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Abstract: We have developed an inexpensive portable microarray reader that can be 

applied to standard microscope slide-based arrays and other array formats printed on 

chemically modified surfaces. Measuring only 19 cm in length, the imaging device is 

portable and may be applicable to both triage and clinical settings. For multiplexing and 

adaptability purposes, it can be modified to work with multiple excitation/emission 

wavelengths. Our device is shown to be comparable to a commercial laser scanner when 

detecting both streptavidin-biotin and antibody interactions. This paper presents the 
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development and characterization of a handheld microarray imager and directly compares 

it with a commercial scanner. 

Keywords: Microarrays; immunoassays; protein arrays; point-of-care diagnostics; portable 

microarray reader. 

 

1. Introduction  

 

Antibody-based immunoassays are currently the most commonly used tools to measure biomarkers 

in patient samples [1,2]. Since their first use in the 1950s, newer and more efficient antibodies and 

other affinity reagents have been created to improve assay sensitivity. The development of antibody 

microarrays has played an increasingly important role in biology and medicine [3-5], and tremendous 

progress has been made in the development of new array-based technology platforms for biological 

research. Microarrays offer several distinct advantages over conventional analytical technologies, 

including requiring only small sample and reagent volumes, and offering high-throughput parallel 

analysis [4,6-10]. This technology has been used successfully to detect and quantify specific target 

proteins in complex mixtures such as clinical samples [6,11].  

New diagnostic tests, such as microarray-based assays for breast cancer [11] or for autoimmune 

diseases [12], have the potential to dramatically change the face of medicine. However, the 

mainstream medical community is often slow to adopt new technologies. Some of the reluctance is due 

to the cost of new technology, unwieldy equipment unsuitable for an office setting, or lack of time to 

learn to use a complicated system. There is, therefore, an increasing demand for simple, point-of-care 

(POC) diagnostic assays and readers capable of providing rapid, sensitive and quantitative results. 

POC integrated systems possess the ability to process clinical samples for a number of different 

types of biomarkers in a variety of settings, such as clinical laboratories, patients’ bedsides, and 

doctors’ offices. Automation of clinical diagnostic tests is also highly desirable as it would improve 

the efficiency of the laboratory and reproducibility of the testing procedure by eliminating human error 

[13]. This is especially necessary in situations where assays need to be performed without the use of a 

laboratory or trained individuals. In addition, implementation of POC technologies should be, by their 

very nature, low cost. 

Microarray assays can be adapted to fit fully on a standard microscope slide for POC applications. 

After a brief incubation period, the only equipment needed to analyze the results of a preprinted assay 

is a microarray reader and a simple image processor. However, current microarray laser 

scanners/readers cost tens of thousands of dollars, are space prohibitive, and require a trained operator. 

Ideally a small, inexpensive, and specialized reader would complement the slide-based assay.  

One of the challenges in creating such a reader is miniaturizing the light source without drastically 

reducing the excitation light. Bavykin et al. previously developed a portable microarray imager [14] 

that utilizes a small laser diode, but their use of a film-based camera precluded rapid analysis of the 

array. Another group later demonstrated a digital portable microarray reader [15] using an ultra-bright 

LED for excitation, but their system was designed for laboratory use rather than as a clinical prototype. 

Although both systems were smaller than traditional scanners, they cannot be easily stored and 
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handled in doctors’ offices, and neither group provided comparative validation of their prototypes 

using a commercial scanner. Vo-Dinh et al. [16] developed a small biosensor platform that overcomes 

some of these barriers, but lacks the ability to easily adapt to new sizes or shapes of fluorescent 

patterns. 

In this paper we describe a new alternative to microarray scanners that would meet the needs of the 

market. By addressing some of the drawbacks of commercial scanners, such as size, cost, and 

complexity, our specialized device will appeal to those looking for POC microarray solutions. While 

the handheld microarray reader described here lacks some of the features and functions of the larger 

laser scanners, its small and minimalistic design makes it ideal for specialized uses such as rapid 

diagnosis in medical clinics and other POC settings. Additionally, when combined with a lateral flow 

assay such as previously described [11], the sample does not need to be sent to a separate laboratory 

for processing. Although our reader does not scan a full slide, we believe that our field of view is 

sufficient to accommodate the typical number of biomarkers to be used for a single POC assay, thus 

easily fitting within one image. Furthermore, in recognition that accuracy is of the utmost importance 

for acceptance by medical providers, we provide here a direct comparison of our handheld imager to a 

commercial scanner. 

 

2. Results and Discussion  

 

2.1. Design and characteristics of the handheld microarray imager.  

 

The design of the microarray reader presented here combines simplicity with multifunctionality. 

Figure 1 shows the optical layout, a 3D schematic, and a photograph of our prototype. Measuring only 

19 cm in length with a base of 6.5 cm × 5 cm, our imager is small enough to be handheld. Built from 

easily obtainable materials for under $3,000.00, it contains no moving parts, so its durability is limited 

only by the ruggedness of the CCD detector. A high-powered LED provides the excitation light, which 

is narrowed by a set of filters before illuminating the field of view with approximately 4 mW of 530 

nm light. This translates to roughly 16 × 1015 photons per second per square centimeter, or 3 × 1012 

photons per second per microarray spot. The light propagating in the forward direction then passes 

through another set of filters so that only the fluorescent light from the microarray is focused onto the 

detector. The high inherent numerical aperture (NA = 0.45) of the focusing lens allows for high 

collection efficiency. From the CCD, a 16-bit fluorescence image is captured and saved (via USB 

connection to a laptop computer) for image analysis and processing. With a field of view of 

approximately 7.5 × 10 mm, a 30 × 40 array of spots spaced by 250 μm spot-to-spot both horizontally 

and vertically could conceivably be visualized in one image by this device.  

The forward detection is preferable to alternatives using dichroic mirrors for several reasons 

including cost, simplicity, and size. One specific benefit of using forward detection is the ability to 

easily change wavelengths. All of the filters and the LED are easily accessible, and exchanging the 

filters and LED does not affect the alignment (as would be the case with a dichroic mirror). This 

allows the device to be used for multiple applications, with different wavelengths beyond our initial 

experiments where Cy3 and Cy5 dyes were used. 
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Figure 1. Diagrams and picture of the actual device. All measurements are in millimeters 

(a) Optical layout of the device. L = lens with a 25.4 mm focal distance, EmF = emission 

filters, S = sample, ExF = Excitation filters. (b) Schematic of hand-held microarray reader. 

(c) Actual image of the hand-held reader. 

 

 

 
 

Computer-based algorithms were implemented to turn the imaging system into a reader, shown as a 

flowchart in Figure 2. The first process corrected for uneven light distribution from the LED. This 
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simple step was applied to each image and verified by comparing two images recorded at different 

angles. Next, mean intensities of the spots and their perimeters were gathered, and background 

subtraction using this information was performed. These steps yielded the corrected mean spot 

intensities used for analysis, which were found to be comparable to the values obtained from a 

commercial laser scanner. These processes are described in detail in the Experimental section. 

Figure 2. A flowchart depicting how a microarray image is processed. 

 
 

Additional upgrades are possible to improve portability. First, a program automating all of the steps 

described above is needed, such as provided by the UCSF Spot program [17]. With arrays in a fixed 

position relative to the detector, the same pixel numbers can be used every time to gather means and 

SDs, or object-recognition software can be used to select spot borders. The next optimization step is to 

reduce the number of separate wires required. Currently the LED is powered by a variable power 

supply, but it has also been successfully run off a pair of C batteries. Future designs could power both 

the LED and the camera (which currently requires a standard electrical outlet) through a USB 

connection. This would allow the device to be taken to remote areas, requiring only a standard laptop 

to both power the device and process the images. The programs required to analyze the image could all 

be included on a chip, along with application-specific programs, and wired directly into the device. 

This would transition our handheld microarray imager into a fully contained, highly specialized 

handheld microarray reader. Furthermore, the cost of the reader can be reduced much below the 

current $3,000 figure. By using commercial rather than research products, components such as the 

optical tube or the camera can be acquired at a much lower cost. 

 

2.2. Comparative Analysis 

 

For each antibody or protein type, the intensities collected from both a traditional laser scanner and 

the handheld device were normalized so that the brightest concentration on each had a value of 100. 

Figure 3 shows the normalized comparison of the intensities and their SDs from the two devices, and 

Figure 4 shows the images of the microarrays and a corresponding spot-array layout. The antibodies 

were each printed in concentration ratios of 100:10:1, with the exception of the Cy3 streptavidin, 

which was printed only at the lower two concentrations. The first three spots contain only PBS buffer. 

The intensity plots in Figures 3b, c clearly correlate with the expected spotting ratios. The detection 

limit of the reader for low concentrations with a 40 s exposure time becomes evident in Figure 3d, 
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where the SD of the anti goat IgG biotin 0.02 μg/mL spots (SD = 78) is larger than the mean intensity 

value (I = 51) after background subtraction. 

The SDs for the handheld reader, as a percentage of the correlated mean intensities, ranged from 

9% to 183%, whereas the commercial scanner ranged from 10% to 116%. Looking at groups of spots 

with 3 orders of magnitude of detectable intensities, specifically the spots represented in Figure 3b,c, 

the SDs were greatly reduced. For the handheld scanner, this narrows to 9% to 55% with a mean of 

25% and the highest percentages at the weakest spots. For the scanner, the range is 14% to 40%, with a 

mean SD of 22%.  

Figure 3. Comparative analysis of the handheld reader’s results with those of a traditional 

scanner. Each graph was normalized so the brightest spots each had intensity values of 

100. Error bars represent a total of two SDs for each spotting group. (a) Intensities of the 

PBS spots and the 10 : 1 printing ratio of Cy3 streptavidin are plotted. (b,c) The 100 : 10 : 

1 printing ratios are reflected in the fluorescence intensity ratios for both of these spotting 

groups. (d) The handheld scanner reaches its detection limit for the concentrations shown 

of anti goat IgG biotin where the SD is larger than the mean intensity value. 

 
 

These results suggest that this microarray reader is an excellent replacement for several applications 

requiring multiple order-of-magnitude intensity detection. For a single exposure time, our device is 

able to detect intensities spanning three orders of magnitude, which is comparable to the commercial 

scanner used. By taking multiple images with different exposure times, the dynamic range can be 
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further extended. For example, by taking three exposures at 10 ms, 1 s, and 100 s, a total of seven to 

nine orders of magnitude of intensity could reasonably be covered. This would require that spots be 

spaced far enough apart to avoid the overlap of saturated CCD pixels corresponding to bright spots 

with pixels corresponding to adjacent spots, which is easily accomplished with the large field of view 

of our device. For example, doubling the spot-to-spot distance to 500 μm would still allow detection of 

an array of 15 × 20 spots within a single image.  

Figure 4. Scanned images. (a) A scanned image taken with the hand-held imager. (b) A 

composite false-color image from the GenePix 4000B scanner of the same spotted array. 

The green spots in (b) are labeled with Cy3, whereas the red spots are labeled with Cy5, 

which is undetectable using the current filter setup of the handheld imager. (c) A legend of 

the protein and concentration used for each array spot. They layout of the chart matches 

the layout of the spots in the arrays shown. B = PBS buffer, SA = streptavidin, AM = anti 

mouse, AR = anti rabbit, BTAM = anti mouse biotin, BTAG = anti goat biotin. The dye is 

spotted directly onto the array for the first three rows only. A later incubation step  

conjugates the dye to the biotin for the bottom two rows.  

 
(c) 

 
 

Another important feature of microarray readers is the ability to detect the difference between two 

intensities that are within the same order of magnitude. For these types of applications where low SDs 

are important, multiple images with longer exposures are needed to improve signal-to-noise ratio. As 

mentioned above, brighter spots (close to the saturation value of the camera) were observed to have 

SDs that were relatively low compared to the mean intensity.  
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3. Experimental Section  

 

3.1. Handheld microarray imager 

 

3.1.1. Imager structure 

 

A Thor Labs 25.4 mm optical tube encloses the entire device, with the exception of the CCD 

camera, thus blocking outside light from interfering with fluorescence detection. The slide holder is a 

Thor Labs cage assembly, with two rods supporting the slide from below and the cage assembly plates 

sandwiching the slide to hold it in place.  

 

3.1.2. Light source 

 

At one end of the tube, an ultra-bright Luxeon® Star with Optics LED, powered at 3.3 V, provides 

illumination to back illuminate a standard microscope slide. The light emitted has a peak wavelength 

of 530 nm with a range of 520 – 550 nm, and the power was measured to be approximately 80 mW. 

 

3.1.3. Filters 

 

A set of two 532/10 nm filters (Chroma Technology Corporation, VT, USA) narrows the excitation 

wavelength range to 527 – 537 nm. The excitation light and the fluorescence signal coming from the 

sample slide passes through three more filters. The first two filters, a 572 nm longpass (Chroma) and a 

590 nm longpass (Andover Corporation, NH, USA), block the excitation wavelengths. The third filter, 

a 592/100 nm bandpass filter (Chroma), stops the infrared signature from the LED from reaching the 

camera.  

 

3.1.4. Lens 

 

The tube lens used has a 25.4 mm focal length and diameter from Thor Labs. The inherent NA is 

0.45, while the NA for our collection geometry is 0.17. Because the light from the sample is not 

collimated, the distance between the sample and the lens is much greater than the focal distance, 

resulting in the lower NA. 

 

3.1.5. Camera 

 

The camera, an LU130M (Lumenera Corporation, Ottawa, Canada), has a ½” monochromatic chip 

with a pixel size of 4.65 square μm and a 60 dB dynamic range. The manufacturer lists a dark count of 

2 electrons (per pixel per second) at 25 °C with a readout noise of 8 electrons, and a quantum 

efficiency of 40% at 500 nm. 
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3.2. Microarray manufacturing 

 

3.2.1. Comparative analysis slides 

 

Reagents were spotted at concentrations shown in Figure 4. PBS was printed as a negative control. 

One labeled peptide and four different antibodies were printed as positive controls: Cy3 streptavidin 

(Cy3 SA), Cy3 anti mouse IgG (Cy3 AM), anti mouse IgG biotin (BTAM), anti goat IgG biotin 

(BTAG) (Rockland Immunochemicals, Inc. Gilbertsville, PA, USA), and Cy5 anti rabbit IgG (Cy5 

AR) (Zymed Invitrogen, Carlsbad, CA, USA). The antibodies were diluted in 2x Protein Arraying 

Buffer (Schleicher & Schuell, Whatman, Kent, UK) to a total volume of 15 L in a 96-well titer plate. 

Approximately 10 nL of each solution was printed on Corning GAPS II Slides (Invitrogen, Carlsbad, 

CA, USA) using the OmniGrid Accent (Genomic Solutions, Ann Arbor, MI, USA) arrayer. Slides 

were crosslinked for 5 mins using UV irradiation. Four subarrays were printed on each slide, and the 

spacing was 250 μm spot-to-spot both horizontally and vertically within each subarray. The array 

layout can be seen in Figure 4c. Prior to use, the slides were blocked for 1 hour using PBS containing 

1 mg/mL of BSA. The slides were then washed three times in 1X PBS containing Tween® 20. For 

detection, a total of 800 μL of Cy3 SA in PBS was added to the array. The Cy3 SA interacts with the 

biotin to allow detection. After a 10 minute incubation period, slides were again washed three times 

for five minutes in 1X PBS before air drying.  

 

3.2.2. Flatfield correction slide 

 

The flatfield correction slide was prepared in a manner similar to that of the comparative analysis 

slides. ATM synthetic peptide was used, and 10 × 10 spot subarrays were printed in a 2 column, 4 row 

format. Spacing of spots in both the vertical and horizontal position is 300 microns, except for the first 

array which has spacing of 500 vertically and 300 horizontally. 

 

3.3. Flatfield Correction:  

 

Each image was flatfield corrected using one of two equivalent methods. The first was to convert 

the images into MATLAB matrices using the ‘imread’ function in the Image Processing Toolbox. 

Each matrix entry i, j from the original image was divided by the corresponding entry i, j from the 

fluorescent slide’s matrix. The new matrix was then scaled to the same mean value as the original 

image’s matrix. Figure 5 shows a comparison of an original and corrected image, including the divided 

difference and subtracted difference. The final matrix was converted into a bitmap image and saved as 

a new file. Alternatively, the flatfield correction could be done using Image J. The original image was 

divided by the calibration image using the ‘Image Calculator’ function. The new image was then 

multiplied by the mean intensity of the calibration image, returning it to the same mean intensity as the 

original image. To test this method, two images were taken of the same array. The slide was physically 

rotated 90º between the two pictures, and a third image was taken of the calibration slide. Each of the 

two array images was flatfield corrected using the MATLAB program. The second image was rotated 

to match the orientation of the first, and a defect in the array was used to confirm the match. The ‘Plot 
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Profile’ feature of ImageJ measured the intensity along rows in the microarray. The data was extracted 

to Microsoft Excel, and the intensities were normalized to a mean value of one. The normalized 

intensities of one row on the first image were plotted versus the pixel number, and the same data from 

the second image was superimposed on it (Figure 6). Three of ten rows were analyzed in this manner. 

Figure 5. Results of the flatfield correction program. (a) The image as it appears after 

being corrected. (b) The original image. (c) The adjusted image subtracted from the 

original image. (d) The adjusted image divided by the original image. 

 
 

The comparison between the physically rotated and the computer rotated images showed the peaks 

in each row matching in both height and position. Some discrepancy was noticed in the mean intensity 

between the two images, but the difference in each row was only 1 – 4%. This can be attributed to 

differences in ambient light during the experiment combined with human error in selecting the line to 

be evaluated using ImageJ. Changes in background counts were observed after the flatfield correction, 

but this was expected since the calibration takes into account the entire image, not just the array. 
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Figure 6. Comparisons of row histograms of two images of the same array. Blue lines 

represent physically rotated arrays and pink lines represent computer rotated arrays. The 

agreement between the two histograms indicates a successful flatfield correction program. 

 
 

3.4. Background Subtraction 

 

To correct for the background caused by scattered excitation light, room light, or detector noise, the 

background around the perimeter of each spot was calculated and subtracted. First, the mean intensity 

of a large circle around each spot was gathered using ImageJ. Next, the mean intensity of a smaller, 

inscribed circle approximately enclosing the spot was measured. The average intensity of the outer 

ring, not including the inner circle, was calculated: 

smallbig

smallsmallbigbig
donut nn

nMeannMean
Mean






**
 (1)

where n represents the number of pixels in each area, big indicates the circle with larger radius, and 

small indicates the circle with the smaller radius. This yielded the mean background around each spot, 

approximately 16,000 – 29,000 counts for a 40 s exposure. After calculating it for each spot, the mean 

background was subtracted from the mean intensity of the smaller circle. This technique provided a 

locally accurate background subtraction, rather than a less accurate bulk background subtraction 

method. Corrected mean intensities then ranged from approximately -300 (rare) to greater than 10,000 

for the comparative analysis slides. The flatfield correction slides were not background subtracted.  

 

3.5. Comparative Protein Array Analysis 

 

Using the handheld microarray reader, images with 40 second exposure times were recorded of 

each of the total of 8 arrays printed on the two slides described in Section 3.2. The exposure time was 
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chosen to avoid saturation of the camera and also to capture a range of intensities spanning several 

orders of magnitude. Images were then flatfield corrected and background subtracted. 

Image analysis was performed using ImageJ. A circle of fixed radius was hand-centered on each 

spot in the arrays, with the radius chosen to encompass the largest spot. The mean intensities and SDs 

of each spot were measured, then recorded and analyzed in an Excel spreadsheet.  

A GenePix 4,000 B commercial scanner (Axon Instruments, Union City, CA, USA) was used to 

take scans of the same slides. The PMT gain was set to 400 for Cy3 (532 nm) and 600 for Cy5 (635 

nm). The included software provided the mean intensities and SDs used in this analysis. 

With each antibody mixture spotted in triplicate per array, this yielded a total of 18 spots per 

antibody type and concentration to be analyzed. The SDs shown in our results (the error bars in Figure 

3) were calculated from these 18 data points. Only three out of four arrays per slide were analyzed.  

 

4. Conclusions  

 

We have developed a relatively low-cost portable reader capable of detecting intensities over 

multiple orders of magnitude. Although other handheld imagers have been developed [14], to our 

knowledge no direct comparison with traditional microarray scanners has been previously reported. 

With our device, the mean SD in intensity detection was only 25%, compared to 22% for a commercial 

laser scanner. This high degree of comparability makes it a reliable choice for POC testing. Also 

amenable to a POC setting, the device is small enough to be handheld, measuring only 19cm in length. 

It has the potential to be powered and run entirely by a laptop or to be self-contained with a software 

chip and battery. In addition the device could be quickly adapted for a variety of assay formats, 

including lateral flow assays.  

Because it is powered by an LED rather than a laser, and the filters are easily accessible, our reader 

also is flexible in its excitation and emission spectra. The ability to use a variety of dyes makes our 

reader applicable to both the clinical and laboratory setting, and highly adaptable for many microarray-

based tests. Also unlike previous handheld imagers, the digital format of our imager allows the 

information to be directly recorded on a computer or other electronic device for quick analysis. In the 

future our device could potentially send a diagnosis directly to a doctor’s or technician’s PDA, 

dramatically increasing the ability to treat a patient without delay.  
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