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Abstract: In this paper, we address the Wireless Sensor Network (WSN) deployment is-
sue. We assume that the observed area is characterized by the geographical irregularity of
the sensed events. Formally, we consider that each point in the deployment area is associated
a differentiated detection probability threshold, which must be satisfied by our deployment
method. Our resulting WSN deployment problem is formulated as a Multi-Objectives Op-
timization problem, which seeks to reduce the gap between the generated events detection
probabilities and the required thresholds while minimizing the number of deployed sensors.
To overcome the computational complexity of an exact resolution, we propose an original
pseudo-random approach based on the Tabu Search heuristic. Simulations show that our pro-
posal achieves better performances than several other approaches proposed in the literature.
In the last part of this paper, we generalize the deployment problem by including the wireless
communication network connectivity constraint. Thus, we extend our proposal to ensure that
the resulting WSN topology is connected even if a sensor communication range takes small
values.

Keywords: Wireless Sensor Network Deployment; Differentiated detection; Connectivity;
Tabu Search heuristic.



Sensors 2009, 9 1626

1. Introduction

Over the last decade, Wireless Sensor Networks (WSN) have generated a considerable enthusiasm
from the networking researchers community. Many efforts have been produced in order to apply WSN
to a wide range of applications, such as: environmental monitoring, military target tracking, weather
forecast, home automation, intrusion detection, etc. Basically, a WSN is a collection of small resource-
constrained devices, which are typically composed of sensing components, computer processor, memory
chips, and radio interface for transmitting and receiving information. The sensors could collaborate in
order to observe and report the events occurring in their environment. When an event is detected, this
information is routed from one node to another (multi-hops communication) and eventually gathered in
gateway nodes or base stations.

While the set of challenges in wireless sensor networks are diverse, researchers have mainly focused
their efforts on fundamental networking challenges, which include: routing protocols, energy minimiza-
tion, sensor localization, data gathering, etc [1]. In this paper we address a static wireless sensor network
deployment problem. The performances of proposed solutions related to the protocol stack depend
strongly on the network deployment process. The latter one consists in determining the required num-
ber of sensors and their positions to satisfy a certain number of constraints. Classical constraints are:
coverage, events reliable detection, connectivity, etc.

In this paper, we relax some of the assumptions that were considered in the literature with the aim
to formulate a more realistic WSN deployment problem. The first generalization concerns the detection
model. Indeed, most of works regarding WSN deployment assume a binary detection model. In this
paper, a sensor is supposed to surely detect (detection probability is equal to 1) an event if and only if the
distance between the sensor and the event is less than a particular sensing range. This model was mainly
considered in works addressing area coverage problems, such as target detection or k-coverage problem
[2]. The binary model intends to simplify the problem formulation and resolution. Unfortunately, it is
not realistic, since the detection of an event depends on multiples factors, including: the distance between
the sources and the sensor, the propagation signal attenuation and the accuracy of the sensing level. We
believe that a distance-based probabilistic detection model, including the sensor’s technology and the
event characteristics would be more realistic.

The second assumption, which was generally considered in the published papers, deals with the fact
that the sensing requirement is uniformly distributed within the area. In other words, all the points of
the area under monotoring are considered with the same importance. We believe that this assumption
does not hold in many environments. Indeed, in many sensor network applications (such as fire detec-
tion alarms, water quality monitoring, etc.), the supervised area can request different detection levels,
depending on the event’s location. For example, in the case of a fire detection system, high detection
probabilities (close to 1) can be required for risky areas (example, those close to chemical deposits or to
habitats). However, for low fire risky places a relative low detection probabilities are sufficient.

The third assumption consists on the wireless sensor communication range. Indeed, some existing
works suppose that the communication range is very large. Consequently once the sensors are deployed,
the resulting wireless communication network graph is supposed to be connected. Clearly, this assump-
tion is not realistic in WSN. Besides, very large transmission range is not adapted in WSN as it implies
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a great energy consumption. As a matter of fact, in order to maximize the network lifetime, many
works [3] propose solutions which aim to reduce the wireless sensor communication range. In our case
study, we assume a reasonable fixed wireless sensor communication range, noted Rc. Our new proposal
aims to guarantee the wireless communication network connectivity. To satisfy this new constraint, our
proposed method must achieve that the maximum distance separating a sensor with one of its neighbors
must be less than Rc.

We claim that a differentiated WSN deployment strategy, which takes into consideration the geo-
graphical characteristics of the monitored events and the wireless communication network connectivity,
is more suitable in a realistic case study. Therefore, in this paper, we address the issue of deploying
WSN by ensuring the network connectivity and the deployment field characterized by: (1) a probabilis-
tic event detection model and (2) a geographical irregularity of the sensed event. To solve this problem
we propose an original pseudo-random method, based on the Tabu Search algorithm.

The rest of this paper is structured as follows: the next section provides a state of the art on WSN
deployment issue. The generalized problem is formalized in section 3.. Our Tabu Search-based Differ-
entiated Deployment approach is detailed in section 4.. Performance evaluations are then discussed in
section 5.. Finally section 6. summarizes our contributions.

2. Related Works

In the recent years, there have been many research activities and advances in sensor networks. How-
ever, a small number of them have addressed WSN deployment process. In the literature, we found some
works which studied the deployment with a probabilistic detection model. Other works integrate the con-
nectivity constraints but assume a binary detection model. To the best of our knowledge, no work have
yet considered the deployment process including at the same time the network connectivity requirement,
a probabilistic detection model, and a non-uniform event detection probabilities constraints.

Earlier works such as [4–6] considered that the environment is unknown or that the area is inacces-
sible (e.g. a battle field). Consequently, random geographical sensors deployment is assumed. On the
other hand, some works considered that sensors are likely to be deployed in a regular structured manner
through hand placement (e.g. based on grid). Such approach is adapted to monitor a phenomenon with
a sensing characteristic that is uniformly distributed in an area.

Krishnendu and al. [7] used a binary detection model and presented a grid coverage strategy for
effective surveillance and target location in distributed WSN. They have considered two types of sensors
having with different characteristics (cost and range). Thereafter, they have considered an integer linear
programming (ILP) approach to find the solution which minimizes the sensors’s cost while ensuring the
complete coverage of the studied area. Note that, although the ILP could lead to obtain exact resolution,
this method will raise important computational complexity for realistic case studies (especially for large
surface areas), since the problem under study is known to be NP-hard.

In [8], the authors assumed a probabilistic detection model, which is expressed as an exponential
function of the distance between the location of the targeted event and the sensor position. This model
was considered in the proposal of two new deployment algorithms. Both approaches seek toward an
optimal area coverage under the constraints of imprecise detections. The solutions are based on a grid
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structure. The first algorithm, Max Avg Cov, aims to maximize the average coverage of the grid points.
The second one, Max Min Cov aims to maximize the coverage of the grid points which are the least
effectively covered. Both Max Avg Cov and Max Min Cov were initially designed for an area with
uniform detection probability, however they can easily adapted in the case of an area with non-uniform
detection probability. Unfortunately, the two strategies suffer from high computational complexity, it is
equal to O(n4).

In [9], the authors proposed a new deployment strategy called Min-Miss. This strategy is an iterative
algorithm, one sensor is deployed at each step. The authors defined for each point, in the deployment
field, a new metric named over miss probability. The later quantifies the benefit in coverage when a
new sensor is added. The main idea of Min-Miss is the following. At first, all possible free grid points
(no sensors are deployed in these points) are selected to form a set. Thereafter, for each point of this
set the authors compute the over miss probability metric. Finally, a new sensor is deployed at point
that minimizes the over miss probability metric. That means, a sensor is deployed in a position that
maximizes the event detection probabilities in the deployment field. The main drawback of this approach
is the huge computational complexity of such operation, which is equal to O(n6).

In [10], the authors addressed explicitly a WSN deployment problem for non-uniform detection re-
quirement. As in [8], they propose to use a probabilistic detections model. They formulated the differ-
entiated deployment problem as an integer linear programming deployment problem, which has been
proved to be NP-hard. Finally, they propose a deployment heuristics, named Diff Deploy. As in [9], the
main drawback of this solution is the computational complexity which is equal to O(4

3
n6).

In [11], the authors proposed the Differentiated Deployment Algorithm (DDA), which is inspired
from image processing and 3D modeling, namely mesh representation. Generally, mesh representation
allows convenient modeling of arbitrary surfaces, where meshes serve as basic primitives to approximate
a surface. For sensor deployment, the authors used an unstructured triangle mesh representation of the
target area. Basically, the meshes nodes represent sensor positions and each arc is the Euclidean distance
between the sensors. The main idea of algorithm is to permit meshes division as long as the required
detection probability is not reached or the mesh division is not possible. During the mesh division
process, each mesh division consists to deploy a new sensor. Unfortunately, the DDA suffers form high
computational complexity, equal to O(n6).

In [12] and [13], the authors derive a sufficient conditions to guarantee a full coverage and the wireless
communication network connectivity. The conditions are dependent on the communication and sensing
ranges. For example in [12], the authors prove that if Rc ≥

√
3Rmax (where Rmax is the sensing

range) and the area is full covered then the wireless communication network graph is connected. The
authors have even considered the K-connectivity case. Unfortunately a binary event detection model
was supposed in this work.

3. Problem Statement

3.1. Distance-related Probabilistic Sensor Detection Model

Rather than the binary detection model, and in a seek for more realism, we consider as in [14] and
[15] a Probabilistic Sensor Detection Model. More precisely, we assume that event detection ability
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of a sensor diminishes as its distance to the sensed point increases. Using this model, a confidant and
maximum sensor monitoring circles are defined. If any event (event (1) in Fig.1) occurs within the
confident circle, then event detection probability is considered as equal to 1. If the event (event (2) in
Fig.1) occurs outside the confidant circle but within the maximum circle, then the detection probability
decreases with the distance. Finally, when the distance is larger than the radius of the maximum circle,
then the event (event (3) in Fig.1) is no longer detected. Based on the above assumption, we consider,
as in [16], the following expression of the general detection probability P of a sensor s at an arbitrary
point p:

P (s, p) =





1 if ‖sp‖ ¹ 1
α

‖sp‖β if 1 ≺ ‖sp‖ ¹ Rmax

0 if Rmax ≺ ‖sp‖
(1)

where Rmax is the radius of the maximum circle, α is a sensor technological related parameter and β is an
event characteristic-dependant parameter. Finally, ‖sp‖ is the Euclidean distance between the sensor s

and the point p. We believe that this model is more realistic than the binary model. Therefore, we assume
it works with this new model for our deployment problem, which we formulated in the next section.

Figure 1. Sensor detection model
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3.2. Problem Formalization

We consider a sensor field area, denoted A. In order to reduce the computational complexity of the
problem, the area is discretized. We suppose that A is a square, with a side equals to n units. A unit
is defined as a normalized physical distance (example, 1 meter or 10 meters). To simplify, we will
refer in the rest of this paper, to each square unit of A by its barycenter point. In other words, when
we say that a sensor is located in the point p(i,j) ∈ A then this means that the sensor is placed in the
barycenter of the corresponding square unit. Similarly, the event detection probability of a unit square
is computed considering the event detection probability of its barycenter. Finally, we consider that any
event occurring inside a unit square is surely detected (event probability equals to 1) by a sensor which
would be placed in its barycenter point.

In an efficiently monitoring, the event detection is formalized as a probabilistic detection model. Each
point p(i,j) in A is associated a required minimum probability detection threshold, denoted r(i,j).

Ideally, a successful WSN deployment algorithm should lead to obtain that ∀p(i,j) ∈ A the measured
detection probability of that point is greater than r(i,j), and the sensor graph of connectivity G is con-
nected. The detection probability in a point p(i,j) is estimated by all the sensors in its vicinity, but the
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event detection model is not collaborative. The detection probability of the point p(i,j), denoted P(i,j), is
estimated by all the sensors available in the monitored area as

P(i,j) = 1− ∏

(x,y)∈Grid

[1− P ((i, j), (x, y))]D(x,y) (2)

where D(x, y) denotes the deployment bivalent variable. If D(x, y) equals to 0 means that no sensor is
deployed at grid point p(i, j). If D(x, y) equals to 1 means that a sensor is deployed at grid point p(x, y).

Obviously, if a sufficiently large number of sensors are deployed, it is possible to satisfy the objective:
P(i,j) ≥ r(i,j), ∀p(i,j) ∈ A. Nevertheless, taking into account cost considerations, the number of sensors
is also a critical metric. In addition to the satisfaction of the requirement on the minimum detection
probability thresholds, a second objective in a deployment problem is to minimize the number of sen-
sors. Formally, the aim is to find the best WSN topology to the following multi-objectives optimization
problem:

1. Minimize the number of deployed sensors needed to satisfy the following two constraints (2 and
3).

2. For each point p(i,j) ∈ A, minimize the difference between the required detection probability
threshold r(i,j), and the after-deployment resulting detection probability P(i,j).

3. Ensure the wireless communication network connectivity.

A multi-objectives optimization problem described above is NP-Hard problem. The size of the so-
lution space is finite but very large (2n2). We remind that the deployment field is a square, with a side
equals to n units. To resolve this optimization problem, we can choose an exact method as Branch &
Bound [17] that provides an optimal deployment (solution). Unfortunately, we cannot apply it to large
areas because of its exponential complexity. The second alternative is to resolve the problem by using
heuristics. Inopportunely, these methods cannot guarantee to obtain the optimal solution. However, the
main advantage is the polynomial complexity and the running time which can be reasonable.

In this paper, we propose a pseudo-random algorithm based on Tabu Search heuristic. We resolve
our multi-objectives optimization problem on two stages. Firstly, we address our problem by missing
the connectivity constraint. We interest only in the two primary objectives: i) minimize the number of
sensors, ii) reduce the gap between the generated and requested event detection probabilities. Secondly,
we extend our proposal to guarantee the network connectivity.

4. Proposal: Tabu Search Approach

Among the possible heuristics able to solve our optimization problem, we choose in this paper the
Tabu Search method [18, 19]. This method is a local search optimization technique which tries to
minimize a cost function F (x), where x represents a parameter vector, by iteratively moving from a
solution x to a solution x′ in the neighborhood of x (according to a neighborhood function H (x)) until
a stopping criterion is satisfied or a predetermined number N of iterations is reached.

The Tabu Search algorithm is independent from the event detection model. This model provides an
input parameters to the method, though some other detections models can be used.
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We adapt the Tabu Search algorithm to our Differentiated Sensor Network Deployment problem. The
initialization of the method, the neighborhood function, the cost function, and the new specific steps are
detailed hereafter.

4.1. Resolution without communication connectivity constraint

In this section we present our pseudo-random deployment algorithm based on Tabu Search heuristic.
In this stage we do not take into account the communication network connectivity constraint in the
deployment process. Connectivity and coverage are related, because they are affected by the sensors
position. We assume that a communication range is so large, Rc ≥

√
3Rmax, in aim to apply the

result (necessary conditions to ensure the connectivity) proposed in [12]. Hence, we guarantee the WSN
connectivity and we are focused only on the event detection probabilities constraints.

1. Initialization
The convergence of Tabu Search method depends on the judicious choice of the initial solution

(s0). Ideally, the first solution has to be close to the optimal one, otherwise, since the maximum
number of iterations is fixed, the algorithm may stop before reaching the best solution.

We consider that the decision, D(x, y), of deploying a sensor in a point p(x,y) is a random variable,
which follows a Bernoulli distribution with parameter α(x,y). The binary form of the decision
rule motivates the choice of the Bernoulli law. Precisely, D(x, y) can assume a value of 1 with a
probability of α(x,y) and the value of 0 with a probability of (1− α(x,y)).

The parameter α(x,y), associated to a point p(x,y), is chosen as the percentage of the points located
in the vicinity of p(x,y) and not receiving the required probabilities of detection. The vicinity,
denoted E(x,y), is defined as the set of neighbor points located inside the maximum monitoring
circle of a sensor which would be placed in p(x,y). Formally,

α(x,y) =
1

‖E(x,y)‖
∑

(i,j)∈E(x,y)

1{r(i,j)>P(i,j)} (3)

Here 1{cond} is the indicating function, which is equal to 1 if the condition cond is true and 0

otherwise. The initialization stage of our Tabu Search approach follows these steps:

• Step 1: The initial Tabu Search solution is started assuming zero deployed sensors. Thus,
∀p(x,y) ∈ A, Bernoulli parameters are computed using equation 3 with P(x,y) = 0.

• Step 2: Generate a list, Linit, including all points of A. Linit is a decreasingly sorted list of
points according to their Bernoulli parameters.

• Step 3: In Linit, select the point p(x,y) with the highest Bernoulli parameter, and remove it
from the list. If the actual detection probability P(x,y) associated to p(x,y) is lower than r(x,y),
then a decision to deploy a sensor in p(x,y) is randomly generated through a Bernoulli decision
rule with parameter α(x,y).

• Step 4: If the Bernoulli decision is to deploy a sensor (D(x, y) = 1), then (1) the probabilities
of detection for all points in the vicinity of p(x,y) (the set E(x,y)) are recomputed. and (2) Linit

is updated (sorted).
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• Step 5: If Linit is not empty, go back to Step 3.

When the stop criterion of step 5 is satisfied, the resulting positions of deployed sensors are con-
sidered as the initial solution s0. The latter one is saved in the algorithm’s memory, called the Tabu
List. In the remaining, we will refer to this list as T . The goal of the Tabu list is not to block the
method on a local minimum of the cost function.

2. Neighborhood exploration function
After the initialization stage, a Tabu Search method executes N times the neighborhood explo-

ration stage. Here, N is a chosen fixed parameter, which must be set in order to limit the number
of Tabu Search iterations and to obtain a satisfactory (near to the optimal) solution.

During the nth iteration of the neighborhood exploration stage, a given number V of possible
neighbors of the solution selected in the previous iteration, noted sn−1, are generated and eval-
uated. Neighboring solutions are possible solutions which can be reached from sn−1 by a basic
transformation. Solutions which are present in the Tabu List T are considered unreachable neigh-
bors.

We propose two neighboring generation methods, namely Suppression oriented stage (Hsupp)
and Additional oriented stage (Hadd). These two methods alternate in the successive iterations
of our Tabu Search approach in order to determine the set V . Both stages are detailed hereafter.

• Suppression oriented stage (Hsupp):
The aim of this stage is to suppress some sensors among those deployed in over-covered

areas. The method proceeds with the following steps:

– Step 1’: Compute the Bernoulli parameters for all p(x,y) ∈ A using the equation 4 and
assuming the deployment obtained in the last Tabu Search iteration.

β(x,y) =
1

‖E(x,y)‖
∑

(i,j)∈E(x,y)

[(1− r(i,j)

P(i,j)

)× 1{r(i,j)<P(i,j)}] (4)

– Step 2’: Generate a list, Lsupp, including all the points of A where a sensor is deployed
(D(x, y) = 1). The list is then decreasingly sorted according to the resulting Bernoulli
parameters.

– Step 3’: In Lsupp, select and remove the point p(x,y) with the highest Bernoulli parameter,
and randomly generated the decision to suppress the sensor in p(x,y) through a Bernoulli
decision rule with parameter β(x,y).

– Step 4’: If the Bernoulli decision is to suppress the sensor (D(x, y) = 0), then the
probabilities of detection for all points in the vicinity of p(x,y) are recomputed. In this
case, the list Lsupp is updated (sorted) with the new values of the Bernoulli parameters
associated to each point in Lsupp.

– Step 5’: If Lsupp is not empty, go back to Step 3’.

Once the stop criteria on step 5’ is satisfied, the next Tabu Search iteration alternates toward
an additional stage.
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• Additional oriented stage (Hadd):
The aim of this stage is to add more sensors to the actual deployed ones in under-covered

areas. The execution is very similar to the initialization stage, except Step 1 and Step 2 are
replaced by the following steps:

– Step 1”: Compute the Bernoulli parameters for all p(x,y) ∈ A using the equation 3 and
assuming the deployment obtained in the last Tabu Search iteration.

– Step 2”: Generate a list Ladd including all the points ofAwhere a sensor is not deployed.
The list one is then decreasingly sorted according to the resulting Bernoulli parameters.

Steps 3, 4 and 5, as detailed in initialization stage, are repeatedly executed until that the list
Ladd is empty.

3. Cost function and selection of new solution
After the neighborhood exploration (a suppression or an additional oriented stage) during the nth

iteration, an elected solution sn must be chosen among the V explored candidates. This solution
(which cannot be in the Tabu list T ) is the one which provided by minimizing a given cost function
F . The cost function reflects two objectives of the optimization problem described in section 3.2.,
minimize the number of deployed sensors and reduce the gap between the generated and requested
event detection probabilities. The first objective could be quantified by counting the number of
deployed sensors. Formally, as defined in section D(x, y) = 1, if a sensor is deployed in the point
p(x,y). Otherwise, D(x, y) = 0. In order to minimize the cost function, F includes the following
term: ∑

(x,y)∈A
D(x, y) (5)

The second objective is integrated into the cost function through the following penalty function:

Penalty =
∑

(x,y)∈A

[
r(x,y) − P(x,y)

]+

r(x,y)

(6)

Here
[
r(x,y) − P(x,y)

]+
denotes the projection of r(x,y) − P(x,y) in IR +. Formally,

[
r(x,y) −P(x,y)

]+
= (r(x,y) − P(x,y))× 1{r(x,y)>P(x,y)} (7)

According to the expression of penalty function, a successful deployment solution should lead to
obtain detection probabilities higher than (or ideally equal to) the required detection thresholds.
If it is not satisfied, the penalty function value translates how far is the solution to the required
thresholds. This is exactly the second objective of the optimization problem.

From the above objective expressions, the authors define two cost functions Fsupp and Fadd. The
function Fsupp is used to choose the best next iteration solution in the case of a suppression oriented
stage. The function Fsupp is formulated using only the equation 6. On the other hand, the cost
function Fadd is used in the case of additional oriented stage. In this case, the two both terms
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associated to each objective of optimization problem are integrated into the cost function through
the following additive expression:

Fadd =
∑

(x,y)∈A
[D(x, y)] + Penalty (8)

The pseudo code of Tabu search deployment process is illustrated in Algorithm 1.

Algorithm 1: Tabu search pseudo code
Compute initial solution s0;
sout = s0;
bool sup-sensors = true;
Tabu-List = {s0}, set of T last solutions visited;
for i=0 to N do

neighborhood = Ø;
if sup-sensors == true then

for j=1 to V do
sj

i = Hsupp(si);
neighborhood = neighborhood + {sj

i};
Cost-Function = Fsupp;

else
for j=1 to V do

sj
i = Hadd(si);

neighborhood = neighborhood + {sj
i};

Cost-Function = Fadd;

for j=1 to V do
if sj

i ∈ Tabu-List then
neighborhood = neighborhood \{sj

i};

Select the best solution sbest
i in neighborhood, sbest

i minimizes the cost function;
Cost-Function

(
sbest

i

)
= minsj

i∈neighborhood

[
Cost-Function

(
sj

i

)]
;

si+1 = sbest
i ;

%update output solution sout%;

if Cost-Function
(
sbest

i

)
< Cost-Function (sout) then

sout = sbest
i ;

%update Tabu-List%;

Tabu-List = Tabu-List + {sbest
i };

%Alternate between Hsupp and Hadd%;

sup-sensors = not(sup-sensors);

The computational complexity of Tabu search is equal to O(NV m2n2). N is the number of iterations
of Tabu search process and V is the size of the neighborhood. These two parameters are chosen by the
designer, they are calibrated according to the specific deployment scenario. A coverage circle of sensor
covers a set of cells in the area, m represents the number of cells in length or width of sub-area covered
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by a sensor. m depends on the maximum radius circle Rmax, m is equal to dRmax√
2
e. We remark that the

Tabu search complexity depends on the deployment area dimensions, detection characteristic of sensor
(Rmax), and parameters of Tabu Search algorithm (N , V ). If N , V and m are not large, the product
NV m2 is equal to constant “a”, so we have a quadratic complexity O(a.n2).

4.2. Extension: Wireless Communication Network Connectivity

In this section, we present the extended version of Tabu Search deployment presented above. The
extension consists to guarantee the communication network connectivity for any communication range
value, so all constraints of optimization problem (minimize number of sensors, reduce the gap between
the generated and requested event detection probabilities, network connectivity) are included formally in
our proposal. We adapt the initialization stage and the selection process of solutions in the neighborhood
to build the network connectivity. The remainder steps and cost functions are identical to those presented
in section 4.1.. Hereafter, we detail the modifications made to the initialization stage and the selection of
new solution process.

1. Initialization stage
Compared to the initialization stage described in section 4.1., the new version differs in the fact
that once the Bernoulli decision to deploy the first sensor is made, the only points which will be
tested (i.e. Bernoulli decision to deploy or not to deploy a sensor) are those which are located
inside the communication range Rc of any deployed sensor. The connectivity is thus guaranteed
by construction (gradually).
Moreover, the selection order of the cell to be tested follows a decreasing order of the difference
between the requested and the generated detection probabilities. That is, the next tested point is
p(i,j) = maxp(x,y)∈B

(
P(x,y) − r(x,y)

)
, where B denotes the set of points of A which have not been

tested yet at this stage.
The positions of the resulting deployed sensors are considered as the initial solution s0. The latter
one is saved in the algorithm’s memory (Tabu List).

2. Selection of new solution
After the neighborhood exploration (a suppression or an addition oriented stage) during the nth

iteration, an elected solution sn must be chosen among the V (size of the neighborhood) explored
candidates. For each candidate, say C, we construct the graph of connectivity, denoted G(V, E).
Here, V is the vertices set. The latter one is exclusively composed of points where, according to
solution C, a sensor will be deployed. Moreover, E is the edges set. Formally,

E = {∀(p(x1,y1), p(x2,y2)) ∈ V | p(x1,y1) 6= p(x2,y2) and ‖ p(x1,y1) p(x2,y2) ‖≤ Rc} (9)

In the V solutions generated by the suppression stage, we eliminate the ones where the resulting
communication graph G is not connected. Among the remaining candidates, the elected solution,
sn, is the one which minimizes a given cost function F .
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5. Performance Analysis

In order to evaluate and to compare the performance of our Tabu Search approach deployment
method, we implemented our proposal and the deployment strategies found in the literature, namely:
Random, Grid, Min Miss [9], Max Min Cov [8], Max Avg Cov [8], Diff-Deploy [10], and
DAA [11].

The comparison is based on different metrics as number of sensors deployed, satisfaction rate in
detection probabilities θ (percentage of area units receiving a detection probability larger or equal than
the requested event detection probability threshold), computational complexity, memory consumption,
and network communication connectivity. We compare the deployment methods in two stages. Initially,
we focus the comparison on all the metrics introduced bellow except network connectivity. Afterwards,
the comparison will include the network connectivity.

We fixed sensor parameters values, α, β, Rmax, and Rc to 1, 1, 5, and 3 respectively. We chose Rc less
than

√
3Rmax in order to illustrate how our deployment algorithm can ensure and build the connectivity

with a small connectivity range. We remainder that if Rc is greater than
√

3Rmax, the sufficient condition
to guarantee the connectivity is the full coverage of deployment area. We considered an area with 50∗50

units. The required detection probabilities thresholds are illustrated in Figure 2, they vary from 0.2 to
0.9.

Figure 2. Area 50*50 with its desired detection probability values

For a regular deployment we chose a grid topology, so the shape is rectangle. In Mesh method, we
chose the triangle shape for meshes. To divide a mesh, we placed a new sensor in the middle of one
given arc. The cost function is the miss detection probabilities rate, it is equal to (1− θ).

We calibrated the Tabu search process by fixing the number of iterations, the size of the Tabu list and
the size of neighborhood explored to 100, 10, and 15 respectively. We fixed a confidence level for results
of stochastic deployment strategies (Tabu Search and Random) to 99.70%.

Figure 3 shows the deployed sensors positions obtained by our Tabu Search approach. The num-
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ber of deployed sensors is equal to 234 ± 2 sensors, for a satisfaction rate θ is equal to 97.10 ± 0.24%.
For the same number of sensors, 234, the satisfaction rate obtained when using the Random, Grid,
Min Miss, Max Min Cov, Max Avg Cov, Diff-Deploy, and DDA approaches are equal to 73.45±
1.06%, 83.12%, 85.88%, 83.36%, 82.56%, 96.72%, and 93.24% respectively.

Figure 3. Tabu Search approach: Sensors positions
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However, to reach the satisfaction rate obtained by the Tabu Search approach (97.10%), in table ??
we show the minimal number of sensors that above deployment strategies must deploy.

Table 1. Number of deployed sensors to reach 97.10% of satisfaction rate

Deployment strategy Number of sensors

Random 570

Grid 540

Min Miss 351

Max Min Cov 385

Max Avg Cov 524

Diff-Deploy 235

DDA 251

Tabu Search 234

We can notice from the above results that our proposal Tabu Search and Diff-Deploy reduce
highly the number of deployed sensors while improving the satisfaction rate. But the computational
complexity of Diff-Deploy is equal to O(4

3
n6) is larger than the computational complexity of our

proposal Tabu Search which is equal to O(a.n2). Also the memory consumption in Diff-Deploy
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is more important than the memory consumed in Tabu Search, because Diff-Deploymanipulates
square matrix with n4 elements. DDAmethod gives also a satisfactory result but is more complex (O(n6))
than Tabu Search. Hence, we conclude that our proposal is more scalable than the deployment
strategies found in the literature.

In Figure 3, we plot the sensors positions using the Tabu Search approach. Compared to Fig-
ure 2 we can notice a clear concentration of the deployed sensors in the areas requiring high detection
probability thresholds (top right, top left, and down right).

Figure 4 illustrates the cumulative distribution function (cdf) obtained by all the deployment strategies
of X , where X is a random variable, which can take values in the set of {ϑi,j|∀i, j ∈ A}. Formally,

ϑi,j = (r(i,j) − p(i,j))× 1{r(i,j)>p(i,j)} (10)

ϑi can take values in [0, 1]. Each curve in Figure 4 indicates for each δ value in the x axis the probabil-
ity P (X ≤ δ). From the under figure, we can notice that our proposal Tabu Search, Diff-Deploy
and DDA approaches provide the best performances compared to all other deployment algorithms. More-
over, we can observe that the Tabu Search approach satisfaction rate reaches very quickly 100% of
the area units compared to the other approaches. This means that the not satisfied units receive a detec-
tion probability very close to the required detection probability thresholds.

Figure 4. cdf between desired and obtained detection probability
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In figure 5, we illustrate the variation of the satisfaction rate and the number of deployed sensors at
each Tabu Search iteration. A left y-axis represents the number of deployed sensors and a right y-axis
shows the satisfaction rate. We remark that the number of sensors and the satisfaction rate oscillate,
this behavior is due to the additional and suppression oriented stages. When we execute the suppression
stage, the number of sensors is largely reduced consequently the satisfaction rate also is decreased. The
suppression stage enables to the additional stage to generate different WSN topologies compared to the
last one. Thereafter, we apply the additional stage in aim to deploy more sensors in areas under-covered.
We remind that our aim is to minimize the number of deployed sensors with an additional stage and to
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Figure 5. Tabu Search: evolution of iterations

reduce the gap between the generated and requested event detection probabilities. We can see in figure
5 that the number of sensors placed by the additional oriented stage is declining but the look of the
satisfaction rate plot is constant (no variation). Besides, sometimes we have a growth curve of number of
sensors. The main reason is the Tabu Search heuristic, it allows an impoverishment in the performance
in order to do not be blocked in the local minima. The best solution among 100 Tabu Search iterations is
obtained at the 84th iteration, in figure 5 is represented with a red vertical line.

In order to compare the network connectivity between the different approaches, we run the second
version of Tabu Search where the connectivity is ensured by construction. Tabu Search method
deploys 274± 2 sensors and the satisfaction rate θ is equal to 99.01± 0.12%. With the same number of
sensors (274), the satisfaction rate θ of Random, Grid, Min Miss, Max Min Cov, Max Avg Cov,
Diff-Deploy, and DDA approaches are equal to 79.51 ± 1.02%, 88.84%, 90.88%, 86.64%, 84.96%,
100% and 100% respectively. We can observe that Diff-Deploy and DDA reach 100% in satisfaction
rate. Figure 6 shows the cumulative distribution function (cdf) of random variable X defined in equation
10.

We calculate the number of connected components in all deployment topologies generated by the
different deployment strategies. The network is connected if the graph of connectivity contains only
one connected component. Figures 7 and 8 illustrate the graph of connectivity of Tabu Search and
Diff-Deploy. We can see clearly that only our proposal Tabu Search approach provides a con-
nected graph.

Finally, in figure 9 we illustrate the connected components related to the connectivity graphs resulting
from the various deployment methods. We represent the number of nodes for each connected component.
We plot only the 10 largest connected components related to each graph. A largest connected component
is the one which contains the greatest number of nodes. We note that only the graphs resulting from
the Tabu Search approach and the Grid have one connected component. In the case of the Grid,
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Figure 6. cdf between desired and obtained detection probability considering connectivity

 0.8

 0.85

 0.9

 0.95

 1

 0  0.2  0.4  0.6  0.8  1

cd
f

delta

Tabu Search
Diff_Deploy

DDA
Min_Miss

Max_Min_Cov
Max_Avg_Cov

Grid
Random

Figure 7. Tabu Search: Wireless communication network graph, Rc = 3
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we certainly guarantee the connectivity but the performances in term of detection probabilities are not
satisfactory (see Figure 6). The number of sensors deployed in the Grid is slightly lesser than that Tabu
Search. The cause is due to the construction of the grid shape. The other methods contain more than
one connected component. Which means that the wireless communication network is not connected.
For example Diff-Deploy and DDA have 134 and 41 connected components respectively. Tabu

Search method is the only method which ensures the connectivity and produces a better satisfaction
rate compared to other methods, while minimizing the number of required sensors.
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Figure 8. Diff-Deploy: Wireless communication network graph, Rc = 3
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Figure 9. Connected components of wireless network communication graphs
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6. Conclusion and Future Work

Assuming both a probabilistic detection model and the geographical irregularity of the sensed events,
we propose in this paper a simple and scalable pseudo-random deployment approach for WSN which
guarantees the wireless network communication connectivity. Our proposal is based on the Tabu Search
heuristic. The obtained results show that our proposal achieves a much better satisfaction rate than sev-
eral other approaches proposed in the literature (Random, Grid, Min Miss, Max Min Cov, Max Avg Cov,
Diff-Deploy, and DDA).

In our ongoing work, we are studying the MAC layer impact on the network lifetime as new con-
straint in the deployment process. Our objective is to maximize the network lifetime (reduce the energy
consumption). We focus our work to model IEEE 802.15.4 and to adapt the positions and the number of



Sensors 2009, 9 1642

sensors according to the MAC layer specificities.
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