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Abstract: Rice is a vital staple crop for Bangladesh and surrounding countries, with 

interannual variation in yields depending on climatic conditions. We compared Bangladesh 

yield of aus rice, one of the main varieties grown, from official agricultural statistics with 

Vegetation Health (VH) Indices [Vegetation Condition Index (VCI), Temperature 

Condition Index (TCI) and Vegetation Health Index (VHI)] computed from Advanced 

Very High Resolution Radiometer (AVHRR) data covering a period of 15 years (1991–

2005). A strong correlation was found between aus rice yield and VCI and VHI during the 

critical period of aus rice development that occurs during March-April (weeks 8–13 of the 

year), several months in advance of the rice harvest. Stepwise principal component 

regression (PCR) was used to construct a model to predict yield as a function of critical-

period VHI. The model reduced the yield prediction error variance by 62% compared with 

a prediction of average yield for each year. Remote sensing is a valuable tool for 

estimating rice yields well in advance of harvest and at a low cost. 

 

Keywords: Remote sensing, Vegetation health indices, Correlation, Principal Component 
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1. Introduction 

 

Recent floods and cyclones in South Asia have underscored the need for new sources of timely, 

objective and quantitative information on crop conditions. Crop growth monitoring and yield 

estimation can provide important information for government agencies, commodity traders and 

farmers in planning harvest, storage, and transportation and marketing activities [1]. 

Bangladesh is located between about 20° and 26° N and 88° and 92° E, in the northeast of the 

Indian subcontinent, and covers a total land area of 15 million hectares of which 55-65% is under 

cultivation. Bangladesh regularly experiences natural disasters, including floods due to heavy monsoon 

rainfall, droughts, and tropical cyclones. There are three seasons: a hot dry season (March to June), a 

warm and wet summer monsoon season (June to September) and a cool dry season (October to 

February) [2,11]. Annual average rainfall varies from 1,500 mm to 5,000 mm. 

Rice is the staple crop and Bangladesh's 150 million people obtain 60-70% of their calories from 

rice. Bangladesh, with an average crop of 40 million tons per year, is the world's fourth largest rice 

producer after China, India, and Indonesia [14], and is also a rice importer. Cropping intensity is high; 

much productive land is double or triple cropped in rice and other crops. Three rice varieties with 

different seasonality and environmental sensitivity are grown: aus rice is planted before the summer 

monsoon and harvested in the middle of summer; aman rice is sown during the summer monsoon 

(July-August) and harvested November-December; and boro rice is grown over the dry season, 

December-January to April-May. Each of these varieties is most vulnerable to somewhat different 

environmental stresses. This paper will focus on interannual variability in aus rice yield. 

The aus crop is either directly seeded and transplanted under rainfed and/or irrigated conditions. It 

is sown in March or April and harvested in late July to mid-August [14]. Aus rice phenology can be 

divided into three distinct phases: (1) vegetative stage (2) reproductive stage and (3) maturation stage. 

The vegetative phase is known as critical for aus yield; it begins at seed establishment (germination) 

and ends at the onset of panicle initiation.  

Ground-based weather information can be employed for operational crop yield forecasts [8,9]. 

However, the weather station network in Bangladesh is not dense enough for efficient monitoring 

[2,10], prompting us to investigate the potential of using remote sensing technology. AVHRR–based 

vegetation health indices have been found to be very useful for early drought and flood detection and 

monitoring impacts on crop and pasture production around the world [6,7,9], and were shown to have 

predictive value for crop yield in temperate areas [12,13]. This paper investigates the application of 

AVHRR–based vegetation health indices for characterization of the impact of weather conditions on 

aus rice yield in Bangladesh. 

 

2. Data and methods 

 

Aus rice statistics and satellite data for Bangladesh were used in this study. Aus rice (AR) 

production data were collected from the Bangladesh Bureau of Statistics [3], which estimates aus rice 

production and area sown from sampling surveys. Yield was calculated by dividing total AR 

production by the sown area. AR yield time series for 1991-2005 is shown in Figure 1. 
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The satellite data used were from the NOAA Global Vegetation Index (GVI) data set, which was 

developed by aggregating the 4 square km Global Area Coverage (GAC) daily AVHRR products to 16 

square km spatial resolution and seven–day composite [6,7]. 

GVI is based on NDVI and BT AVHRR products, which are derived from the visible (VIS, 0.58–

0.68 μm, Ch1), near infrared (NIR, 0.72–1.00 μm, Ch2) and (thermal) infrared (IR, 10.3–11.3 μm, Ch4) 

AVHRR channels. Post–launch–calibrated VIS and NIR intensities were converted to reflectances [6] 

and used to calculate the Normalized Difference Vegetation Index (NDVI = (NIR – VIS)/ (NIR + 

VIS)). The Ch4 counts were converted to brightness (radiative) temperature (BT) [6]. 

Details of the algorithm for calculating GVI from NDVI and BT are presented in Kogan [7]. Briefly, 

this involves: (a) elimination of high frequency noise from NDVI and BT time series, (b) estimation of 

the mean annual cycle, (c) calculation of multi–year climatology and (d) estimation of weekly 

fluctuations from the mean seasonal cycle (departure from climatology) associated with weather 

variations. GVI include the indices VCI characterizing plant greenness, TCI characterizing thermal 

conditions and VHI, a linear combination of VCI and TCI. These indices were calculated as: 

VCI = 100(NDVI – NDVImin)/ (NDVImax – NDVImin)                    (1) 

TCI = 100(BTmax – BT)/(BTmax – BTmin)                                        (2) 

VHI=a*VCI + (1-a)* TCI                                                                       (3)  

where NDVI, NDVImax, NDVImin, BT, BTmax and BTmin are the smoothed weekly NDVI or BT 

and their 1991–2005 absolute maximum and minimum, respectively; a is the coefficient quantifying a 

share of VCI and TCI contribution to the VHI, which is thus a weighted average of the two. Since this 

share is not known for a specific location we follow the standard definition of VHI, where the shares 

are equal and a=0.5 (future investigation could evaluate also other combinations of VCI and TCI as 

possible predictors of crop yield). All three indices are scaled to range from 0 (severe vegetation stress) 

to 100 (exceptionally favorable conditions) [7,10]. 

 

Figure 1. Yield of aus rice per acre in Bangladesh for 1991-2005 and its mean value (dashed line). 
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The GVI product, at 16 km2 resolution, was averaged over land pixels in each of the six 

administrative divisions of Bangladesh.  In each administrative division spatial average values of 

Vegetation Health Indices were calculated for each week during 1991-2005. Mean VH Indices data for 

the entire Bangladesh were calculated as area-weighted average vegetation health indices for the six 

administrative divisions. 

The research strategy employed was to correlate annual yield with weekly NDVI and BT, expressed 

in the form of VH indices [7]. We hypothesized that there may be a strong correlation between these 

remotely sensed surface indicators during the early spring, i.e. around the time of the sowing and early 

growth of AR, and AR yields for that year. Finding and quantifying a strong correlation early in the 

growing season between these remotely sensed surface indicators and AR yields would allow early 

prediction of national AR harvest size from remote sensing, aiding farmers and consumers in decision 

making and providing several months' lead time to initiate relief efforts. 

 

3. Results and Discussion 

 

Figure 2 shows dynamics of correlation coefficients for AR yield versus VCI, TCI and VHI for 

Bangladesh. Yield is highly correlated with VCI (r = –0.73 - –0.80) and VHI (r = –0.71 - –0.83) during 

weeks 8-13 of the year (during the period of aus rice sowing and early growth), as well as before and 

after. [For n=15 and assuming normally distributed data, correlation coefficients with magnitudes of 

0.51 or above are significant at the 0.05 level; nonparametric (Spearman rank) regression, which is not 

sensitive to the distribution of the data, yields similar correlation coefficients and significance levels 

(not shown)]. Correlations of yield with TCI (r = –0.46 - –0.49) were also negative for weeks 8-13 but 

not significant at the 0.05 level.  

 

Figure 2.  Correlation coefficient dynamics of the percent deviation of aus production 

from mean versus TCI, VCI and VHI. 
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We should note that interpretation of favorable conditions based on NDVI or VCI indices are 

different than the ones based on BT and TCI indices. The VCI approaches 0 (vegetation stress), when 

vegetation becomes less green (NDVI decreases). In opposite situation, VCI approaches 100 

(favorable conditions) when vegetation becomes greener (NDVI increases). The TCI decreases, 

approaching 0, when weather becomes hotter (BT increases). In contrast, TCI increases, approaching 

100, when weather becomes cooler (BT decreases).  

Differences in VCI and TCI dynamics were further investigated during the individual years with the 

extreme values of yield (highest and lowest). In 1996, AR yield was 0.52 ton/acre, whereas in 2004, 

yield was 0.66. This indicates that the 1996 (lower yield) was an unfavorable year for growing AR 

whereas 2004 (higher yield) was favorable. The assumption was that the environmental conditions of 

these years were quite different and they would be reflected in VCI, TCI and VHI values. The 1996 

and 2004 VCI, TCI and VHI time series shown in Figure 3 are consistent with the observed negative 

correlation of yield with Vegetation Health Indices and indicate that below average AR yield is 

associated with higher TCI (cooler thermal condition) and VCI (high rainfall) and above average yield 

is associated with lower TCI (hotter) and VCI (lower rainfall) during weeks 8-13 as well as in the 

weeks before and after [11].  

Since higher VCI and VHI imply greener vegetation and moister, cooler conditions, the negative 

correlation between Bangladesh aus rice yield and VCI/VHI seems counterintuitive. We hypothesize 

that this association is due to delayed planting, lower seed survival, and less vigorous growth of rice 

during relatively cool, rainy springs. In general, we expect the sign and magnitude of the correlation 

between vegetation indices and crop yields to vary spatially as well as across crop species and 

varieties, depending on what specific climatic conditions limit or favor the growth of a particular crop 

in a particular environmental setting. 

 

Figure 3. TCI, VCI and VHI for the years with the smallest and largest aus rice yield. 

 
 

Given these results for regression of weekly VCI, TCI and VHI individually onto yield, one 

possible strategy for optimally predicting AR yield would be multiple regression analysis, where the 
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predicted yield Yvci and Yvhi is obtained by regression of observed yield on the linear combination of 

weekly VCI or VHI values. We chose VCI or VHI for weeks 8-13 as predictor variables (6 predictor 

variables per model) because this period corresponds to aus rice's sowing and vegetative phase period, 

when it would be expected to be most sensitive to climate conditions, although correlation with crop 

yields of VCI and VHI in adjacent weeks is similar in magnitude (Figure 2). This would correspond to 

fitting the ordinary least squares (OLS) model: 

Yvci = b0 +b1*VCI8+b2*VCI9+ b3*VCI10+b4*VCI11+b5*VCI12 +b6*VCI13   (4)  

Yvhi = b0 +b1*VHI8+b2*VHI9+ b3*VHI10+b4*VHI11+b5*VHI12 +b6*VHI13   (5) 

However, because VCI and VHI for consecutive weeks are highly correlated, we found that 

including VCI and VHI from multiple weeks as independent variables weakens the robustness of the 

correlation models. The overall models may fit the data quite well, but because the several independent 

variables measure similar phenomena, it is difficult to include information from each of the individual 

variables in a useful regression relationship. To avoid this problem, we used an alternative method of 

estimation, principal component regression (PCR) [12,13]. 

Using PCR methodology, the variables corresponding to weekly VCI and VHI for weeks 8-13 were 

transformed into new orthogonal or uncorrelated variables, the principal components (PCs) of the 

correlation matrix. In stepwise PCR, PCs were sequentially tested for their contribution to improving 

the regression model for AR yield, keeping only those that resulted in a significant (at the 0.05 level) 

reduction in residual variance. Table 1 shows summary of stepwise selection of principal components 

for both VCI and VHI. In each case, only the first principal component, corresponding approximately 

to the average value of VCI or VHI over weeks 8-13, was a significant predictor of yield. 

 

Table 1. Summary of stepwise selection of VCI and VHI principal components for 

regression on aus rice yield. 

Indices PCs 
Model 

R-Square 

Adjusted 

R-Square 
F Value Pr > F 

VCI PC1 0.61 0.58 20.24 0.0006 

VHI PC1 0.62 0.59 21.49 0.0005 

 

Because the fitted model with VHI explains slightly more of the interannual variance in yield, we 

choose it for further evaluation. Using the final set of coefficients for variables in model equation (5) 

are calculated and used to develop estimation model equation (6): 

Y= 119.37- 0.085*VHI8 - 0.079*VHI9 - 0.076*VHI10 - 0.072*VHI11 - 0.070*VHI12 - 0.068*VHI13  (6) 

 

4. Validation 

 

Validation is the step in which the prediction with the chosen model is tested independently. Since 

the training data is short, leave-one-out cross-validation [5] (the jackknife technique) was used to 

verify the predictive value of vegetation indices derived from satellite imaging for rice yields later in 

the season. Each year of data was successively removed and a PCR model using VHI from weeks 8-13 
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was fit to reduced data set employing the same criteria as those used above for fitting the entire set. 

Finally, a prediction of AR yield for the eliminated year was made from the regression equation 

derived using data from the other years. As the result of this procedure, 15 independent predictions 

were obtained. The regression coefficients are robust to leaving out any one year of data, with the 

coefficients obtained staying within ~10% or better of their value for the regression model (Equation 

6) developed using the full data set. 

Figure 4 displays observed versus independently predicted AR yield time series, which shows that 

both high and low yields are generally predicted well, with R2 between predicted and observed yields 

of 0.56. The root-mean-square prediction error is 0.031 tons/acre as compared to 0.057 tons/acre for 

when the average yield of 0.58 tons/acre is forecast for each year, corresponding to a 62% reduction in 

prediction error variance. 

 

5. Conclusions 

 

In summary, three AVHRR–based VH indices characterizing surface greenness (VCI), temperature 

(TCI), and overall vegetation health (VHI) conditions were tested as predictors of AR yield. It was 

found that AR was more sensitive to vegetation health (VHI). This study shows that AR yield can be 

estimated from VHI index at approximately 3-4 months prior to harvest time. Weekly gridded 

vegetation health index data are available in real time at http://orbit.nesdis.noaa.gov/smcd/emcb/vhi. 

Further investigation might include comparing the remotely sensed correlates of aus rice production 

in Bangladesh with those of the other two rice varieties and of other important crops; we expect that 

the correlation pattern between remotely sensed vegetation indices and crop yield may be quite 

different from crop to crop, and that the correlation pattern found will depend on crop seasonality and 

on growing conditions (e.g. flooded versus upland fields, and rainfed versus irrigated conditions). 

Similarly, this approach could be extended to predicting crop yield in other countries.  

Figure 4. Predicted and observed aus yield for Bangladesh. 
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