
Sensors 2009, 9, 2555-2573; doi:10.3390/s90402555

sensors
ISSN 1424-8220

www.mdpi.com/journal/sensors

Article

Parallel Processing Method for Airborne Laser Scanning Data
Using a PC Cluster and a Virtual Grid

Soo Hee Han 1, Joon Heo 1,*, Hong Gyoo Sohn 1 and Kiyun Yu 2

1 School of Civil and Environmental Engineering, Yonsei University / 134 Sinchon-dong

Seodaemun-gu, Seoul 120-749, Korea; E-Mails: scivile@yonsei.ac.kr; sohn1@yonsei.ac.kr
2 Department of Civil, Urban and GeoSystem Engineering, Seoul National University / 599 Gwanak-

ro, Gwanak-gu, Seoul 151-742, Korea; E-Mail: kiyun@snu.ac.kr

* Author to whom correspondence should be addressed; E-Mail: jheo@yonsei.ac.kr;

Tel.: +82-2-2123-2809; Fax: +82-2-2123-2809

Received: 2 April 2009; in revised form: 9 April 2009 / Accepted: 10 April 2009 /

 Published: 14 April 2009

Abstract: In this study, a parallel processing method using a PC cluster and a virtual grid

is proposed for the fast processing of enormous amounts of airborne laser scanning (ALS)

data. The method creates a raster digital surface model (DSM) by interpolating point data

with inverse distance weighting (IDW), and produces a digital terrain model (DTM) by

local minimum filtering of the DSM. To make a consistent comparison of performance

between sequential and parallel processing approaches, the means of dealing with

boundary data and of selecting interpolation centers were controlled for each processing

node in parallel approach. To test the speedup, efficiency and linearity of the proposed

algorithm, actual ALS data up to 134 million points were processed with a PC cluster

consisting of one master node and eight slave nodes. The results showed that parallel

processing provides better performance when the computational overhead, the number of

processors, and the data size become large. It was verified that the proposed algorithm is a

linear time operation and that the products obtained by parallel processing are identical to

those produced by sequential processing.

Keywords: ALS; LiDAR; Parallel processing; Virtual grid; PC cluster; DSM; DTM.

OPEN ACCESS

Sensors 2009, 9

2556

1. Introduction

The construction and updating of 3D spatial databases for urban areas by an airborne laser scanner

(ALS) has grown in popularity [1-2]. However, the enhancement of the scanning devices and the

increasing size of coverage areas has created large volumes of scanned data, necessitating the

development of efficient ALS-data-processing technologies. Shan and Sampath [3] rapidly separated

ground from non-ground features with one-dimensional filtering between two consecutive points along

scan-lines of raw ALS data. Han et al. [4] directly classified raw ALS data into homogeneous groups

by an efficient method that utilizes scan-line characteristics. Among the products generated from ALS

data, a raster digital surface model (DSM) and digital terrain model (DTM), respectively, can be

extensively utilized by various GIS applications. ALS technology’s direct, swift and accurate

surveying of ground with enhanced point density makes it ideal for DSM and DTM generation.

However, the sharply increased, up-to-terabyte-level data quantities that result, represent a serious data

processing problem. As data sizes and the complexity of analyzing methods in GIS and remote sensing

have grown, parallel processing has been highlighted as a solution [5-8]. Parallel processing, though a

potential ALS-data-processing solution, has not been actively employed in the field. Furthermore,

because traditional algorithms might not run effectively in a parallel environment, their modification to

a parallel structure is first necessary if parallel processing is to be most effectively utilized. Another

problem is that point searches of particular locations cannot be completed in a constant time if the

scanned points are not arranged on a proper data structure, because, unlike raster images, they are

irregularly distributed geometrically. Thus, the specification of an appropriate data structure and a

proper data processing methodology are both necessary if the intended efficiency in processing

enormous amounts of ALS data is to be realized.

This paper proposes, as a new framework for the efficient processing of enormous amounts of ALS

data, a parallel processing method using a PC cluster and a virtual grid. To test the applicability of the

method, a raster DSM was generated from raw ALS point data by interpolating with inverse distance

weighting (IDW), and a raster DTM was produced from the DSM by local minimum filtering. A

methodology of dealing with boundary data and of selecting interpolation centers in the parallel

processing was designed to ensure the same result from the sequential processing. In the present study,

results of sequential processing were compared with those of parallel processing. Some standards for

assessing parallel processing algorithms were adopted for the purpose of evaluating the computational

performance of the proposed algorithm.

2. Background

2.1. ALS Data Structure and Virtual Grid

ALS data consists of points distributed irregularly in 3D space. These points are stored in the order

in which they are scanned, forming a unique trajectory according to the specific type of scanner [9].

However, this pattern can easily become irregular when the laser beam emitted by the scanner meets

objects of sharply differing heights or the data undergoes processes such as merging, filtering, or

segmentation. Much of ALS data processing relies on the operations of querying points at specific

Sensors 2009, 9

2557

locations along with their neighbors. However, such operations cannot be efficiently executed when

ALS point data are stored in common data structures such as the stack or queue [10]. A triangular

irregular network (TIN) can be a solution for the operations, but the large computational overhead in

forming a TIN with enormous amounts of ALS data is a drawback.

Figure 1. Virtual grid [10].

In order to rectify this situation, we propose to use a virtual grid [11] similar to the pseudo-grid

introduced by Cho et al. [12] which previously has been adopted as a very effective data structure for

ALS data processing. As shown in Figure 1, a 2D void array in C language, covering the entire

geographic extent of the ALS data, is first generated. Each cell of the array points to the head of a

dually linked list that stores point information such as 3D coordinates, intensity, and others. To place a

point on the virtual grid, as shown in Equation 1, the planar (x, y) coordinates of the point are

converted to shorter (X, Y) integers representing the cell coordinates of the virtual grid. Then, the point

is attached to the linked list belonging to the cell (X, Y) of the virtual grid. To retrieve points near a

specific location (x’, y’), the planar coordinates are converted to the cell coordinates of the virtual grid,

and all points contained at the linked list belonging to the cell are accessible.

csnyyINTY
csnxxINTX

/)min(

/)min(





 ,
(1)

where (xmin, ymin) are the minimum coordinates of the whole data, and ncs is the geometric size of a cell

in the real coordinate system, which is equal to the target resolution of the resulting raster file in this

study. The virtual grid is a memory-intensive structure, throughput being limited to some extent in that

all of the data is stored in the main memory. However, this weakness can be overcome if, as in parallel

systems, enough resources are provided.

2.2. Parallel processing and Performance Evaluation

Parallel processing is the concept of using multiple computers or processors to reduce the time

needed to solve a heavy computational problem, operating on the principle that large problems can

often be divided into smaller ones and then solved concurrently. A parallel processing system denotes

a multiple-processor computer system consisting of centralized multiprocessors or multi-computers.

Sensors 2009, 9

2558

For parallel processing, a parallel algorithm needs to be devised and its performance can be evaluated

with reference, for example, to speedup and efficiency. If the algorithm is to handle a huge amount of

data, load scalability or linearity should be considered. Detailed descriptions of the various aspects of

parallel processing follow.

2.2.1. Parallel Machines

A parallel processing system is called a centralized multiprocessor system if all processors share

access to a global memory that supports communication and synchronization among processors. This

system can be extended to super computers or massive parallel processing (MPP) computers if very

many processors are integrated and each processor is provided with an individual memory connected

with other processors by a bus. This kind of computer offers very high performance but requires a

special operation system and incurs heavy construction costs in general.

Alternatively, a set of computers can be constructed as a parallel processing system, in other words

a cluster system, if they are interconnected by a network. Recently, as microprocessors have become

greatly enhanced and the needs for parallel computation have increased, relatively cheaper PC clusters

have come available and have proved to be popular in general purposes [13-16]. Computers in a PC

cluster are little different from ordinary personal computers or workstations, and the processor in each

computer can interact with others by a message passing protocol such as MPI (Message Passing

Interface) [17] or PVM (Parallel Virtual Machine) [18], through either an Ethernet or other higher-

speed inter-connections. A general PC cluster consists of a master node, several slave nodes and

network devices. A master node takes the role of the user interface, data input/output/distribution and

control of slave nodes, and the slave nodes are responsible for data processing. In this study, we used a

PC cluster to evaluate the proposed parallel algorithm.

2.2.2. Performance Evaluation

(1) Speedup

The speedup Sp(n) is defined as the ratio of the time required by an optimal sequential algorithm

using one processor versus that required by a parallel algorithm, using p processors, processing input

data of size n [18]. Ideally, Sp(n) should be p, but does not attain p, owing to overhead such as

communication between processors and other delays:

)(

)(
)(

nT

nT
nS

p
p  (1)

where T(n) is the time complexity of an optimal sequential algorithm and Tp(n) is that of a parallel

algorithm using p processors when the input data size is n.

Sensors 2009, 9

2559

(2) Efficiency

The efficiency Ep(n) is defined as the ratio of the time required by a parallel algorithm using one

processor versus that required by a parallel algorithm using p processors multiplied by the value p

[18]. Theoretically Ep(n) should be equal to 1, but normally, 1 cannot be attained:

)(

)(
)(1

npT

nT
nE

p
p 

(2)

(3) Load scalability and linearity

Another quality a parallel algorithm should have is load scalability. It is said that a system has load

scalability if it has the ability to function gracefully without undue delay or resource consumption

under light, moderate, or heavy loads [20]. In this context, more concrete measurement is linearity,

which means an algorithm runs with linear time complexity (O(n)), that is, the running time increases

linearly relatively to the size of the throughput. This quality is crucial in huge data processing contexts,

because it has the decisive influence on the processing schedule and the corresponding throughput size.

2.3. IDW and Local Minimum Filtering

Interpolation is a method of constructing new date points with a limited number of known data

points. Interpolation can be applicable to converting irregularly distributed data into a raster image,

and a raster DSM can be made by interpolating the altitude information of ALS points. There are

several methods applicable to interpolating ALS data, such as nearest neighbor, natural neighbor,

Kriging, IDW, and others. Among them, IDW is easy to implement and is furnished in many GIS

software, and thus it has been adapted to various applications in order to generate DSM [21-23]. The

formula for IDW is shown in equation 4:

p
n

n

k

n n

k

n nn

xxd
xw

xw

xfxw
xf

),(

1
)(

)(

)()(
)(

1

1













(3)

where, f(x) is the value at location x, f(xn) is the value at neighboring point xn, w(xn) is the weighting

factor for point xn, d(x, xn) is the Euclidian distance between x and xn, and p is an exponential number

equal to or greater than 2. The size of neighborhoods to be used in interpolation can be specified in

terms of search radius, which was adopted for this paper, the number of points(k-nearest neighbor), or

a combination of the two. Previous researchers have reported on the computational performance

improvement of IDW using MIMD(Multiple Instruction Multiple Data) parallel computers. For

example, Armstrong and Marciano [24] improved, by means of parallel processing, an IDW algorithm

that uses brute-force search. In a succeeding paper, Armstrong and Marciano [25] tested a more

Sensors 2009, 9

2560

efficient IDW algorithm based on local search [26]. An MPP system with thousands of processors

based on SIMD (Single Instruction Multiple Data) architecture was used to improve Clarke’s model

[27], and a quadtree approach to decompose the interpolation problem in Grid Computing

environments was followed for load balancing [28]. The parallel algorithm developed in this study,

using local search on SIMD architecture, is similar to that of Armstrong and Marciano [27]. However,

presented in this paper are the means of producing corresponding result with sequential processing in a

PC cluster system, which are described, in the next section, as solving boundary problem and

interpolation center problem.

The local minimum filter is an operation that evaluates the value at a given location by endowing

the smallest value in a window surrounding the location. As the window moves, relatively larger

values than the surroundings are substituted by the locally smallest value in the instant window. The

filter can be used to remove non-terrain objects that are higher than the surrounding terrain if the

proper window size, slightly larger than the largest object in the scene, is set. Thus a DTM can be

produced by applying the filter to a raster DSM [29].

There have been many studies on high-performance DSM or DTM generation from ALS data, from

the viewpoint of accurate representation of sites. IDW and local minimum filtering were adopted in the

present study because the computational overhead can be controlled by regulating parameters such as

search radius and window size. Another reason is that they are algorithmically linear time operations

assuming that retrieving data at a random location takes constant time. The constant time retrieving

can be achieved by using a virtual grid. Thus, IDW and local minimum filtering were implemented to

test two aspects of the efficiency of the proposed parallel algorithm: any advantage over a sequential

algorithm in heavy-overhead processing, and any capability of dealing efficiently with large

throughput, that is, load scalability.

3. Algorithm Development

3.1. Overall Algorithm

The first step was to distribute point data from the main node to the slave nodes by message

passing. As the second step, the points transferred to each of the slave nodes were stored in the virtual

grid and then IDW was applied to create a raster DSM. The third step was to create a DTM, by local

minimum filtering, from the DSM. As the final step, the partial DSM and DTM in a raster format

created by each slave node were transferred to the master node and two raster files of the DSM and

DTM were built covering the whole area. The overall process is shown in Figure 2.

A massive data set can be loaded to random access memory (RAM) and easily accessed in parallel

systems based on a large shared memory or distributed local memories which are connected with a

bus. However, in a PC cluster system, data in the master node or a storage node are accessible in other

nodes only after they are physically transferred through a network media by message passing. External

network devices have been highly developed, but are still very slow contrary to data flows in RAM

itself or through a bus. With an Ethernet connection, which is a typical network technology employed

with a PC cluster system, frequent transfers of small data packet are inefficiency, because data is

transferred in a unit which is made up of header, data and CRC(Cyclic Redundancy Check) taking at

Sensors 2009, 9

2561

least 48 bytes for the data regardless of its size [30]. For the application, points were distributed to

each node packed in blocks (e.g., 100,000 points/transfer) in the first step.

For optimal parallel processing performance, it is necessary to distribute an equal workload to each

node, but that is not so easily achievable in ALS data processing due to the irregular distribution and

density of points. Instead, the point cloud was equally divided geometrically and each apportionment

was transferred to the slave nodes under the hypothesis that points will almost uniformly exist within

each part if the target area is sufficiently large and surveyed under similar conditions. More delicate

distributing methods will be considered in succeeding studies.

Figure 2. Data-flow diagram.

It is a basic assumption that the DSM and DTM values at the corresponding locations in sequential

and parallel processing should be the same. However, the correspondence can be broken in two

problematic situations: the boundary problem and the interpolation center problem. The former occurs

when the data near the boundary of each node are processed without consideration of the data

transferred to the neighboring nodes, and the latter arises when the coordinate origin is set without

consideration of interpolation centers of neighboring node. More detailed descriptions of the situations

and propositions follow in Sections 3.2 and 3.3, respectively.

3.2. Boundary Problem

In sequential processing, any data within a given distance from a location of interest can be easily

referenced to estimate the value of the location. However, in parallel processing, if the location is near

Sensors 2009, 9

2562

the boundary of a node, not all of the data within the distance can be searched. As illustrated in Figure

3, in sequential processing, the value V1 is evaluated considering the points in 25 cells residing in

search boundary, but in parallel processing, the number of referenced cells for V1 decreases to 15,

necessarily resulting in a different interpolation value.

Figure 3. Different no. of searchable cells between sequential and parallel processing.

There are two possible solutions: one is to transfer the original data block between neighboring

nodes, allowing data overlap, and the other is to transfer the partially processed data block without data

overlap.

Method 1: Transferring data block allowing overlap of original data

Points to be searched over the boundary are packed in a block and transferred from neighboring

nodes via message passing, as shown in Figure 4. Here and after, the idea of packing data in a block is

to prevent the inefficiency stated in 3.1. The virtual grid is expanded according to the search radius,

and the transferred marginal points are stored to the expanded cells. The transfer is done mutually

between the two neighboring nodes. As illustrated in Figure 5, transmitting and receiving occurs

concurrently, and a node (node 5 in this case) can transfer points in a maximum of 8 directions if it is

fully enclosed by other nodes.

After the transfer is completed, interpolation is executed and filtering follows. A similar data

transfer, applied to the interpolation process, is also employed to the filtering process. The difference is

that the data type is not point in a virtual grid but digital value in the raster DSM produced through the

interpolation process.

This method is straightforward but entails the disadvantage that each node is induced to have

overlapped data, thus using more memory. Furthermore if more marginal points are needed, as when

interpolating again with a larger search radius, the virtual grid should be wholly reallocated with the

Sensors 2009, 9

2563

additionally transferred data or should be geometrically related to an additional virtual grid for storage

of the additional data.

Figure 4. Transfer of marginal points.

Figure 5. Transfer of marginal points among slave nodes.

Method 2: Transferring partially interpolated value block without overlap of original data

In this method, instead of transferring original points, partially interpolated values at the

corresponding locations in neighboring nodes are gathered in order to determine the final value of a

given location. In other words, interpolation for a cell is executed in corresponding cells of

neighboring nodes, after which the partially interpolated values are transferred to the original cell

being integrated, to determine the completely interpolated value. In IDW, the interpolated value is

Sensors 2009, 9

2564

evaluated as the ratio of w and   vw in equation 4, and each term can be modified to the form of


N Np

pw and 



N Np

pp vw where p denotes the points within a given radius from the interpolation

center of the given cell belonging to node N. In Figure 6, a cell C1 in node 1 has a corresponding cell

in each neighboring node, the four cells having vector IN, defined as equation 5:









 

 Np
pp

Np
pN vwwI ,

(4)

Where, N denotes the node number. IN is evaluated in each node and transferred to node 1 via

message passing. The final interpolated value I of the cell C1 is determined by equation 6.





N Np

p
N Np

pp wvwI

(5)

Figure 6. Transfer of intermediate vector.

In filtering, FN, instead of IN, is defined as the partially filtered value in a given cell and in its

corresponding cells in the virtual grid of each neighboring node. The FN of each node is transferred to

the given cell, and the final value determined is the minimum among the transferred values.

In both interpolation and filtering, virtual value transfer is done mutually between the two

neighboring nodes, as shown in Figure 4. In method 2, a cell’s transferred data is a vector consisting of

one or two variables of double precision float, whereas in method 1, the data consists of several 3D

point coordinates because there can exist several points in a virtual grid cell. Furthermore, this method

Sensors 2009, 9

2565

can cope with different searching radii without necessitating modifications to the original virtual grid.

In these respects, we adopted method 2 for use in this study.

3.3 Interpolation Center Problem

The interpolation center of a cell in parallel processing, if the coordinate origin in a node is set

without consideration of the neighboring nodes, will not necessarily be geometrically coincident with

the corresponding one in sequential processing, resulting in a different interpolated-value. Figure 7a is

a virtual grid, showing the original points and the interpolation center of each cell, in sequential

processing. For parallelization, the point distribution and the scheme by which the interpolation center

is chosen can be varied, as shown in Figure 7b, Figure 7c and Figure 7d. Detailed descriptions follow.

Case A (Figure 7a)

The interpolation center is in the middle of each cell and the center line is in the horizontal center of

the minimum bounding rectangle. The interpolation center, alternatively, can be in the corner or an

arbitrary location, provided that it is in the same position in every cell.

Case B (Figure 7b)

The points are divided by the geometric center line, which becomes the column origin of node 2,

and distributed to the two nodes. In this case, the interpolation centers in node 2 are shifted, and thus

they cannot be consistent with those in sequential processing. This will result in different interpolated

values.

Case C (Figure 7c)

The points are divided by a vertical line of cell boundaries near to the geometric center line and

distributed, and the column origin of node 2 is set to the vertical line, which does not result in a shift of

the interpolation centers in node 2. However, this schema has the weakness of geometrically uneven

point distribution, which, if a different cell size is applied to the established virtual grid, requires

additional point transfer between the two nodes.

Case D (Figure 7d)

The points are divided by the geometric center line and distributed, and the column origin of node 2

is set to the left boundary of the right-end cells of node 1, in which case no shift of the interpolation

centers in node 2 is imposed. In this case, both the right-end cells of node 1 and the left-end cells of

node 2 have the same interpolated value, but one of them can easily be eliminated. Thus this schema

was adopted for use in this study.

Sensors 2009, 9

2566

Figure 7. Selecting interpolation center.

4. Implementation and Discussion

4.1. Test Data and System Configuration

The proposed algorithm was tested with real ALS data. The specifications of the data and of the

parallel system are listed respectively in Tables 1 and 2, and the processing parameters are listed in

Table 3.

Table 1. ALS data specifications.

Laser scanner ALS ALTM 3070 system (Optech, Inc.)

Target area Daejeon, South Korea

Preprocessing Systematic error correction was applied.

Strip adjustment and

blunder removal were

not applied.

Dataset 1 4.8 × 106 points covering1.5 × 0.8 km2 (3.7 points/m2) cropped from dataset 6

Dataset 2 9.4 × 106 points covering 3.0 × 0.8 km2 (3.7 points/ m2) cropped from dataset 6

Dataset 3 17.9 × 106 points covering 6.1 × 0.8 km2 (3.5 points/ m2) cropped from dataset 6

Dataset 4 31.7 × 106 points covering 6.1 × 1.7 km2 (3.1 points/ m2) cropped from dataset 6

Dataset 5 79.3 × 106 points covering 10.7 × 1.7 km2 (4.4 points/ m2) cropped from dataset 6

Dataset 6 133.7 × 106 points covering 10.7 × 3.4 km2 (3.7 points/ m2) full dataset

Sensors 2009, 9

2567

Table 2. PC cluster specifications.

System configuration

Parallel 1 master node with 1, 2, 4, 6, 8 slave nodes

Sequential 1 node

Single Pentium 4 3.0 GHz, 1 GB RAM for each node

Network 1Gb Ethernet

Operating system Windows XP sp3

MPI library MPICH 2.0 (following MPI 2.0 standard)

Coding language C++

Table 3. Experimental parameters.

Virtual grid cell size 1m by 1m

IDW search radius 15m / 10m / 5m (for dataset 3), 10m (for other datasets)

IDW power 2

Filter size 30m by 30m

The maximum 134 million points and their cropped datasets were processed and processing time

was determined. The processing time has two main components, pure processing time and transfer

time. Pure processing time includes: (1) reading and parsing data files; (2) interpolating and filtering;

(3) writing final results on hard disk drives, all of which both the sequential process and the parallel

process require. The adopted data files are in the TerraScan binary format, which includes a series of

3D coordinates, intensity, flight line information, and other parameters [31]. So the delay concerned

with reading and parsing the files (up to 5GB for dataset 6) to extract 3D coordinate for each point is

not negligible. The transfer time is the Ethernet networking time used (1) to transfer point data from

the master node to slave nodes; (2) to exchange partially interpolated and filtered values among nodes;

and (3) to transfer final results from the slave nodes to the master node. Speed up and efficiency were

confirmed for dataset 3 and dataset 4, because the larger data size brought about a system halt in

sequential processing on a single node. Load scalability was confirmed from dataset 1 through to

dataset 6 with 8 slave nodes.

4.2. Performance Evaluation and Discussion

The processing times along with the speedups and efficiencies for dataset 3 (17.9 million points)

with three different IDW searching radii (5m, 10m and 15m) are presented in Figures 8, 9a and 9b. In

Figure 8, 1 node denotes sequential processing in which only a single processor was used with a

sequential algorithm, whereas 2, 4, 6 and 8 nodes denote parallel processing with the indicated number

of processors. The figure shows performance for the proposed parallel processing method. In Figure 9a

and Figure 9b, it is clear that speedup and efficiency increase both with increasing search radius and

according to the number of processors with respect to the test set. Speedup increased by 40%, from

3.71 to 5.19, and efficiency by 41%, from 0.46 to 0.65, as the size of the search radius was increased

from 5m to 15m when 8 nodes were used. By contrast, speedup increased by only 16%, from 2.43 to

2.82, and efficiency by only 16%, from 0.61 to 0.71, when 4 nodes were used. The results confirm two

Sensors 2009, 9

2568

expectations: (1) as the search radius becomes larger, the transfer time and the file manipulation time

do not increase significantly compared with the computation time (here, “computation time” denotes

only the interpolation and filtering processing times, which apply in both sequential and parallel

processing); (2) as the number of nodes becomes larger, the computation time decreases almost in

exact proportion to the number of nodes, whereas the transfer time and the file management time are

not significantly increased. Therefore, the proposed parallel algorithm is more favorable in the case of

(1) a larger search radius, that is, a heavier computational load, (2) a system with more processors.

This finding can also be applicable to the varying filter size.

Figure 8. Processing time for dataset 3.

Figure 9a. Speedup for dataset 3. Figure 9b. Efficiency for dataset 3.

The processing times along with the speedups and efficiencies for dataset 4 (31.7 million points)

with one IDW search radius (10m) are presented in Figures 10, 11a and 11b. As shown in Figure 10

and Figure 11a, sequential processing took 2351.71 seconds, and 2 node parallel processing took

775.97 seconds; that is, the speedup according to Equation 2 was 3.03, whereas the speedup under the

same conditions was 1.61 in the case of dataset 3. This result implies that, in the case of dataset 4,

Sensors 2009, 9

2569

sequential processing should use page memory for processing an abruptly larger input, and that parallel

processing can yet run using only RAM (Random Access Memory). Page memory is a virtual memory

that relies on a hard disk drive when the system is given a task larger than can be handled by physical

RAM, which necessarily slows down the overall processing speed. Thus, as shown in Figure 11b,

parallel processing achieves a speedup and efficiency better than 1 for each test set, which is called

superlinearity. This implies that PC cluster processing can be a solution to the problem of processing

large ALS datasets that cannot be efficiently processed by a sequential system having limited

computational resources.

Figure 10. Processing time for dataset 4.

Figure 11a. Speedup for dataset 4. Figure 11b. Efficiency for dataset 4.

 An additional test to determine load scalability was conducted and the results plotted in Figure 12

show that the processing time increased almost in exact proportion to the size of the input data; in

other words, the algorithm was shown to be a linear time operation. The performance of linear

operation is expected to be maintained until at least one slave node suffers performance declination

when the size of the data is so large as to require page memory.

Sensors 2009, 9

2570

Figure 12. Processing times for 8 node PC cluster.

Figure 13 shows the resultant DSM of dataset 1, the white dashed line on the image illustrating the

border of the nodes when processed with 4 slave nodes. In contrast to the result for sequential

processing, the difference between the corresponding DSM and DTM pixels was ±0.0, measured in

single precision float accuracy.

Figure 13. Raster DSM produced by node 1 through to node 4 from dataset 1.

Finally, the DSM and DTM for dataset 6, covering about 36 km2, are shown respectively in Figures

14 and 15. Figure 15 shows some still-existing buildings, which could be excluded by employing a

larger filter size, but at the cost of some geometric accuracy.

Figure 14. Raster DSM produced from dataset 6.

Sensors 2009, 9

2571

Figure 15. DTM filtered from DSM produced from dataset 6.

5. Conclusions

This paper proposed a parallel processing method for DSM and DTM generation using a PC cluster

and a virtual grid, as a methodology of efficient processing of huge amounts of ALS data. A raster

DSM was generated from raw ALS point data by interpolating with inverse distance weighting (IDW),

and a raster DTM was produced from the DSM by local minimum filtering. A methodology of dealing

with boundary data and of selecting interpolation centers in the parallel processing was designed to

ensure the same outcomes from the sequential processing. For performance assessment, real ALS data

amounting to as many as 134 million points, and a PC cluster consisting of a master node and 8 slave

nodes, were employed. Speedup, efficiency and linearity were determined in evaluating the proposed

algorithm. The results showed that the parallel processing method can offer better speedup and

efficiency when larger computational overheads were assigned and a system with more processors was

used. Also, unexpectedly high speedup and efficiency were achieved when processing 31.7 million

points and the maximum 134 million points with the proposed system. The computational experiments

proved that parallel processing can be a solution to the problem of processing huge amounts of ALS

data. The appropriateness of adopting virtual grid for the manipulation of ALS data processing with

parallel processing was verified by the result that the proposed algorithm functioned as a linear time

operation. Moreover, the products from the proposed algorithm were completely identical to those of

sequential processing.

The authors have discussed only DSM and DTM generation in a parallel processing environment.

There are a number of complex filtering, segmentation and feature extraction algorithms for ALS data

processing. Managing and displaying technologies for ALS data is also of importance. Most of the

algorithms and operations are expected to be improved from the performance perspective, when

parallel processing along with a virtual grid is used. The authors currently are developing a full-

fledged ALS data processing system for the given PC cluster, which would be expected to be

recognized as an advanced ALS data processing system. Notwithstanding, other high-performance

computing technologies such as SMP (Symmetric Multiprocessors) and GPGPU (General Purpose

Graphic Processing Unit) should also be considered in efforts to improve the performance of future

ALS data processing.

Sensors 2009, 9

2572

Acknowledgements

This research was supported by a grant(07KLSGC04) from Cutting-edge Urban Development -

Korean Land Spatialization Research Project funded by Ministry of Construction & Transportation of

Korean government.

References and Notes

1. Flood, M. Commercial Development of Airborne Laser Altimetry. Int. Arch. Photogramm.

Remote Sens. 1999, 32(3W14), 13-20.

2. Baltsavias, E.P. A comparison between photogrammetry and laser scanning. ISPRS J.

Photogramm. Remote Sens. 1999, 54, 83-94.

3. Shan, J.; Sampath, A. Urban DEM Generation from Raw LiDAR Data : a Labeling Algorithm and

its Performance. Photogramm. Eng. Remote Sens. 2005, 71, 217-226.

4. Han, S.H.; Lee, J.H.; Yu, K.Y. An Approach for Segmentation of Airborne Laser Point Clouds

Utilizing Scan-Line Characteristics. ETRI J. 2007, 29, 641-648.

5. Healey, R.; Dowers, S.; Gittings, B.; Mineter, M.J. Parallel Processing Algorithms for GIS, CRC

Press: Basingstoke, UK, 1997.

6. Clematis, A.; Mineter, M.; Marciano, R. High performance computing with geographical data.

Parallel Comput. 2003, 29, 1275-1279.

7. Yang, C.; Hung, C. Parallel Computing in Remote Sensing Data Processing. In Proceedings of

ACRS 2000.

8. Plaza, A.J.; Chang, C. High Performance Computing in Remote Sensing, Chapman & Hall/CRC:

Boca Raton, FL, USA, 2007.

9. Wehr, A.; Lohr, U. Airborne laser scanning - an introduction and overview. ISPRS J.

Photogramm. Remote Sens. 1999, 54, 68-82.

10. Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Stein, C. Introduction to Algorithms, 2nd Ed.; MIT

Press: Cambridge, MA, USA, 2001.

11. Han, S.H. Efficient segmentation of ALS point cloud utilizing scan line characteristic. Doctoral

thesis. Seoul National University: Seoul, Korea, 2008.

12. Cho, W.; Jwa, Y.S.; Chang, H.J.; Lee, S.H. Pseudo-grid Based Building Extraction Using

Airborne Lidar Data. Int. Arch. Photogramm. Remote Sens. 2004, 35, 378-381.

13. Quinn, M.J. Parallel programming in C with MPI and OpenMP; McGraw-Hill: Dubuque, IA,

USA, 2004.

14. Bader, D.A.; Pennington, R. Cluster computing: Applications. Int. J. High Perform. Comput.

2001, 15, 181-185.

15. Almeida, F.; Gomez, J.A.; Badia, J.M. Performance analysis for clusters of symmetric

multiprocessors. In Proceedings of 15th EUROMICRO International Conference on Parallel,

Distributed and Network-Based Processing, Naples, Italy, 2007; pp. 121-128.

16. Top 500 supercomputer sites. http://www.top500.org/(last accessed on 24 Oct., 2008)

17. Message Passing Interface. http://www-unix.mcs.anl.gov/mpi/(last accessed on 24 Oct., 2008)

18. Parallel Virtual Machine. http://www.csm.ornl.gov/pvm/(last accessed on 24 Oct., 2008)

Sensors 2009, 9

2573

19. JaJa, J. An Introduction to parallel algorithms; Addison-Wesley Publishing Company, Inc:

Reading, MA, USA,1992.

20. Bondi, A.B. Characteristics of Scalability and Their Impact on Performance. In Proceedings of

Workshop on Software Performance, Ottawa, Canada, September 2000; pp. 195-203.

21. Bartier, P.; Keller, C.P. Multivariate interpolation to incorporate thematic surface data using

inverse distance weighting(IDW), Comput. Geosci. 1996, 22, 795– 799.

22. García-León, J.; Felicísimo, A.M.; Martínez , J.J. A methodological proposal for improvement of

digital surface models generated by automatic stereo matching of convergent image networks. Int.

Arch. Photogramm. Remote Sens. 1999, 35, 59-63.

23. Gonçalves, G. Analysis of interpolation errors in urban digital surface models created from

LIDAR data, In Proceedings of the 7th International Symposium on Spatial Accuracy Assessment

in Natural Resources and Environment Sciences, Lisbon, Portugal, 2006.

24. Armstrong, M.P.; Marciano, R. Inverse-Distance -Weighted Spatial Interpolation Using Parallel

Supercompters. Photogramm. Eng. Remote Sens. 1994, 60, 1097-1103.

25. Armstrong, M.P.; Marciano, R. Local Interpolation Using a Distributed Parallel supercomputer.

Int. J. Geogr. Inf. Syst. 1996, 10, 713-729.

26. Clarke, K. C. Analytical and Computer Cartography; Prentice Hall: Englewood Cliffs, NJ, USA,

1990.

27. Armstrong, M.P.; Marciano, R. Massively Parallel Strategies for Local Spatial Interpolation.

Comput. Geosci. 1997, 23, 859-167.

28. Wang, S.; Armstrong, M.P. A Quadtree Approach to Domain Decomposition for Spatial

Interpolation in Grid Computing Environments. Parallel Comput. 2003, 29, 1481-1504.

29. Rowland, C.S.; Balzter, H. Data Fusion for Reconstruction of a DTM, Under a Woodland Canopy,

From Airborne L-band InSAR. IEEE Trans. geosci. remote sens. 2007, 45, 1154-1163.

30. Comer, D.E. Internetworking with TCP/IP Vol. 1, 2nd Ed.; Pearson Prentice Hall: Upper Saddle

River, NJ, USA, 2006.

31. TerraSolid Ltd. Homepage. http://www.terrasolid.fi/(last accessed on 24 Oct., 2008)

© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland.

This article is an open-access article distributed under the terms and conditions of the Creative

Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

