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Abstract: Collecting raw data from a wireless sensor network for environmental monitor-

ing applications can be a difficult task due to the high energyconsumption involved. This

is especially difficult when the application requires specialized sensors that have very high

energy consumption, e.g. hydrological sensors for monitoring marine environments. This pa-

per introduces a technique for reducing energy consumptionby minimizing sensor sampling

operations. In addition, we illustrate how a randomized algorithm can be used to improve

temporal coverage such that the time between the occurrenceof an event and its detection

can be minimized. We evaluate our approach using real data collected from a sensor network

deployment on the Great Barrier Reef.
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1. Introduction

Wireless sensor networks (WSNs) are increasingly being used in a wide range of environmental

monitoring applications. The primary reason for this is that WSNs are capable of monitoring various
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parameters at high spatial and temporal resolutions. Such fine-grained measurements cannot be taken

using conventional data loggers.

However, collecting raw sensor readings from a large scale WSN can be a highly challenging task.

The sensor nodes that make up a WSN are typically battery powered and communicate among them-

selves using a radio transceiver. A single sensor node may also have a host of sensors attached to it. As

both the radio transceiver and the attached sensors consumesignificant amounts of energy, it is essential

to use energy-efficient algorithms to ensure that the lifespan of the network is maximized. Transmitting

large amounts of data can also lead to congestion and packet loss within the network, as sensor nodes

usually have a very small bandwidth due to the low duty cycle of their transceivers. Thus in addition

to energy-efficiency, any developed algorithm for data collection for WSNs should also maintain an

acceptable level of data quality that meets the user’s requirements.

In this paper, we first present an algorithm that minimizes energy consumption by not only reducing

the number of sensor sampling operations but also by reducing message transmissions. The basic idea

is to use time-series forecasting to try and predict future sensor readings. When the trend of a partic-

ular sensor reading is fairly constant and thus predictable, the sensor sampling frequency and message

transmission rate are reduced. Conversely, when the trend changes, both the sampling rate and message

transmission rates are increased. Additionally the paper describes how a randomized wake-up scheme

can be used to improve temporal coverage so as to minimize thetime that elapses between the occurrence

of an event and its detection. The randomized algorithm eliminates the need for additional communi-

cation between nodes thus improving overall energy consumption. We show that using our randomized

algorithm, in certain cases, the delay between the occurrence of an event and its detection can be reduced

to just one epoch (Note: An epoch refers to the time period between two consecutive samples.)

The algorithm is evaluated using real-life sensor data thathas been collected from a sensor network

that has been deployed in the Great Barrier Reef, Australia.We first provide the reader with an overview

of the sensor network deployment in the Great Barrier Reef. We then briefly outline the important

concepts of time series forecasting that are relevant to ouradaptive sampling algorithm. Next we provide

the details of the basic adaptive sampling algorithm and then describe how the temporal coverage of the

adaptive sampling algorithm can be improved. We then give anoverview of the related work in this area

and finally conclude the paper.

2. Application Scenario: Sensor Networking the Great Barrier Reef

The Great Barrier Reef (GBR), located along the north-east coast of Australia is made up of over

3,200 reefs and extends over an area of 280,000 km2. It is the world’s largest coral reef system. The

GBR however, is under threat due to the following factors:

• Global warming: A temperature rise of between 2 and 3 degrees celsius would result in 97% of

the Great Barrier Reef being bleached every year [1].
• Pollution: Rivers flowing into the GBR in the north-east coast of Australia flow through large areas

of farmland. Thus excess fertilisers and pesticides flow from these farmlands into the GBR [2].
• Overfishing: It is quite common for fishermen to catch unwanted species offish. This can cause

major disruptions to the food chain and thus eventually harmthe corals in the GBR.
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These threats affect the GBR adversely in several ways. For example, overfishing reduces coral reef

diversity and recovery. Surface runoff from agricultural lands causes algae blooms and Crown of thorn

starfish outbreaks, which are known to destroy coral reefs. Thermal stress, which could be caused by

global warming, causescoral bleaching. Coral bleaching is a stress condition that causes the breakdown

of the symbiotic relationship between the corals and unicellular algae known aszooxanthellae. It is these

microscopic plants that provide a coral with its normal healthy colour. When coral bleaching occurs, the

algae are expelled from the coral tissue resulting in the corals becoming white. This is illustrated in

Figure1. While the corals do not initially die and can recover from coral bleaching, prolonged periods

of stress can result in the eventual death of a coral.

Figure 1. The effects of coral bleaching (Adapted from [3]).

Before After

In order to ensure the long-time survivability of the GBR, itis essential to understand the precise

impact that global warming, pollution and over-fishing playin the destruction of the GBR. While global

warming is a cause that cannot be readily controlled, pollution and overfishing are. Being able to monitor

environmental parameters such as temperature, light, salinity, level of pollutants, etc. at real-time and at a

high spatial and temporal resolution would enable scientists to better understand the underlying complex

environmental processes that help shape the behaviour of the biological and physical characteristics of

the GBR. As an example, if high levels of pollutants (e.g. pesticides) are detected in the GBR, farmers

along the coast can be advised to reduce the amount of pesticides that are used.

We are currently working together with the Australian Institute of Marine Science (AIMS) [4] to

set up a large-scale wireless sensor network to monitor various environmental parameters on the Great

Barrier Reef (GBR) in Australia. Scientists at AIMS intend to use the collected data to study coral

bleaching, reef-wide temperature fluctuations, impact of temperature on aquatic life and pollution.

One of the reefs under study is the Davies Reef which is approximately 80 km north-east of the city

of Townsville in North Queensland, Australia. Currently, AIMS has a couple of data loggers situated on

the reef that records temperature at two separate depths once every thirty minutes. Scientists from AIMS

need to visit the reef periodically to download the data fromthe loggers.

The drawback of the current system is that it only allows single-point measurements. Thus it is

impossible to get a true representation of the temperature gradients spanning the entire reef which is

around 7 km in length. This is because the scale of the fluctuation of environmental parameters in the

GBR, ranges from kilometre-wide oceanic mixing to millimetre-scale inter-skeletal currents. Also, the

practice of collecting the data once every few weeks makes itimpossible to study the trends of various

parameters in real-time. Deploying a sensor network would not only allow high resolution monitoring in

both the spatial and temporal dimensions but would also enable scientists to improve their understanding

of the complex environmental processes by studying data streaming in from the reef in real-time.
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Figure 2. Overview of data collection system at Davies Reef.
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The new data collection system that we are deploying at Davies reef can be broken down into three

main components as shown in Figure2:

• AmbientµNodes: These are the sensor nodes from Ambient Systems [5] that will be placed in

water and shock-proof canisters and then placed in buoys around the reef.

• Embedded PC: An embedded PC will be placed on a communication tower and will act as the sink

node collecting data from all the sensors in the reef.

• Microwave link: This will allow data to be transmitted from the Embedded PC to the AIMS

base station 80 km away using microwave transmissions trapped inside humidity ducts that form

directly above the surface of the sea [6]. This is illustrated in Figure3.

Figure 3. Data collected by the sensor network is transmitted to AIMS via a microwave link

(Adapted from [7]).
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The algorithm presented in this paper is designed for the first component, i.e. AmbientµNodes.



Sensors2009, 9 4945

3. Preliminaries of Time-Series Forecasting

Time-series forecasting is a technique that has been used ina wide variety of disciplines such as engi-

neering, economics, and the natural and social sciences to predict the outcome of a particular parameter

based on a set of historical values. These historical values, often referred to as a “time series”, are spaced

equally over time and can represent anything from monthly sales data to temperature readings acquired

periodically by sensor nodes. Wei [8] and Brockwell and Davis [9] provide a very good introduction to

time series forecasting.

The general approach to time-series forecasting can be described in four main steps:

1. Analyze the data and identify the existence of a trend or a seasonal component.

2. Remove the trend and seasonal components to getstationary(defined below) residuals. This may

be carried out by applying a transformation to the data.

3. Choose a suitable model to fit the residuals.

4. Predict the outcome by forecasting the residuals and then inverting the transformations described

above to arrive at forecasts of the original series.

Before describing details of how we perform each of the abovesteps in our data aggregation frame-

work, we first present some basic definitions.

Definition 3.1 Let Xt be a time series wheret = 1, 2, 3, ... We define the mean ofXt as,

µt = E(Xt) (1)

Definition 3.2 Covarianceis a measure of to what extent two variables vary together. Thus the

covariance function betweenXt1 andXt2 is defined as,

γ(t1, t2) = Cov(Xt1, Xt2) = E[(Xt1 − µt1)(Xt2 − µt2)] (2)

Definition 3.3 We define the sample autocovariance at lagh of Xt for h = 0, 1, 2, ..., T as

γ(h) =

∑T

t=h+1(Xt − X̄)(Xt−h − X̄)

T
(3)

whereX̄ = T−1
∑T

t=1 Xt is the sample mean of the time seriesXt. Note thatγ(0) is simply the variance

of Xt.

Definition 3.4 Theautocorrelation function(ACF), ρh, which indicates the correlation betweenXt

andXt+h, is

ρ(h) =
γ(h)

γ(0)
(4)
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Definition 3.5 We consider the time seriesXt to be stationary if the following two conditions

are met:

E(Xt) = µt = µt+τ∀τ ∈ R (5)

γ(t + h, t) = γ(t + h + τ, t + τ)∀τ ∈ R (6)

Equation5 and Equation6 imply that the mean and covariance remain constant over timerespectively.

In the case of Equation6, the covariance remains constant for a given lagh.

Definition 3.6 A process is called awhite noiseprocess if it is a sequence of uncorrelated random

variables with zero mean and variance,σ2. We refer to white noise using the notation WN(0, σ2). By

definition, it immediately follows that a white noise process is stationary with the autocovariance func-

tion,

γ(t + h, t) =







σ2 if h = 0,

0 if h 6= 0
(7)

3.1. Analysis of Data and Identification of Trend

As mentioned earlier, the first step is to identify the trend and seasonal component. However, as

we make predictions using a small number of sensor readings taken over a relatively short period of

time (e.g. 20 mins), we make the assumption that the readingsdo not contain any seasonal component.

Instead, given thatt represents time, we model the sensor readings,Rt using a slowly changing function

known as thetrend component, mt and an additional stochastic component,Xt that has zero mean. Thus

we use the following model:Rt = mt + Xt.

The main idea is to eliminate the trend component,mt, from Rt so that the behavior ofXt can be

studied. There are various ways of estimating the trend for agiven data set, e.g. using polynomial

fitting, moving averages, differencing, double exponential smoothing, etc. Due to the highly limited

computation and memory resources of sensor nodes, we make use of a first degree polynomial, i.e.

mt = a0 + a1t.

The coefficientsa0, anda1 can be computed by minimizing the sum of squares,Q =
∑T

t=1(Rt−mt)
2.

In order to find the values ofa0 anda1 that minimizeQ, we need to solve the following equations:

∂Q

∂a0

= −2
T

∑

t=1

(Rt − a0 − a1t) = 0 (8)

∂Q

∂a1
= −2

T
∑

t=1

(Rt − a0 − a1t)t = 0 (9)

Solving Equations8 and9 leads to:

a0 =

∑T

t=1(t− t̄)(Rt − R̄)
∑T

t=1(t− t̄)2
(10)

a1 = R̄− a0t̄ (11)
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Eliminating the trend component from the sensor readings results in the residuals. This is shown

in Figure4(b). Note that the residuals have been obtained from the difference between the tempera-

ture sensor readings and the line of best fit illustrated in Figure4(a). The residuals display two distinct

characteristics. Firstly, there is no noticeable trend andsecondly there are particular long stretches of

residuals that have the same sign. This would be an unlikely occurrence if the residuals were observa-

tions of white noise with zero mean. This smoothness naturally indicates a certain level of dependence

between readings [9]. The algorithm in this paper studies this dependence characteristic and uses it to

help understand the behavior of the residuals so that predictions can be made.

Figure 4. Temperature sensor readings and the corresponding residuals (Data obtained from

Nelly Bay in the GBR [10]).
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Now that a stationary time series has been obtained, the nextstep is to choose an appropriate model

that can adequately represent the behavior of the time series.

Stationary processes can be modelled usingautoregressive moving average(ARMA) models. The

ARMA model is a tool for understanding and subsequently predicting future values of a stationary series.

The model consists of an autoregressive part, AR and a movingaverage part, MA. It is generally referred

to as the ARMA(p, q) model wherep is the order of autoregressive part andq is the order of the moving

average part. The AR(p) model is essentially a linear regression of the current value of the series against

p prior values of the series,Xt−1, Xt−2, ..., Xt−p. The MA model on the other hand is a linear regression

of the current value of the series against the white noise of one or more prior values of the series,

Zt−1, Zt−2, ..., Zt−p. The complete ARMA(p, q) model is defined as follows,

Xt = φ1Xt−1 + ... + φpXt−p + Zt + θ1Zt−1 + ... + θqZt−q (12)

whereZt ∼WN(0, σ2) andφi, i = 1, 2, ..., p andθi, i = 1, 2, ..., q are constants [9].

However, due to the limited computation and memory resources on a sensor node, we use an AR(1)

model instead of the full ARMA model (i.e.q = 0) to predict the valueRt, i.e. Xt = φ1Xt−1 + Zt. The

constantφ1 can now be estimated using the Yule-Walker estimator, i.e.φ̂1 = ρ̂1 = γ(1)
γ(0)

[8]. We can then

state that the general form of the minimum mean square errorm-step forecast equation is

X̂t+m = µ + φm(Xt − µ), m ≥ 1 (13)
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4. Prediction Using the Adaptive Sampling Algorithm

In this section, we describe the original adaptive samplingalgorithm which was first introduced

in [11]. The algorithm uses the time-series forecasting conceptsdescribed in the previous section to

predict sensor readings in the future.

In general terms, when the reading of a particular sensor on anode can be predicted based on the

recent past, we reduce the frequency of sampling the sensorsby skipping a number of sensor sampling

operations and performing predictions instead. However, the moment the prediction differs from the

actual sampled reading by an amount specified by the user, thesampling frequency is increased. This

local prediction mechanism also helps reduce the number of sensor readings that need to be transmitted

to the sink node. Algorithm1 gives a detailed description of how adaptive sampling is performed. Table1

lists the definition of the acronyms mentioned in Algorithm1. Note that sensor power-up times are not

considered in this algorithm as a user cannot set a minimum epoch that is lesser than the sensor power-up

time.

Algorithm 1 Adaptive sampling
1: repeat
2: RA,t ← Acquire sensor reading at current time, t

3: AppendRA,t to BUFFER

4: t = t + 1

5: until size(BUFFER)=FULL

6: repeat
7: if SS = 0 then
8: RA,t ← Acquire sensor reading at current time, t

9: RF,t ← Forecast reading for current time, t based on contents of BUFFER

10: if |RA,t −RF,t| < δ then
11: if CSSL < MSSL then
12: CSSL← CSSL + 1

13: end if
14: if SS < CSSL then
15: SS < SS + 1

16: end if
17: else
18: SS ← 0

19: end if
20: Remove oldest reading from BUFFER

21: AppendRA,t to BUFFER

22: UseRA,t and previously sampled reading to linearly interpolate intermediate samples if any

23: else
24: SS < SS − 1

25: RF,t ← Forecast reading for current time, t based on contents of BUFFER

26: Remove oldest reading from BUFFER

27: AppendRF,t to BUFFER

28: end if
29: t = t + 1

30: until StopDataCollection = TRUE
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5. Improving Temporal Coverage

Our earlier work (which we refer to asadaptive samplingor AS from this point onward) focussed

on energy consumption and data quality in terms of accuracy of the collected sensor readings, it did

not discuss the issue oftemporal coverage. By coverage we refer to the maximum delay between the

occurrence and detection of any event.

Table 1. Description of acronyms used in Algorithm1.

Acronym Full form Description

SS Skip Samples SS indicates the number of samples that should be skipped

before the next sensor reading is acquired.SS is decre-

mented by one every time a sample is skipped.

CSSL Current Skip Samples Limit Every timeSS reaches 0, it starts decrementing from a start-

ing value ofCSSL. CSSL is incremented by one every time

the difference between the forecast and an acquired reading

is within the user-defined error threshold,δ. Otherwise it is

reset to 0.

MSSL Maximum Skip Samples Limit CSSL can reach a maximum value ofMSSL.

If sensor readings follow a predictable trend for long periods of time, the drawback of theASalgorithm

is that the value ofSS tends to remain atMSSL. While this is highly beneficial in terms of reducing

energy consumption, an obvious drawback is that there is a greater chance of missing an event that might

begin during the period when sensor sampling operations areskipped, i.e.SS > 0.

In order to reduce the time taken between the occurrence of anevent and its detection, we illustrate

how we take advantage of the spatial correlation that existsbetween neighbouring sensors and introduce

a randomized scheme that staggers the sampling times of adjacent nodes. This effectively decreases the

chances ofSS reachingMSSL.

In order to justify our approach we first illustrate how sensor readings between adjacent nodes can be

correlated. We then proceed to show how the readings of neighbouring sensors can be used to improve

temporal coverage. This approach is then further improved by using a randomized algorithm that further

improves temporal coverage.

5.1. Correlation of Sensor Readings of Adjacent Sensor Nodes

Figure5 illustrates a deployment of five sensors in Nelly Bay in the Great Barrier Reef. As can be seen

from the figure, the maximum distance between the sensors is around 350 m. We make the assumption

that all sensors are within radio communication range of each other. This implies that the five sensors

form a fully connected graph with a total of 10 edges. Note that each edge represents the correlation

that exists between the two nodes at either end of the edge. Figure6(a) shows the temperature readings

collected from all the five sensors over a period of around 17 days.

Next, we use Figure6(b) to illustrate how every node’s readings are correlated with every one of its

adjacent neighbours. The histogram in Figure6(b) shows that all 10 edges have correlation values that
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are close to 1. From this, we can conclude that if a particularnode detects a certain event, there will be

a high probability that the adjacent nodes will also detect this event.

Figure 5. (a) Sensors deployed in Nelly Bay, Great Barrier Reef, Australia; (b) Combining

schedules of adjacent nodes helps improve temporal coverage.
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Figure 6. (a) Temperature readings from sensors deployed in Nelly Bay, Great Barrier Reef,

Australia over a period of 17 days; (b) Number of edges with correlation close to 1.
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As theAS algorithm disregards this spatial correlation between adjacent nodes, the temporal coverage

of a particular node is only attributed to the node’s own sampling frequency. In other words, if a node

skipsx samples, it is assumed that any event that occurs during these x epochs will not be detected.

Figure7(a) shows a histogram of the frequency of the maximum sequence of consecutive uncovered

epochs that are attained by all the five nodes in the network based on the data set from Nelly Bay

collected over 17 days.

However, if the sampling schedules of all adjacent nodes arecombined, then the probability of

all sensor nodes within a single hop missing an event due to a largeSS value is greatly diminished.
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Figure5 illustrates this concept. We can see clearly from Figure7(b) that not only are long sequences of

uncovered epochs completely eliminated, but the area of thegraph in Figure7(b) is significantly lower

than that of Figure7(a). This implies that combining sampling schedules greatly reduces the chances of

missing an event.

Figure 7. (a) Histogram showing spread of maximum sequence of consecutive uncovered

epochs forAS algorithm; (b) Histogram showing maximum sequence of consecutive uncov-

ered epochs when spatial correlations of adjacent nodes is considered.
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Figure 8. Histogram showing spread of maximum sequence of consecutive uncovered

epochs when combining schedules of adjacent nodes using randomized scheme for differ-

ent values ofp.
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In order to improve temporal coverage even further, we introduce a randomized scheme in addition

to combining sampling schedules as mentioned above. The main motivation is that in certain instances,

especially when the trend of sensor readings is changing very gradually and there is a strong spatial

correlation between the readings of adjacent nodes, nodes close to each other tend to have similarSS
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values. This essentially means that the sampling times of sensors which are close to one another may be

quite synchronized. This is undesirable as even if the sampling schedules are combined, their resulting

schedule remains relatively unchanged as compared to the schedules of individual nodes.

To prevent this from occurring, we introduce a scheme where every time a node has aSS value greater

than zero, i.e. it is supposed to skip the sensor sampling operation, theSS value is reset to zero with

probability p. This reduces the chance of having synchronized sampling schedules between adjacent

sensor nodes. In our simulations, we vary the value ofp from 1% to 20%. This is shown in Figure8. It

can be seen that asp is increased, the maximum sequence of uncovered epochs is greatly reduced. In fact

whenp is set to 20%, the delay between the occurrence of an event andits detection is only one epoch.

Thus, in such cases, if the duration of an event is several epochs long, none of the events will be missed.

This is quite a likely scenario in the GBR setting since very often, an event which occurs generally lasts

a while.

6. Related Work

A wide variety of techniques can be found that deal with extracting data in an energy-efficient manner.

The authors in [12] describe a technique to prevent the need to sample sensors in response to an incoming

query. However, the technique is not able to cope with suddenchanges in the correlation models and also

fails to recognize the importance of temporal fluctuations in these models. KEN [13] is able to create and

adapt models on the fly and thus adapt but does not describe howto deal with topology changes. Both

PAQ [14] and SAF [15] are similar to our scheme in the sense that they also use time-series forecasting

to identify temporal correlations within the network itself. There are a number of papers [16, 17] which

also model the sensed data using some sort of a linear model. Just as we take advantage of the spatial

correlations between adjacent sensor nodes, the authors in[18] also identify nodes which have similar

readings and then choose certain representative nodes to which are chosen to transmit the sensed data.

However, all the schemes mentioned above only deal with reducing message transmissions. While

this is helpful, this is far from adequate when the application uses sensors which consume a lot of

energy. Note that many sophisticated sensors used for environmental monitoring also have long start-up

and sampling times. This too has a large impact on energy consumption. To our knowledge, we are not

aware of any other work which deals with reducing the duty cycle of the sensors themselves.

Another major difference between our work and the schemes mentioned above, is that our scheme

works on onlypartially available data since we do not sample every sensor reading but skip a large

number of samples to save energy. All the above schemes buildmodels or make decisions using sensor

readings obtained at every epoch.

7. Conclusions and Future Work

We have presented an adaptive sensor sampling scheme that takes advantage of temporal correlations

of sensor readings in order to reduce energy consumption. While the scheme can be used in various

environmental monitoring scenarios, we have focussed on a deployment of sensor nodes on the Great

Barrier Reef in Australia as the deployment involves using sensors that consume a lot of energy. Such a

deployment would benefit greatly from using an adaptive sampling scheme. The original problem with
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the adaptive sampling scheme was that there was a very high probability of missing certain events as

sensors were switched off for extended durations. This paper illustrates how temporal coverage can be

improved by combining schedules of nodes next to each other.We also demonstrate how results can be

further improved by using a randomized scheme to combine schedules without incurring additional over-

heads due to communication. The randomized scheme shows howthe time between event occurrence

and event detection may be reduced to just one epoch in certain scenarios.

Our results in Figure6(b) show the existence of a strong correlation between adjacent sensor nodes

and our technique improves temporal coverage by taking advantage of this fact. However, it should be

noted that this is not always the case, i.e. adjacent nodes may not always have correlated sensor readings.

In such instances, the strategy of combining sampling schedules would not work.In order to address this

issue, we are currently designing a distributed algorithm,where every node first decides whether its

readings are correlated with a particular adjacent node based on the recent history of sampled readings.

The algorithm to improve temporal coverage presented in this paper isonly used if a correlation has

been identified. Thus, this technique will allow the nodes torun at their optimal level regardless of the

existence of any spatial correlation between sensor readings of adjacent nodes.
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