applications can be a difficult task due to the high enegysumption involved. This
is especially difficult when the application requires spézed sensors that have very high
energy consumption, e.g. hydrological sensors for manganarine environments. This pa-
per introduces a technique for reducing energy consumptyaminimizing sensor sampling
operations. In addition, we illustrate how a randomizedatgm can be used to improve
temporal coverage such that the time between the occur@nae event and its detection
can be minimized. We evaluate our approach using real ddectax from a sensor network
deployment on the Great Barrier Reef.
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1. Introduction

Wireless sensor networks (WSNSs) are increasingly being usex wide range of environmental
monitoring applications. The primary reason for this isttA485Ns are capable of monitoring various
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parameters at high spatial and temporal resolutions. Soekgfiained measurements cannot be taken
using conventional data loggers.

However, collecting raw sensor readings from a large scaiNWan be a highly challenging task.
The sensor nodes that make up a WSN are typically battery neoland communicate among them-
selves using a radio transceiver. A single sensor node nsayhalve a host of sensors attached to it. As
both the radio transceiver and the attached sensors corsgnigcant amounts of energy, it is essential
to use energy-efficient algorithms to ensure that the ldesyf the network is maximized. Transmitting
large amounts of data can also lead to congestion and padsetMithin the network, as sensor nodes
usually have a very small bandwidth due to the low duty cyéléheir transceivers. Thus in addition
to energy-efficiency, any developed algorithm for dataemibn for WSNs should also maintain an
acceptable level of data quality that meets the user’s reonants.

In this paper, we first present an algorithm that minimize=rgy consumption by not only reducing
the number of sensor sampling operations but also by reguugssage transmissions. The basic idea
IS to use time-series forecasting to try and predict futeressr readings. When the trend of a partic-
ular sensor reading is fairly constant and thus predictdab&esensor sampling frequency and message
transmission rate are reduced. Conversely, when the ttemages, both the sampling rate and message
transmission rates are increased. Additionally the papscribes how a randomized wake-up scheme
can be used to improve temporal coverage so as to minimizaenbehat elapses between the occurrence
of an event and its detection. The randomized algorithmieétes the need for additional communi-
cation between nodes thus improving overall energy consompWe show that using our randomized
algorithm, in certain cases, the delay between the ocotgrehan event and its detection can be reduced
to just one epoch (Note: An epoch refers to the time period&en two consecutive samples.)

The algorithm is evaluated using real-life sensor datatibatbeen collected from a sensor network
that has been deployed in the Great Barrier Reef, AustMlefirst provide the reader with an overview
of the sensor network deployment in the Great Barrier Reeé thén briefly outline the important
concepts of time series forecasting that are relevant tadaptive sampling algorithm. Next we provide
the details of the basic adaptive sampling algorithm and tiescribe how the temporal coverage of the
adaptive sampling algorithm can be improved. We then givevanview of the related work in this area
and finally conclude the paper.

2. Application Scenario: Sensor Networking the Great Barrer Reef

The Great Barrier Reef (GBR), located along the north-eaastcof Australia is made up of over
3,200 reefs and extends over an area of 280,000 Ktris the world’s largest coral reef system. The
GBR however, is under threat due to the following factors:

¢ Global warming A temperature rise of between 2 and 3 degrees celsius wesidtrin 97% of

the Great Barrier Reef being bleached every yéhr [
¢ Pollution: Rivers flowing into the GBR in the north-east coast of Augrthow through large areas

of farmland. Thus excess fertilisers and pesticides flomftbese farmlands into the GBR][
e Overfishing It is quite common for fishermen to catch unwanted specidslof This can cause

major disruptions to the food chain and thus eventually héwercorals in the GBR.
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These threats affect the GBR adversely in several ways. ¥eongle, overfishing reduces coral reef
diversity and recovery. Surface runoff from agricultu@hdis causes algae blooms and Crown of thorn
starfish outbreaks, which are known to destroy coral reefsermal stress, which could be caused by
global warming, causesoral bleaching Coral bleaching is a stress condition that causes the thogak
of the symbiotic relationship between the corals and uhitalalgae known agooxanthellaelt is these
microscopic plants that provide a coral with its normal beatolour. When coral bleaching occurs, the
algae are expelled from the coral tissue resulting in thalsdsecoming white. This is illustrated in
Figurel. While the corals do not initially die and can recover frommatdoleaching, prolonged periods
of stress can result in the eventual death of a coral.

Figure 1. The effects of coral bleaching (Adapted froBj)[

In order to ensure the long-time survivability of the GBRisitessential to understand the precise
impact that global warming, pollution and over-fishing playhe destruction of the GBR. While global
warming is a cause that cannot be readily controlled, polttand overfishing are. Being able to monitor
environmental parameters such as temperature, lightjtyalevel of pollutants, etc. at real-time and ata
high spatial and temporal resolution would enable scitstitsbetter understand the underlying complex
environmental processes that help shape the behavioue dfidhogical and physical characteristics of
the GBR. As an example, if high levels of pollutants (e.g.tipetes) are detected in the GBR, farmers
along the coast can be advised to reduce the amount of pestitiat are used.

We are currently working together with the Australian Ihge of Marine Science (AIMS)4] to
set up a large-scale wireless sensor network to monitoowsitenvironmental parameters on the Great
Barrier Reef (GBR) in Australia. Scientists at AIMS interal use the collected data to study coral
bleaching, reef-wide temperature fluctuations, impaceofgerature on aquatic life and pollution.

One of the reefs under study is the Davies Reef which is appietely 80 km north-east of the city
of Townsville in North Queensland, Australia. CurrentlyMS has a couple of data loggers situated on
the reef that records temperature at two separate deptesewary thirty minutes. Scientists from AIMS
need to visit the reef periodically to download the data ftbmloggers.

The drawback of the current system is that it only allows leifgpint measurements. Thus it is
impossible to get a true representation of the temperat@@ients spanning the entire reef which is
around 7 km in length. This is because the scale of the fluotuaf environmental parameters in the
GBR, ranges from kilometre-wide oceanic mixing to millimeescale inter-skeletal currents. Also, the
practice of collecting the data once every few weeks makespbssible to study the trends of various
parameters in real-time. Deploying a sensor network woatanly allow high resolution monitoring in
both the spatial and temporal dimensions but would alsolersaientists to improve their understanding
of the complex environmental processes by studying dagarsting in from the reef in real-time.
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Figure 2. Overview of data collection system at Davies Reef.
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The new data collection system that we are deploying at Baeef can be broken down into three
main components as shown in Figie

e AmbientuNodes These are the sensor nodes from Ambient Systé&nghat will be placed in
water and shock-proof canisters and then placed in buoysdrihe reef.

e Embedded PCAn embedded PC will be placed on a communication tower aticuetias the sink
node collecting data from all the sensors in the reef.

e Microwave link This will allow data to be transmitted from the Embedded BGhe AIMS
base station 80 km away using microwave transmissionseapside humidity ducts that form
directly above the surface of the sé&h [This is illustrated in Figuré.

Figure 3. Data collected by the sensor network is transmitted to AINdGvmicrowave link
(Adapted from 7).
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The algorithm presented in this paper is designed for theciimsiponent, i.e. AmbieniNodes.

from sensor nodes
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3. Preliminaries of Time-Series Forecasting

Time-series forecasting is a technique that has been usediihe variety of disciplines such as engi-
neering, economics, and the natural and social sciencegsdicpthe outcome of a particular parameter
based on a set of historical values. These historical vabits referred to as a “time series”, are spaced
equally over time and can represent anything from monthissa@ata to temperature readings acquired
periodically by sensor nodes. Wé][and Brockwell and Davisq] provide a very good introduction to
time series forecasting.

The general approach to time-series forecasting can beiloeddn four main steps:
1. Analyze the data and identify the existence of a trend or scsed component.

2. Remove the trend and seasonal components tetgebnary(defined below) residuals. This may
be carried out by applying a transformation to the data.

3. Choose a suitable model to fit the residuals.

4. Predict the outcome by forecasting the residuals and thesmting the transformations described
above to arrive at forecasts of the original series.

Before describing details of how we perform each of the alsbgps in our data aggregation frame-
work, we first present some basic definitions.

Definition 3.1 Let X; be a time series where= 1, 2, 3, ... We define the mean of; as,
e = E(Xy) (1)

Definition 3.2 Covarianceis a measure of to what extent two variables vary togethemusThe
covariance function betweexXy;, and.X,, is defined as,

7(t17 t2) = COU<Xt17Xt2) = E[(th - :uh)(XtQ - :utz)] (2)
Definition 3.3 We define the sample autocovariance atiag X; forh =0,1,2,...,T as

v(h) _ Zt:thl(Xt _;Q(Xth - X) (3)

whereX = 7! Zthl X, is the sample mean of the time serfés Note thaty(0) is simply the variance
of X,.

Definition 3.4 The autocorrelation functior(ACF), p,, which indicates the correlation betwedn
and X, is

p(h) = —= (4)
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Definition 3.5 We consider the time serie¥,; to be stationaryif the following two conditions
are met:

E(Xy) = i = py4, V7 €R (5)

Y(t+h,t) =yt +h+T1,t+7)Vr €R (6)

Equations and Equatior imply that the mean and covariance remain constant overgspectively.
In the case of EquatioB, the covariance remains constant for a givenidag
Definition 3.6 A process is called ahite noiseprocess if it is a sequence of uncorrelated random
variables with zero mean and variane€, We refer to white noise using the notation WIN¢?). By
definition, it immediately follows that a white noise proses stationary with the autocovariance func-
tion,
o? ifh=0,

v(t+ h,t) = _ (7)
0 ifh#0

3.1. Analysis of Data and Identification of Trend

As mentioned earlier, the first step is to identify the tremd aeasonal component. However, as
we make predictions using a small number of sensor readaigstover a relatively short period of
time (e.g. 20 mins), we make the assumption that the readiog®t contain any seasonal component.
Instead, given thatrepresents time, we model the sensor readiflgsising a slowly changing function
known as theérend componentn; and an additional stochastic componeXitthat has zero mean. Thus
we use the following modelk;, = m; + X;.

The main idea is to eliminate the trend componemnt, from R; so that the behavior ok, can be
studied. There are various ways of estimating the trend fgiven data set, e.g. using polynomial
fitting, moving averages, differencing, double exponérgraoothing, etc. Due to the highly limited
computation and memory resources of sensor nodes, we makef usfirst degree polynomial, i.e.
my = ag + aqt.

The coefficients, anda; can be computed by minimizing the sum of squafgs; Zthl(Rt —my)2.

In order to find the values af, anda, that minimize(), we need to solve the following equations:

T

oQ

—% __9 — ap — =
9ag = 22— a0 —ant) =0 (®)
0Q d
— =2 Ry —ag—at)t =0 9
0, = 22 (Rt~ a0 — ) (9)
Solving Equation® and9 leads to:
ag = Z?:l(t B D(Rt - R) (10)
> (t = 1)

ap = R — Clof (11)



Sensor009 9 4947

Eliminating the trend component from the sensor readingsli® in the residuals. This is shown
in Figure4(b). Note that the residuals have been obtained from therdifice between the tempera-
ture sensor readings and the line of best fit illustrated gufg4(a). The residuals display two distinct
characteristics. Firstly, there is no noticeable trend sexbndly there are particular long stretches of
residuals that have the same sign. This would be an unlikedyroence if the residuals were observa-
tions of white noise with zero mean. This smoothness ndyuralicates a certain level of dependence
between reading®]. The algorithm in this paper studies this dependence clexniatic and uses it to
help understand the behavior of the residuals so that gieasccan be made.

Figure 4. Temperature sensor readings and the corresponding res(@aa obtained from
Nelly Bay in the GBR L0]).
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Now that a stationary time series has been obtained, thestegxis to choose an appropriate model
that can adequately represent the behavior of the timesserie

Stationary processes can be modelled usintpregressive moving averag@RMA) models. The
ARMA model is a tool for understanding and subsequentlyigtew) future values of a stationary series.
The model consists of an autoregressive part, AR and a mewvieigige part, MA. Itis generally referred
to as the ARMAY, q) model wherep is the order of autoregressive part anid the order of the moving
average part. The AR) model is essentially a linear regression of the currenievaf the series against
p prior values of the seriesy;_1, X;_o, ..., X;—,. The MA model on the other hand is a linear regression
of the current value of the series against the white noisenef @ more prior values of the series,
Zy1,Zy—o, ..., Zi—p. The complete ARMAY, ¢) model is defined as follows,

Xt — Clet—l + + gprt—p + Zt ‘I— QIZt—l + + qut—q (12)

whereZ; ~WN(0, 0?) and¢;, i = 1,2, ...,pandb,, i = 1,2, ..., q are constants).

However, due to the limited computation and memory res@iocea sensor node, we use an AR(1)
model instead of the full ARMA model (i.e. = 0) to predict the valué?,, i.e. X; = »: X; 1 + Z;. The
constant, can now be estimated using the Yule-Walker estimatorgie= g, = % [8]. We can then
state that the general form of the minimum mean square er¥siep forecast equation is

Xipm = i+ 6™ (X — p)ym > 1 (13)
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4. Prediction Using the Adaptive Sampling Algorithm

In this section, we describe the original adaptive sampélgprithm which was first introduced
in [11]. The algorithm uses the time-series forecasting concagsgsribed in the previous section to
predict sensor readings in the future.

In general terms, when the reading of a particular sensor moda can be predicted based on the
recent past, we reduce the frequency of sampling the sebg@igpping a number of sensor sampling
operations and performing predictions instead. HoweVer,nhoment the prediction differs from the
actual sampled reading by an amount specified by the usesathpling frequency is increased. This
local prediction mechanism also helps reduce the numbesrsfas readings that need to be transmitted
to the sink node. Algorithri gives a detailed description of how adaptive sampling ifopered. Tablel
lists the definition of the acronyms mentioned in AlgorithmNote that sensor power-up times are not
considered in this algorithm as a user cannot set a minimwaorehat is lesser than the sensor power-up
time.

Algorithm 1 Adaptive sampling
1: repeat

2:  Ra, < Acquire sensor reading at current time, t
3:  AppendR,4 . to BUFFER
4: t=t+1
5: until size(BUFFER=FULL
6: repeat
7. if SS =0then
8: R4+ < Acquire sensor reading at current time, t
9: Rpr; «— Forecast reading for current time, t based on contentsJ6FBR
10: if |[Ras— Rry| < dthen
11: if CSSL < MSSLthen
12: CSSL — CSSL+1
13: end if
14: if SS < CSSLthen
15: SS <S5S+1
16: end if
17: else
18: 5SS —0
19: end if
20: Remove oldest reading fromuBFER
21: AppendR 4 ; to BUFFER
22: UseR 4, and previously sampled reading to linearly interpolaterimediate samples if any
23: else
24: SS<SS—-1
25: Rr — Forecast reading for current time, t based on content)eFBR
26: Remove oldest reading fromuBFER
27 AppendRr; to BUFFER
28: endif
29 t=t+1

30: until StopDataCollection = TRUE
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5. Improving Temporal Coverage

Our earlier work (which we refer to aadaptive samplingr ASfrom this point onward) focussed
on energy consumption and data quality in terms of accur&diieocollected sensor readings, it did
not discuss the issue tdmporal coverageBy coverage we refer to the maximum delay between the
occurrence and detection of any event.

Table 1. Description of acronyms used in Algorithin

Acronym ‘ Full form Description

SS Skip Samples SS indicates the number of samples that should be skipped
before the next sensor reading is acquireslS is decre-
mented by one every time a sample is skipped.

CSSL Current Skip Samples Limit | Every timeSS reaches 0, it starts decrementing from a start-
ing value ofCSSL. CSSLisincremented by one every time
the difference between the forecast and an acquired reading
is within the user-defined error threshodd, Otherwise it is
reset to 0.

MSSL Maximum Skip Samples Limit C'S.SL can reach a maximum value 8fSSL.

If sensor readings follow a predictable trend for long pasiof time, the drawback of theSalgorithm
is that the value of'S tends to remain at/SSL. While this is highly beneficial in terms of reducing
energy consumption, an obvious drawback is that there isatgrchance of missing an event that might
begin during the period when sensor sampling operationskapeed, i.e.55 > 0.

In order to reduce the time taken between the occurrence evamt and its detection, we illustrate
how we take advantage of the spatial correlation that ekistiseen neighbouring sensors and introduce
a randomized scheme that staggers the sampling times aeadjaodes. This effectively decreases the
chances of'S reachingM SSL.

In order to justify our approach we first illustrate how semreadings between adjacent nodes can be
correlated. We then proceed to show how the readings of beiging sensors can be used to improve
temporal coverage. This approach is then further improyagsing a randomized algorithm that further
improves temporal coverage.

5.1. Correlation of Sensor Readings of Adjacent Sensor dlode

Figure5illustrates a deployment of five sensors in Nelly Bay in the&Barrier Reef. As can be seen
from the figure, the maximum distance between the sensorsusid 350 m. We make the assumption
that all sensors are within radio communication range ohedher. This implies that the five sensors
form a fully connected graph with a total of 10 edges. Note #zch edge represents the correlation
that exists between the two nodes at either end of the edgard@(a) shows the temperature readings
collected from all the five sensors over a period of aroundalysd

Next, we use Figuré(b) to illustrate how every node’s readings are correlatét ewvery one of its
adjacent neighbours. The histogram in FigG¢e) shows that all 10 edges have correlation values that
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are close to 1. From this, we can conclude that if a partioubgle detects a certain event, there will be
a high probability that the adjacent nodes will also deteist évent.

Figure 5. (a) Sensors deployed in Nelly Bay, Great Barrier Reef, Alisty (b) Combining
schedules of adjacent nodes helps improve temporal coverag

(a) (b)
Node1 |v/[x[x[x|x[v[x[x]|x]|x[x[v]x]

+
Node2 [x|v[x[x[v]|x|x[x[v][x]|x]|x][x]

+
Node3d [x[x[x[v[x[x[x[x[x[v/]x[x]|x]
S et [VIvIx v [v]v]x[x[v][v][x[v]x]

Sensor 3

Sensor2]  [Sensor 4 v’ : Sensor reading acquired
Sensor 1 % : Sensor reading skipped

Figure 6. (a) Temperature readings from sensors deployed in Nelly Besat Barrier Reef,
Australia over a period of 17 days; (b) Number of edges witinedation close to 1.
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As theAS algorithm disregards this spatial correlation betweea@al)t nodes, the temporal coverage
of a particular node is only attributed to the node’s own samgdrequency. In other words, if a node
skipsx samples, it is assumed that any event that occurs during thepochs will not be detected.
Figure 7(a) shows a histogram of the frequency of the maximum seguehconsecutive uncovered
epochs that are attained by all the five nodes in the netwoskdan the data set from Nelly Bay

collected over 17 days.

However, if the sampling schedules of all adjacent nodescamsbined, then the probability of
all sensor nodes within a single hop missing an event due &ge bS value is greatly diminished.
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Figure5illustrates this concept. We can see clearly from Figlfbg that not only are long sequences of
uncovered epochs completely eliminated, but the area ajridueh in Figure/(b) is significantly lower
than that of Figur&(a). This implies that combining sampling schedules gyeattiuces the chances of
missing an event.

Figure 7. (a) Histogram showing spread of maximum sequence of cotiseawncovered
epochs forAS algorithm; (b) Histogram showing maximum sequence of coui$eés uncov-
ered epochs when spatial correlations of adjacent nodensdered.
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In order to improve temporal coverage even further, we thice a randomized scheme in addition
to combining sampling schedules as mentioned above. The maiivation is that in certain instances,

especially when the trend of sensor readings is changing gi@dually and there is a strong spatial
correlation between the readings of adjacent nodes, nddes to each other tend to have simifas
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values. This essentially means that the sampling timesnsioge which are close to one another may be
quite synchronized. This is undesirable as even if the sagpthedules are combined, their resulting
schedule remains relatively unchanged as compared to tieelsies of individual nodes.

To prevent this from occurring, we introduce a scheme whezeydime a node has&s value greater
than zero, i.e. it is supposed to skip the sensor samplincatipe, theSS value is reset to zero with
probability p. This reduces the chance of having synchronized samplingdstes between adjacent
sensor nodes. In our simulations, we vary the valugfodm 1% to 20%. This is shown in Figu& It
can be seen that ass increased, the maximum sequence of uncovered epocleaitygreduced. In fact
whenp is set to 20%, the delay between the occurrence of an eventsagietection is only one epoch.
Thus, in such cases, if the duration of an event is severalhegdong, none of the events will be missed.
This is quite a likely scenario in the GBR setting since vdtgm, an event which occurs generally lasts
a while.

6. Related Work

A wide variety of techniques can be found that deal with ecting data in an energy-efficient manner.
The authors in12] describe a technique to prevent the need to sample sensespionse to an incoming
query. However, the technique is not able to cope with suddanges in the correlation models and also
fails to recognize the importance of temporal fluctuationthese models. KENLB] is able to create and
adapt models on the fly and thus adapt but does not describéohdeal with topology changes. Both
PAQ [14] and SAF [L5] are similar to our scheme in the sense that they also used#mes forecasting
to identify temporal correlations within the network itsélfhere are a number of paped[ 17] which
also model the sensed data using some sort of a linear madlad we take advantage of the spatial
correlations between adjacent sensor nodes, the authfit§lialso identify nodes which have similar
readings and then choose certain representative nodesdb are chosen to transmit the sensed data.

However, all the schemes mentioned above only deal withciadunessage transmissions. While
this is helpful, this is far from adequate when the appla@atuses sensors which consume a lot of
energy. Note that many sophisticated sensors used foroemantal monitoring also have long start-up
and sampling times. This too has a large impact on energyuogpison. To our knowledge, we are not
aware of any other work which deals with reducing the dutyept the sensors themselves.

Another major difference between our work and the schemegiamed above, is that our scheme
works on onlypartially available data since we do not sample every sensor readingklpua large
number of samples to save energy. All the above schemesrhoilidls or make decisions using sensor
readings obtained at every epoch.

7. Conclusions and Future Work

We have presented an adaptive sensor sampling schemeksmativantage of temporal correlations
of sensor readings in order to reduce energy consumptionleWte scheme can be used in various
environmental monitoring scenarios, we have focussed acgptogment of sensor nodes on the Great
Barrier Reef in Australia as the deployment involves usiegssrs that consume a lot of energy. Such a
deployment would benefit greatly from using an adaptive sengscheme. The original problem with
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the adaptive sampling scheme was that there was a very higfalpitity of missing certain events as
sensors were switched off for extended durations. Thismp#pstrates how temporal coverage can be
improved by combining schedules of nodes next to each oilleralso demonstrate how results can be
further improved by using a randomized scheme to combinedkdls without incurring additional over-
heads due to communication. The randomized scheme showghledime between event occurrence
and event detection may be reduced to just one epoch inrcedanarios.

Our results in Figur&(b) show the existence of a strong correlation between adfasensor nodes
and our technique improves temporal coverage by takingrddga of this fact. However, it should be
noted that this is not always the case, i.e. adjacent nodgsatalways have correlated sensor readings.
In such instances, the strategy of combining sampling sdbeedvould not work.In order to address this
issue, we are currently designing a distributed algoritininere every node first decides whether its
readings are correlated with a particular adjacent nodedoas the recent history of sampled readings.
The algorithm to improve temporal coverage presented m phper isonly used if a correlation has
been identified. Thus, this technique will allow the nodesuto at their optimal level regardless of the
existence of any spatial correlation between sensor rgadihadjacent nodes.
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