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Abstract: The influence of grating length and bend radius of long-period gratings (LPGs) 

on refractive index sensing was examined. Sensitivity to refractive indexes smaller than 

that of silica could be enhanced by bending LPGs. Bent LPGs lost sensitivity to refractive 

indexes higher than that of silica, whereas a 20-mm-long LPG arranged in a straight line 

had considerable sensitivity. These experimental results demonstrated that the sensitivity 

characteristics of LPGs to refractive index could be controlled by grating length and bend 

radius. 
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1. Introduction 

 

The measurement of refractive index is important to many fields such as bio-chemical analysis, 

environmental contamination assessment, and the food and chemical industries. Because of the wide 

range of applications mentioned above, there is a growing interest in optical refractive index sensors. 

Those based on photonic crystal fibers (PCFs) or fiber gratings are probably the most attractive ones 

since they offer high sensitivity, stable wavelength-modulated information, and broad measuring 

range. At a refractive index of 1.33 typical for aqueous environments, the sensitivity of a fiber grating-

based sensor is typically 50 nm/refractive index units (RIU) [1], while PCF-based sensors possess 

higher sensitivity of more than 1,500 nm/RIU [2,3]. However, PCF-based sensors have the drawback 

of cumbersome measurement procedures. In the measurement of refractive index, the tiny holes of 

OPEN ACCESS



Sensors 2009, 9  

 

 

4560

PCF must be filled with the liquid to be measured and the infiltration of liquid typically takes at least 

several minutes. Furthermore, the liquid filling the holes must be eliminated for the subsequent 

measurement. On the other hand, fiber grating-based sensors are capable of responding to refractive 

index change immediately and are thus suitable for continuous real-time monitoring. 

Fiber gratings are often classified as fiber Bragg gratings (FBGs) or long-period gratings (LPGs), 

according to grating period. LPGs typically have a grating period in the range of from 100 m to 1 

mm, whereas FBGs have a sub-micron period. The transmission spectrum of LPGs consists of a 

number of rejection bands that arise from light coupling of the fundamental core mode to the multiple 

cladding modes. A central wavelength of rejection band λrej of an LPG with grating period   is given 

by the phase-matching condition: 

where eff
coren and ,

eff
cladding mn are the effective refractive indexes of the fundamental core mode and the 

mth cladding mode, respectively. Changes in the temperature, strain, and refractive index of the 

medium surrounding the LPG can alter the grating period and/or the differential refractive index of the 

core and cladding modes. Thus, the rejection wavelengths of LPG are sensitive to such environmental 

changes [4].  

Applications of fiber gratings to sensors for strain and temperature measurement have been studied 

over the last two decades [5-9]. Fiber Bragg gratings have been widely applied to strain and 

temperature sensors because they have a narrow reflection band, which contributes to higher 

resolution. Iadicicco et al. have reported refractive index (RI) measurement using FBGs, in which the 

cladding of the grating section was thinned by etching in order to possess RI sensitivity [10]. The FBG 

RI sensor lacks robustness because an FBG with a thin cladding breaks easily. On the other hand, an 
LPG with no protective coating has RI sensitivity because its ,

eff
cladding mn  is affected by the RI of the 

surrounding medium. Long-period gratings can be simple and robust RI sensors compared with FBGs, 

and so a number of studies on the RI sensitivity of LPGs have been conducted [11-17].  

A previous study on RI sensing using LPGs by Khaliq et al. has demonstrated that a change in 

external RI causes not only a shift in the rejection band wavelength but also a change in the 

transmission of the rejection band [18]. According to their study, the spectral change of LPG RI 

sensors can be characterized in terms of external RI as follows. For an external RI lower than that of 

silica, the rejection band shifts to a lower wavelength with increasing RI, while its transmission 

changed insignificantly. At an external RI equal to that of silica, rejection bands disappeared, and the 

transmission spectrum flattened. For an RI higher than that of silica, the rejection bands reappeared, 

but with high transmission and no wavelength response to external RI change. 

Refractive index sensing with LPGs uses light coupling between core and cladding modes in the 

grating section. The grating length and bend radius of LPGs are thought to influence the light coupling 

significantly. However, the effect of grating length and bend radius on the RI sensitivity remains 

unclear. In the present study, the influence of the grating length and bend radius of LPG on 

transmission spectra at various external RIs was examined. We found a suitable configuration of LPG 

for RI sensing, which could be classified according to external RI. Then, LPG RI sensors were used in 

,( )   eff eff
rej core cladding mn n  (1) 
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two applications: a discrimination test between water and saline water having an RI lower than that of 

silica and cure monitoring of epoxy resin for which the RI was higher than that of silica. 

 

2. Experimental Procedure 

 

Two LPGs with grating lengths of 20 mm and 30 mm, respectively, were used, and both LPGs had 

grating periods of 450 m. There was no protective coating in the grating section, so that the external 

RI could affect the effective refractive index of cladding modes. We measured the transmission spectra 

for the cases in which the LPG was surrounded by air, water, or one of four standard RI liquids 

(Cargille Laboratories, USA) in order to examine the RI sensitivity of the LPG. The refractive indexes 

of these four liquids were 1.4, 1.45, 1.5, and 1.6 at 1,550 nm. Furthermore, in order to investigate the 

bending effect on RI sensitivity, we examined the spectral difference between a straight LPG and a 

bent LPG at various external RIs. 

 

3. Results and Discussion 

 

3.1. Influence of grating length on RI sensitivity 

 

We first investigated the RI sensitivity of a 30-mm-long LPG, which was arranged in a straight line 

on a Petri dish, as shown in Figure 1. A super-luminescent diode, the output wavelength of which 

ranged from 1,300 to 1,600 nm, was used as a light source. Figure 2 shows the transmission spectra of 

the LPG surrounded by a medium having an RI that is lower than that of silica. A strong rejection band 

having a central wavelength around 1,520 nm is observed, and the band shifts to a shorter wavelength 

by 2.3 nm as the RI increases from 1 to 1.4. The spectrum begins to flatten out at an external RI of 

1.45, which is close to the RI of 1.456 of silica.  

 

Figure 1. Experimental setup for measuring the transmission spectrum of a straight LPG. 

 
 

The transmission spectra of the LPG surrounded by a medium having an RI higher than that of 

silica is shown in Figure 3 with a reference spectrum at an RI of 1.33, where the LPG was immersed in 

water. Note the rejection band around 1,520 nm. Compared with the reference spectrum, the 

transmission of the rejection band increases. Among the spectra for which the external RI is higher 
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than that of silica, the transmission of the rejection band decreases with RI. The spectral features 

observed in Figures 2 and 3 are consistent with those reported previously [11-13,17,18]. 

 

Figure 2. Transmission spectra of a 30-mm-long straight LPG surrounded by a medium 

having a refractive index that is lower than that of silica.  
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Figure 3. Transmission spectra of a 30-mm-long straight LPG surrounded by a medium 

having a refractive index that is higher than that of silica. 

1450 1500 1550 1600
-40

-30

-20

-10

0

T
ra

ns
m

is
si

on
, d

B

 n=1.33 in water
 n=1.45
 n=1.5
 n=1.6

Wavelength, nm
 

 

As mentioned in the previous section, the grating length of the LPG influences the coupling effect 

between the core and cladding modes. In order to investigate the influence of grating length on RI 

sensitivity, we performed the same experiment using a 20-mm-long LPG. Figure 4 shows transmission 

spectra of a 20-mm-long LPG surrounded by a medium having an RI lower than that of silica. 

Similarly to the case of 30-mm-long LPG shown in Figure 2 the spectra have a rejection band around 

1,520 nm, while a rejection band having higher attenuation appears at a longer wavelength (around 

1,560 nm). Note the wavelength shift in the rejection band around 1,520 nm which is the same 

rejection band we noted in Figures 2 and 3. The wavelength is shifted by 1.4 nm as external RI 

increases from 1 to 1.4, whereas the shift was 2.3 nm in the case of the 30-mm-long LPG. These 

experiments revealed that longer LPGs had higher sensitivity to RIs lower than that of silica. 
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Figure 4. Transmission spectra of a 20-mm-long straight LPG surrounded by a medium 

having a refractive index that is lower than that of silica. 
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The transmission spectra of a 20-mm-long LPG surrounded by a medium having an RI that is 

higher than that of silica are shown in Figure 5, along with the reference spectrum at an RI of 1.33. 

Compared with the reference spectrum, the transmission of the rejection band around 1,520 nm 

decreases considerably. Furthermore, the transmission increases with external RI as long as the RI is 

higher than that of silica. These features are inconsistent with the present experimental results for a 30-

mm-long LPG shown in Figure 3 as well as those reported in previous studies [12,13,18]. All of the 

LPGs used in the previous studies had a grating length of over 25 mm. The reduction in grating length 

might have given rise to the anomalous spectral response to an RI higher than that of silica. 

 

Figure 5. Transmission spectra of a 20-mm-long straight LPG surrounded by a medium 

having a refractive index that is higher than that of silica. 
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3.2. Effect of bending on RI sensitivity 

 

The bend of the LPG would also affect the coupling between the core and cladding modes. To 

investigate the effect of bending on the RI sensitivity, a 20-mm-long LPG was arranged along the 

inner wall of a Petri dish having a bend radius of 43 mm, as shown in Figure 6, and the transmission 

spectra at various external RIs were recorded. 

 

Figure 6. Experimental setup for measuring the transmission spectrum of a bent LPG. 

 
 

The experimental results are shown in Figure 7. Compared with spectra of the straight LPG shown 

in Figure 4, the depth of the rejection band is shallow and the strongest rejection band shifts to a 

shorter wavelength (around 1,500 nm). The rejection peak shifts by 6.3 nm as the RI is increased from 

1 to 1.4, which is 4.5 times longer than the wavelength shift for the straight LPG. 

 

Figure 7. Transmission spectra of a 20-mm-long bent LPG surrounded by a medium 

having a refractive index ranging from 1 to 1.5. 

1450 1500 1550 1600

-40

-30

-20

-10

0

Wavelength, nm

T
ra

ns
m

is
si

on
, d

B

 n=1 in air
 n=1.33 in water
 n=1.4
 n=1.45
 n=1.5

 
In addition, the transmission spectrum flattens out at an external RI of 1.5. The transmission 

characteristics are quite different from those of the straight LPG shown in Figure 5. The bend of the 

LPG would promote the leaky loss of cladding modes, and thus there would be little coupling between 

the core and cladding modes in the bent LPG. As a result, the bent LPG would have had an almost flat 
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transmission spectrum. These experimental results indicate that bent LPGs are suitable for monitoring 

RIs lower than that of silica, but are inappropriate for monitoring RIs higher than that of silica. 

 

3.3. Discrimination between water and saline water using a bent LPG 

 

The RI of water is 1.33, which is lower than that of silica (1.456), and saline water has a higher RI 

than water. In the present study, we applied a bent LPG, which is suitable for monitoring RIs lower 

than that of silica, to discriminate between water and 5 wt% saline water. The experimental setup 

shown in Figure 6 was used in this test. The transmission spectra of the 20-mm-long LPG with a bend 

radius of 43 mm are shown in Figure 8. Compared with the spectrum at an RI of 1, where LPG was 

surrounded by air, the spectra of the LPGs immersed in water and saline water shift to shorter 

wavelengths. However, the LPG with a bend radius of 43 mm lacks the RI sensitivity needed to 

discriminate between water and 5 wt% saline water because the spectral shift between water and 5 

wt% saline water is scarcely distinguishable. 

 

Figure 8. Discrimination of water from saline water using a 20-mm-long LPG having a 

bend radius of 43 mm. 
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The authors conjectured that an LPG having a smaller bend radius would have higher RI sensitivity. 

Hence, we devised a 20-mm-long LPG with a bend radius of 20 mm, as depicted in Figure 9, and 

performed the discrimination test. Figure 10 shows the resulting spectra. A 1.6-nm wavelength shift at 

the rejection band around 1,500 nm can be observed between the two spectra for which the LPG was 

immersed in water and saline water. These tests reveal that bent LPGs with smaller curvatures have 

higher sensitivity to external RIs that are lower than that of silica. 
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Figure 9. Schematic diagram of a 20-mm-long LPG having a bend radius of 20 mm. 

 

Figure 10. Discrimination of water from saline water with a 20-mm-long LPG having a 

bend radius of 20 mm. 
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3.4. Epoxy resin cure monitoring using an LPG 

 

Monitoring of the resin cure process is important in order to secure the quality and reliability of 

polymer and composite materials. Dielectric characterization is one of the methods conventionally 

applied to monitor cure process of polymers [19]. Since the RI is closely related to the dielectric 

constant, RI sensing with LPGs is expected to be an effective method by which to monitor the cure 

process. In the present study, the cure process of epoxy resin was monitored using an LPG by 

measuring the transmission spectrum. The base resin and hardening agent of the epoxy were Epikote 

828 (Japan Epoxy Resins Co., Ltd., Japan) and diethylenetriamine, respectively. According to the 

provider, the cured epoxy resin has a refractive index in the range of from 1.55 to 1.6 [20]. Since the 

RI of epoxy is higher than that of silica, a straight LPG suitable for the monitoring of higher RI was 

applied to the cure monitoring. As shown in Figure 11, we arranged a 20-mm-long LPG in a straight 

line along with a thermocouple for temperature measurement. 

Figure 12 shows the temperature change during the cure process. The temperature soared just after 

the epoxy resin was poured and reached a plateau after 40 to 80 minutes before gradually declining. 

The epoxy resin started to become viscous after 1 hour, at which time the temperature reached a 

maximum. The epoxy resin was almost cured after 3 hours, at which time the temperature was close to 
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that of the ambient atmosphere. The circular symbols in Figure 12 indicate the points at which the 

transmission spectrum of the LPG immersed in epoxy resin was recorded. 

Figure 11. Experimental setup for monitoring epoxy resin cure. 

 
 

Figure 12. Temperature profile in the epoxy resin cure process. The upper right figure is 

the enlarged temperature profile until 90 minutes after pouring the resin. The blue circles 

indicate the times at which the transmission spectra were recorded. 
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The transmission spectra before and after resin injection are shown in Figure 13. Similarly to the 

experimental results shown in Figure 5, strong rejection bands appear in the spectra around 1,525 nm. 

The transmission of the rejection band decreases after resin injection. This change in the spectrum is 

consistent with the experimental results shown in Figure 5, in which the transmission of the rejection 

band around 1,525 nm decreased when the 20-mm-long LPG was surrounded by a medium having an 
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RI that is higher than that of silica. Since the transmission of the rejection band decreased significantly 

after the LPG was surrounded by resin, the LPG can act as a resin flow-front sensor. 

 

Figure 13. Change in transmission spectra of an LPG before and after resin infusion. 
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Figure 14 shows the LPG spectral change for 60 minutes after resin injection. At a glance, the 

spectral change appears to be insignificant for the first 60 minutes of the cure process. However, the 

enlarged view of the spectra at around 1,525 nm shows that transmission of the band after 60 minutes 

decreases by 1.4 dB, as compared with the spectrum just after resin injection. Furthermore, the band 

shifts to a longer wavelength after 20 minutes and remains constant until 60 minutes. The band shift to 

a longer wavelength is thought to correspond to temperature increase. 

 

Figure 14. Change in the transmission spectra of an LPG in the resin cure process in which 

the temperature was saturated. The upper figure is an enlarged view of the transmission 

spectra in the wavelength range from 1,525 to 1,530 nm. 
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The LPG spectra after 80 minutes and after 3 hours are shown in Figure 15. The transmission of the 

rejection band decreases by 4.3 dB after 80 minutes and it remains approximately constant until 3 

hours, but the central wavelength shifts to a shorter wavelength. As mentioned above, the return of the 

central wavelength is thought to correspond to the temperature decrease. Figure 16 shows the spectra 

obtained after 3, 10, and 20 hours. There is no discernible change in these spectra. 

 

Figure 15. Change in transmission spectra of an LPG in the resin cure process in which 

temperature decreased gradually. The upper figure is an enlarged view of the transmission 

spectra in the wavelength range from 1,525 to 1,530 nm. 
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Figure 16. Transmission spectra of an LPG after resin cure. 
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The influence of RI on the spectral change of the straight 20-mm-long LPG is shown in Figure 5, 

and similar spectral behavior is expected for the cure monitoring. The experimental results shown in 

Figure 5 demonstrated that the transmission of the rejection band around 1,525 nm at RIs of 1.5 and 

1.6 were -36.0 and -27.3 dB, respectively, and the transmission at the rejection band increased with 

external RI. In the cure monitoring test, the transmission at the rejection band changed from -25.7 to  
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-31.1 dB, and the transmission decreased with the curing progress. The following can be inferred from 

the comparison of the spectral change in these two cases. The RI of the resin just after injection must 

have been greater than 1.6 because the transmission just after resin injection (-25.7 dB) was higher 

than that for which the external RI was 1.6 (-27.3dB). Then, the RI would have decreased with the 

progress of curing because the transmission decreased with time. This behavior in which the RI 

decreased with progress of curing is consistent with the results of a previous study on cure monitoring 

of the resin with conventional dielectric measurement [21]. The cured resin would have had an RI in a 

range of 1.5 to 1.6 because the transmission of cured resin (-31.1 dB) was within the range of -36.0 to  

-27.3 dB, the corresponding RIs of which were 1.5 and 1.6, respectively. The RI estimated from the 

spectral change of the LPG is in good agreement with the typical RI of epoxy resin (1.55 to 1.6). 

 

4. Conclusions 

 

The influence of grating length and bend radius of LPGs on RI sensitivity was investigated. Long-

period gratings responded to RI variation by a wavelength shift in the transmission spectrum when the 

RI to be monitored was lower than that of silica. Compared with LPGs arranged in a straight line, bent 

LPGs had higher sensitivity, and the sensitivity could be improved by reducing bend radius. On the 

other hand, when the RI to be monitored was higher than that of silica, the bend of the LPG eliminated 

the rejection bands, and thus bent LPGs had no RI sensitivity. A straight 20-mm-long LPG 

demonstrated a considerable change in spectral transmission in response to an RI shift from 1.5 to 1.6. 

Long-period gratings were applied to two applications: water quality examination and resin cure 

monitoring, in which the RIs were lower and higher than that of silica, respectively. An LPG with a 

bend radius of 20 mm could discriminate between water and 5 wt% saline water from the transmission 

spectral shift. The epoxy resin cure process was monitored using a straight 20-mm-long LPG. The 

LPG detected changes in the RI during the cure process as the shift in the transmission level of the 

rejection band. 
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