Sensor2009, 9, 94689492 doi:10.3390£01209468

SENSOIS

ISSN 14248220
www.mdpi.com/journal/sensors

Article

A Featured-Based Stategy for Stereovision Matchingin Sensaos
with Fish-Eye Lensea for Forest Environments

Pedro Javier Herrera '*, Gonzalo Pajares’, Maria Guijarro °, JoséJ. Ruz*, Jes(s M. Cruz * and
Fernando Montes*

! Departamenb Arquitectura Computadores y Automdica, Facultad de Informdica, Universidad

Complutense, 28040 Madrid, SpaiftMails: jruz@dacya.um.es(J.J.R.)
jmcruz@dacya.ucm.€d.M.C.)

Departamenb Ingenied del Software e Inteligencia Artificial, Facultad de Informdica, Universidad
Complutense, 28040 Madrid, SpainrMail: pajares@fdi.ucm.es

Centro de Estudios Superiores Felipe I, Imgd Té&nica en informdica de Sistemas, 28300
Aranjuez, Madrid, Spain;#ail: mguijarro@cesfelipesegundo.com

Departamenb de Sistemas y Recursos Forestales, CHIOIR, Ctra. de La Corufa km 7.5, 28040
Madrid, Spain; EMail: fernando.montes@upm.es

* Author to whom correspondea should be addressdeiMail: pjherrera@pdi.ucm.es;
Tel.: +34 913947546ax: +34 913947547

Received23 September 2009; in revised form: 30 October 20808&cepted16 November 2009
Published:26 November 2009

Abstract: This paper describes a novehturebasedstereovision matchingrocessbased

on a pair ofomnidirectional images in foresttandsacquired with a stereovision sensor
equippedwith fish-eye lensesThe stereo analysjgroblemconsists of the following eps:
image acquisition, cameranodelling feature extraction, image matching and depth
determination. Once the deptbEsignificant points on thé&reesare obtainedthe growing
stock volume can beestimated by considering the geometrical canmeoaelling which is

the final goal The key steps are feature extraction and image matching. This paper i
devoted solely to these two steps. At a first stage a segmentation process extracts the trunks,
which are the regions used as features, where each featidemtiied through a set of
attributes of properties useful for matching. In the second step the features are matched
based on the application of the following four well known matclesiogstraints epipolar,
similarity, ordering and uniquenessThe combinaon of the segmentation andatching
processes for this specific kind of sensorake the main contribution of the pap&he

method is tested with satisfactory resaltglcomparedagainst the human experiterion
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1. Introduction

Forest inventories provide information on which forest management is based. Field surveys,
consisting of sample plots situated on a grid, atechniquethat has beemwommonly used irthe
elaboration of forest inventorig®r a long time[1,2]. The diameter of trees within these plots is
measured. Height, crown height and dimensions, bark thickness and other variables which are more
complex to measure are taken in a subsample of tedles second stage tree3,4]. Taper equations
are derived from the second stage trees and calculated for the sample to estimate the growing stoc
(the volumeof wood ina hectare).

In 2005 theSpanish Forest Research Centre (CIF@Rggrated intothe National Institute for
Agriculture and Food Research and TechnologMIA) patented theMU200501738 forest
measurement devicé prototype of the measurement deyiadapted for a Nikon® Coolpix® 4500
digital camera with a FCES8 fisheye lens anddevelopé by the firm Railway and Environment
Consulting(Consultod Ferroviaria y Medioambiental, S.L., C/ Isaac Albéniz, 33, Las Rozas, 28290,
Madrid, Spaip for the INIA, was used. This devicdocated during the image acquisition at a
known 3D position in andentifiable geographical directiomllows us to acquire twatereoscopic
hemispherical imagewith parallel optical axes

Fish eye optics systems can recover 3D information in a largeofieléw around thecamerasijn
our systenthisis 183°x 360° Thisis an important advantage becausgldws oneto imagethe trees
in the 3D sceneclose to the system from the base to the top, unlike in systems equipped with
conventional lenses where close objects are partially majgpeddditionally, the directand diffuse
light transmission within all directions of the hemisphere coming from the sky atloe/t obtain a
well contrasted image as compared to conventionak [6] This facilitatesthe segmentation process
described later iection 2.

Becausethe trees appear completely imaged, #hereoscopic system allows tlealculation of
distancedrom the device to significant points into the trees in the 3D scene, incldidingters along
the stem, heights and crown dimensions to be measured, as @eteamining the position of the trees.
These data may be used to obtain precise taper equations, leaf area oreabionaigons [7] As the
distance from the device to each tree can be calculated, the dens#gsofvithin a determined arean
be al® surveyedand growingstock;treedensity basal area (the section of stems at 1.30 m height in a
hectare) and other interesting variables may be estimated at forest stand level usisticaitati
inference [8]

Moreover, the images constitute a permanmenord of the sample point that allows measurement
error control and future data mining, which currently requires revisiting the @lotently, the above
mentionedmeasurements are manually obtained. An important goal is the automation of the mocess f
data acquisition. Hence, passivestereovisiorbasedsystemis a suitable techniquefor this task
because during the intervention the trees are not affected by the measurement
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According to P] we can view the classical problem of stereo analysasisting of the following
steps: image acquisition, camenadelling feaure extraction image matching andepthdetermination
These depths allow the computation of the see&surements mentioned above by considering the
geometrical and camemaoddling. The key steps are feature extraction and image matching. This paper
is devoted solely to these two steps. At a first stage a segmentation process extracts the trunks, whic
are the regions used as features, where each feature is idehtifiagh aset of attributes oproperties
useful for matching. In the second step the features are matched based on the application of a set «
constraing. This matchingprocess tries to identify the corresponding truinkdhe two images that are
cast by he samephysical trunkin the 3D space Additionally, in Section 3.1 we give details about the
depth determinatioand how the density in an area and the volume of a tree, among other variables
useful for forest analysis, could be estimated.

1.1 ConstraintsAppliedin Stereovision Matching

The sterewision sensor provides pairs of images belonging to the same scene capturedowith t
omnidirectionalcamerasequipped with fish eye lense$he camerasire separated given distance
among themidaseline). The corespondence problem can be defined in terms of finding pairs of true
matches, as explained below, in our approach pairs of regions in two images that are generated by th
same physicalementin the space.n the proposed methpthe regions to be matchadegenerated by
thetrunks ofthetrees. These true matches generally satisfy some constddht§l]) epipolar, givena
region in an image, the matched region in theosd image must lie followintipe called epipolar line
(2) similarity, matched reigns must have similaproperties or attributeg3) ordering the rehtive
position betweetwo regionsn animage is preserved in tlotherimagefor the corresponding matches;
(4) uniquenesseach regionn one image should be matched to a unicegion in the other image
although a region could not be matched because of occlusions

1.2 Techniques irstereovision Matching

A review of the stat®f-art in stereovision matching allows us to distinguish two sorts of techniques
broadly used in this diggine: areabased and featurebased Areabased stereo techniques use
correlation between brightness (intensity) patterns in the fogighbourhoodf a pixel in one image
with brightness patterns in the locedighbourhooaf the other imagell0]. Featue-based methods use
sets of pixels with similar attributes, normally, either pixels belonging to edbgd43], the
corresponding edges themsely&d-16], regions 7,18 or hierarchical approache$9 where firsty
edges or corners are matcheaat aftewards the regiondn [11] are usedegions withthe following
three specificattributes for matching: area, centroid and angles. They will be used ipropogd
approactbecause of their specific adaptabilitythe images provided by our sensor

An important amount of works use the attributes for matching by applying the similarity constraints.
In [20] these properties are: area, bounding box and statistical spatial moim¢i$, although under
a classification context, first and secosthtisticalmoments are used in th¢SI colour space these
properties ar@btainedfrom the histograms Also texture descriptors, such #ee filters banksareused
in [22]. In [23,24] invariant moments have beeatisfactorilyapplied where it is reported that the
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featurebased stereovision solution using moment invariants as a metric to find corresponding regions in
image pairsimprove the accuracy of the disparity measutdthioughin a different contextasit is our

forest environmentthe idea of accuracy cabe useful in our approachn [25] is proposed a
graphbased method to deal with segmentation errors in rdgased matching, the nodes in the graph

are potential pairs of matches and the arcs have assigned values taking into account a similarity
measirement amondhe regions under matchingy [26] the regions & extractedthrough acolour

based segmentation algorithm and the pixels belonging to the regions are matched obtaining a disparit
map, which is therrefined by applyingcooperative optimizatio through the adjusting of some
parameters in the disparities of the segmented rediofi27] the colouris alsoused for segmenting the
regions In [16] vertical linesare usedas features in omnidirectional imag@sdescriptolinvariant to
rotationsis computedThis rotation invariance is useful in our images, as we will see later.

1.3. Motivational Researcltand Contribution

Figure 1 displaysa pair of stereoscopi@omndirectional images which is arepresentative and
illustrative example of the sef sixteenpairs ofstereo imagessed in our experimentdll imageswere
acquiredwith poor illumination conditionsi.e., on cloudy dayswithout sunor during the dawn or the
late afternoonThe sensor ithe one describedbove with a baskne of 1 m. The imagesesolutionis
1,616 x 1,616 pixels, but only thevalid central area in the circle contiam 2045059 pixelsis useful

Figure 1. Original omnidirectional images of a stereo péal).Left one.(b) Right one

(b)

The original image are acquired in the RGB colour space. Figure 2 displays both images of Figure 1,
but enhanced through uniform histogram equalization [28], applied to the intensity component in the
HSI colour model after the transformation from RGB. Now the colour bes@xglicit. The kind of
images provided by the sensor under the illumination conditions mentioned above, represented by the
images in Figures 1 and 2, display a set of specific properties, which are exploited to design our
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proposed approach. In what follswve discuss about these specific properties oriented towards the
choice of the best design strategy as possible.

Figure 2. Enhanced omnidirectional images of the stereo pair in Figure 1 by uniform
histogram equalizatiorfa) Left one.(b) Right one

Our interest is focused on the trunks of the trees because they contain the higher concentration o
wood. Therefore, once we have clear that the stereovision matching constraints must be applied, now
the problem is to decide if we use atessedor featurebased approaches for matching the trunks. The
following is a discussion about which one to use.

Area-Based

(1) The matching is carried out pixy-pixel following the epipolar lines. It does not require a
previous knowledge about if the pixel wndnatching belongs to a trunk or not.

(2) The correspondence isstablished by similarity amonghe properties of the pixels under
matching. The main drawback is that in our images, the trunks and the grass in the soil display
similar spectral signatures. Tjhare both dark gsefor theimages in Figure 1 and green fbe
images of Figure 2. Hence, in the common parts where soil and trunks are confused the
identification of the tunks becomes a difficult task.

(3) The part of the image associated to the skyng kemogeneous and the matching pixel by pixel
also becomes difficult.

(4) Because of the above difficulties, if the correspondence were carried oubyppikl, after
matching we would need to identifye pixels belongingo the trunks.
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(1) It is the natural choice that a hurdaased system will use. Indeed, the matching should be
carried out by comparing trd®-tree in both images.

(2) The above implies that the human matches the trunks by applying shape similarities between
them and also by camering its location in the image based on the epipolar constraint provided
by the sensor. The ordering constraint also helps to make the matching.

(3) The near radiabrientation of the trunks towards the optical centre in the imagald be
exploited for natching

(4) The main drawback of featuteased in our specific problerfor theautomationprocessis that
the trunks must be identified previously and then a set of properties extifactedeir
identification

As one can seeach method has its advantagasddisadvantageso it is unclear which one is the
best. An important conclusion concerning both methods is that it is very important that the pixels
belonging to the trunks can be univocally identified and isolated. With such purpose and based on the
obsevation of the enhanced imagegyute 2, we have tried to apply textudentification methodsor
segmenting the treesnder different colour spaces following the work in2p]. The colour spaces
investigatedwere the classical oneRGB HSI, CIE XYZ Lab and Luy also the logopponent
chromaticityand additionally thered/cyan chromaticityproposed in 29]. From the point of view of
textures and based on the results obtained by the diffeodir spaces, we have applied techniques
based on statistit descriptors such as varianeed intensity averagdyoth investigated in 28], and
also Gabor filters3Q]. In [27], a method based ancolour cost function is used for matching, basically
for disambiguate false matcheBhe main problenmin our imagesis that concerning the similarity
between theolourand textures in the trunks and those in the édier several experiments,ashave
not achievedatisfactorilythe separation of these two kinds of textutesugh the above approaches
This means thathe trunks are not separable through these methdaiover, asnentioned before,
in [25] a graphbased matching method is proposed for merging and splitting regions that have been
incorrectly segmented. This facilitates the posterior matching prodssmentioned beforeniour
images the main problem is the separation of the trunks from thestetd of merging those regions.
When we try to identify the trunks, we always obtain a unique broad region bordering the outer
circumference in the valid age; thesplitting of this broad region, eed on intensity or texture
dissimilarities becomesa very difficult task Nevertheless,ni our proposedapproach weare able to
apply the splitting concept bundergeometrical considerations, as we will selWwewith satisfactory
results The method proposed j26] requires the computation of an init@¢nsedisparity map, which
is later refined by fitting a plane over the segmented regions. In our approach, an important problem is
that concerned witthe segmentation of the regions and tte@mputation of the disparity map

Due to the above handicaps aret&use of the spatial geometridatribution of the trees irach
staeo-pair, we have finalydesigneda newfeaturebased approacthat can ope with he problem of
separatinghe trunks from the soilSo, in the part of the image where the textures belonging to the
trunks canbe easily distinguished from those belonging to the sky, we separate theansigering
intensity dissimilaritiesand in the pdr where the textures belonging to the trunks and soil are
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indistinguishableve estimate the trungositionguided by thegeometricaknowledge derived from the
first part. After the segmentatiaf the trunksa set of properties obtained. Then the ajgation of

the matching constraints, involving similarities between properties and geometrical reiasaason
the sensor geometry, allowlse matchingpf the trunks inboth imageof the stereo paiin summary,

the full stereovision matching processvolves two main steps, namely: trunk segmentation and
correspondence of the trunks.

Figure 3 displayshe architecture of thproposed fulbrocessTwo images are available after their
acquisitionby the stereovision sensor. Unlike the classical stesewvisensors based on parallel optical
axes where the left andght images are captured by each camera located on the left and right positions,
in our omndirectional image based sensor no distinction can be made between left and right images.
Neverthelss, without loss of generalitgne image in thikind of sensors is called the left image and the
secondhe right one.

Figure 3. Scheme of thetereovison matching process
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Once the images are available, the full stereovision matching procesdscofnsize following two
main steps:

(1) Segmentationboth images are processed so that a set of regions, corresponding to the trunks,
are extracted and then labelled. Each region is identified by a set of attributes, including the Hu
invariant moments [28] hie position and orientation of the centroid and the area.

(2) Correspondencebased on these attributes and applying the stereovision matching constraints,
where the sensor geometry is specifically considered, the matching between the regions in both
images an be established.
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The main contribution of this paper is ttiesign of the specifisegmentatioprocess combined with
the correspondence orgoth definethe full stereovision matchingrocedurdor this kind of sensors in
the type of images considete@ihe performance of th@roposedautomaticapproach is compared
favourablyagainst theeriteria of the human expert, whigiocesses the images based on his expertise
but manually The proposed strategy is limited to the type of images described abagelypasquired
with poor illumination and high contrast between the sky and the trunks in the central part. Under
different conditions other strategies must be appliedeéd, in [31jan areebased matching strategy is
used for pinewoods.

1.4. PaperOrganization

This paperis organized as follows. IneBtion 2 we describe the procedures applied for the image
segmentation oriented to the identificationrefiions describing the trunkSection 3 describes the
design of thecorrespondenc@rocess by apphg the epipohr, similarity, orderingand uniqueness
constraints. Section 4 contaitise results obtained by the propostdreovision matching approach
under the criteria of the expdriman A discussion about them is also includ&ection 5 presentte
conclusions and future wo{ans

2. Segmentaton Process

As mantioned beforethe goalof the segmentatiois to extractautomaticallythe regions associated
to the trunks antheir properties, so that these regicas be matched in both images.

Based on th observation of the imagesocessed, represented by the mnEgure 1or equivalently
Figure2, the following details can be inferred:

(1) The Charge Coupled Devi¢€CD), in both cameras, igectangular, but the projection of the
scene througkhe fisheye lenses result on a circular area of the scene, which is the valid image
to be processed.

(2) In the central part of the image, until a given level, the sky and the tramkseasily
distinguishedbecause of its contradtnfortunately this does maccur in the outer part of the
valid circumference because the trunks and the grass in the soil display both similar spectral
signatures in the RGBolour space. They are dark gray in the imagé&igure 1 andgreen in
the enhanced image oiblre 2.

(3) Thetrunks display an orientation towards the centre; this means that 3Dtlseenethey are
near vertical. Nevertheless, there are some of them that are not exactly vartitaven
capricious forms could appearhis must be taken into account becausetedes uso apply
exactly thegeometricaradialpropertyduring the segmentation.

(4) The treesre clean of leaves in the branches, this facilitates their identification.

(5) Because the cameras in the stereovision sensor are separated by-the,ldasein our sensqr
the same tree isot located in the same spatial position in both irma@eelative displacement,
measured in degrees of angle, appears between corresponding mBbheksplacementsi
greaterfor the trees near the senghanfor thosewho are far.



Sensor009 9 947¢

(6) Depending on the position of each tree with respect each camera, the aftigeeteesappear
under different sizes, affecting the area ofithagedtrunk in both imagesA tree near the left
camera appears with an area in the left imagatgr than the area in the right one and vice
versa.

Now we are able to define the segmentation process based on the following steps according to the
above observations:

Step 1Valid image each CCD ha4,616 x 1,616 pixels in width and height dimensionsspectively.
Considering the origin of coordinates in the left bottom corner, the centre of the inacptesl in the
coordinates (808, 808The radiusR of the valid image from the centre 898 pixels So, during the
process only the image regiorsitke the area limited by the given radius is to be considbteceover,
we work with the intensity imaglein the HSI colour space obtained after the transformation fiR@®B
to HSI. This isbecausgas mentioned before, we have not achieved satisfa@suits with the studied
colour spaces and the imadecontains the spectral information of the three R, G and B spectral
channelsThe region growing procesapplied laterworks better in the originafriage Figure 1than in
the enhanced onejgtre 2 because of the similarity otte intensity values the originalone This
justifies the use afhe original images instead of the enhanced dreer, in section 4, we give details
about the protocol for measurings@ample ploin the forest, where theensor is located in the centre of
a circle with radius ranging from B to 25 m. Hence, aly the trunksinside circles with radius
below 25m are of interest and they ammaged with an appropriate area for their treatméme
remainder ones areqgectal with small areaand their treatments become complicated.

Step 2 Concentric circumferencesve draw concentric cireuferences on the original image,
starting with a radius = 250 pixels with increases &0 pixels untilr = R. For each circumference,ew
obtain the intensity profileThere are two main types of circumferences, namely: those in zones where
all trunks are well contrasted witespecthe background and those in zones where the background and
the trunks get confused. Figurépdisplays bth types of zones, the first ones are drawn in yellow and
the second ones in red. As one can gemyellow circumferences cross areas with the trunks over the
sky and the rednescross zones where the trunks and the soil appear with similar intexslty le

Step 3lintensity profilesand detection o€rossed darkegions following the circumferenc@aths
we draw the associatéatensity profilefor each oneFigure 4 displays two intensityqfiles covering a
range of 45 this representatioffom 13530 180°In the profile appeadow and high intensity levels.
The low onesare associatetb trunks or soil and the high onesthe sky.Based on the aboyé large
dark areas appear in the profile, this means that the circumference cross a reg@nhe trunks and
the soil cannot be distinguished and this circumference is lalasleeld This occurs in the Figure 4(a)
which represents low intensity values ranging from 0 to 0.18 over a range daf¢Q.dJarge dark area.
If no large dark areaare identifiedthe circumferencas labelled as yellowOn the contrary if a relative
small dark area appears limited by two clear areaspresents a trk; Figure 4b).
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Figure 4. Intensity profiles (a) The circumference cross a region where theks and the
soil cannot be distinguishe¢(b) Low and high intensity levels. The first are associated to
trunks and the second to the sky. Intensities vary from O to 1.
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Step 4Putting seeds in the trunksonsidering the yellow circumferersseve are able to detect the
trunks positions crossed by them, which are dark homogeneous regions in the profile limited by clear
zones, Figure 4(b). This allows choosing a pixel for each dark homogeneous region; such pixel is
considered a seed. Also, basa we know the transition from clear to clear crossing a dark
homogeneous region, we obtain the average intensity value and standard deviation for it. In summary.
from each dark homogeneous region in a yellow circumference, we select a seed and ab&riages
intensity value and standard deviation.

Step 5Region filtering:we are only interested in specific dark regions, considered as those that
represent trunks of interest. The process of selecting them is as follows, Figure 5(b).

a. We consider only tse dark regions in the profilevhere the intersection witlyellow
circumferences produces a line with more thAarpixels. This is to guarantee that the trunk
analyzed isvide enough. Its justification is because we assume that this kind of trunks belong
thearea of interesinder analysig,e., to thecircle with radius lesser th&¢bm

b. Also, based on the yellow circumferenceg, enly consider the regions with intensity levels less
thanT, because we are dealing with dark homogeneous regions (trunks)

c. Considering the outer yellow circumferengewe select only dark regions whose intersection
with this circumference gives a line with a number of pixels lower Taaithe maximum value
in pixels of all lines of intersection i_, <T,. Then for the next yellow circumference towards
the centre of the images.:, T, is now set td,_ , which is the value used when the next

circumference is processeahd so on until the inner yellow cinetfierence is reached. This is
justified because the thickness of the trunks always diminishes towards the centre.

In this work, Ty, T, andTszare set to 10, 0.3 and 120 respectively, after experimentation.
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Figure 5. (a) Yellow and reddrawn circumferences(b) Homogeneous regions dravim
blue and seed® red. (c) Resultingimage obtained with theegion growingprocess.(d)
Resultingimage obtained with thiabelling process.

(c) (d)

Step 6 Region growingthis process is based on theqedure described in [28], we start in the
outer yellow circumference by selecting the seed pixels obtained in this circumference. From these see
points we append to each seed those neighbouring pixels that have a similar intensity value than the see
The similarity is measured as the difference between the intensity value of the pixel under consideration
and the mean value in the zone where the seed belongs to, they do not differ more than the standar
deviation computed in step 4 for that zone. Theioreggrowing ends when no more similar
neighbouring pixels are found for that seed between this circumference and the centre of the image. Thi
allows obtaining a set of regions as displayed in Fig(zke 5
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Step 7Labelling before the labelling, an opegirmorphologic operation is applied. The aim is to
break joined links, to avoid that some branches of the trees overlapping other branches or trunks lead t
label two trees or trunks as a unique region. The structural element during the opening is the
classical 3x 3 matrix of ones because it is symmetric operating in all spatial directions. The regions
extracted during the previousgion growingare labelled following the procedure described in [32].
Figure %d) displays this step.

Step 8Regions and sees associationfor each one of the seeds in the outer yellow circumference,
we make to correspond to each seed its region identified before. It is possible that more than one see
turns out to be belonging to the same reglbithis occurs, we create nesggions, so that finally we
obtain the same number of regions than se&ftist: this stepeach region has assigned a unique seed.

Step 9Seeds associatiomve check for the other seeds in the remainder yellow circumferences. If a
seedfulfils that it isthe nearest iterms ofpixel distance and its angle in degrees the most similar to the
angle of the previously checked seed, then it belongs to the same region that the seed checke
previously, which is the reference. The angle in degrees id tladuein polar coordinates; (,) dith
respect the seed location i€artesian coordinates X,y). This process allows establishing
correspondences among the seeds of the different yellow circumferences depending on the region t
which they belong, Figure 6(a)e., to identify seeds that belong probably to the same region (trunk).
We compute the average orientati@, for all seeds belonging to the same region identified according
to the process described in this point.

Step 10Estimaton of the seeds locations in the red circumfereniteonsists of three sub steps,
prediction correctionandmeasurement

a. Prediction the pixels belonging to a trunk crossed by a red circumference must have identical
orientation, in degrees, that theedan the outer yellow circumference crossing the same trunk.
So, we obtain the seeds in red circumferences fulfilling this and starting from the inner one.

b. Correction since there are trunks that are not aligned towardsdehee the predttion can
introduce mistakesAn offset value is applied to this location, which is exastlycomputed in
step 9, Figure 6(b).

c. Measurement after the offset correction, we verify if the estimated seed in each red
circumference belongs to a bt This is only possible if the red circumference crosses a region
with low intensity values limited by zones with high intensity values and the estimated seed
location is inside the region with low values. With thige assume that the seed bebtathe
same trunk that the seed in the yellow circumference. Because of the contrast in the intensity
profile for the red region in the specific trunk, we can measure the exact seed location in the
central part of the low intensity region. The estimated sematito is replaced by the measured
one and used for estimating the next seed location in the next red circumference. If the profile
does not display low and high intensity values, no measurements can be taken and the next see
location is the previously esiated bypredictionandcorrection
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Figure 6. (a) Seeds classifiedepending on the region to which they belong. By clarity we
can see the classified seeds painted with the satoar. (b) Resultingimage obtained with
the steps:prediction and correction. The £eds are drawn in red. Each region is delimited
with yellow pointstaking into account the associated yellow circumferen@sResuling
image obtained with the secorebion growingprocess(d) Resuling imageobtained after
therelabelingprocess.

(c) (d)

Step 11Newregion growing starting on the outer yellow circumference, we apply again a new
region growing process as the one described in the step 6, but now controlled by several iterations
(so many iterations as redraumferences). For each iteration, the region growing has its upper limit
given by the radius of the nearest red circumfere®ree the outer red circumference is reached,
maximum number of iterations, the region growing ends; at this moment amgpaorphologic
operation is applied trying to break links between regions (trunks) which could be still joined. The
structural element used for the opening is the same that the one used in step 7. Figure 6(c) display
this step.
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Step 12Relabeling:this process is similar to the one described in step 7. Wabekeach one of the
regions that have appeared after the region growing process in step 11, Figure 6(d).

Step 13Attributes extractiononce all regions have beeslabelled for each region wextract the
following attributes: area (number of pixels), centrowgtdveraged pixel positions in the region), angles
in degrees of each centroid and the seven Hu invariant moments [28].

3. Correspondence Procss

Once the segmentation process hashigds we have available a set of regions identifying trunks in
both images of the stereo paltach regpn has associated the above mentioned attributes (area,
centroid, angles and Hu invariant moments).

As mentioned irBection 1.1, m stereovision matchgnthere are a set of constraints that are generally
applied br solving the matching problerm this work we have applieé@pipolar, similarity, ordering
and uniqueness

Now, weuse conveniently the attributes according to the requirements of each iobnstravhat
follows, Sectiors 3.1 to 3.3, we eXpin how the correspondenpeocesss carried out.

3.1.Epipolar. Centroid

The centroid ofach region is used undtre epipolar constraintas a guide for matching as we
explain below Based on the seosgeometrythe epipolaidines can be established as described below.
Figure 7displays thestereo vision system geometry][ The 3D object poinP with world coordinates
with respect to the systemX;( Y1, Z;) and ¥z, Yz, Zy) is imaged asx(3, yi1) and (X2, Vi) in imagel and
image2 respectively in coordinates of the image systenand a, are the angles of incidence of the
rays fromP; y,, is thebaseline measuring the distance between the op#gas in both cameras along
they-axesy is the distance between image point and optical BXsthe image radius, identical in both
images.

According to [33], the following geometatrelations can be established:

r _ 1)
r :m; alz'g—R; b =197 (Yu/ %)

Now the problem is that the 3D world coordinat¥g {Y1, Z;) are unknown. They can be estimated
by varying the distance as follows:

X,=dcosb: Y, =dsinb; Z, =/ X} +Y12/tan51l

From (2) we transform the world coordinates in the sysDeKaY1Z; to the world coordinates in the
systemO,X,Y,Z, taking into account the badiee as follows:

X, =X Y, =Y, Hy, Z,=2Z, (3)

(2)

Assuming no lenses radial distortion, we can find the imaged coordinates of the 3D point # image
as B3:
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&2:2Rarctar(«/X2:\g/Zz); .. _2Rarcta(1/ )§2+Y/ ;)
p\/(Yz/ Xz) +1 R/( Xz/Yz) .

Figure 7. Geometric projections and relations for the-fiske based stereo vision system.

(4)

Because of the system geometry, the epipolar lines are not concentric circumferences and this fact i
considered for matchindgzigure 8(b) displays six epipolar lines in the right image, which have been
generated by the six pixels located at thsitmmns marked with the squares; thaye their equivale
locations in the left imagd-jgure 8(a)]

Using only a camera, we capture a unique image and each 3D point belonging toCDf_I%, lise
imaged in(X, Yi1). So, the 3D coordinates Wwita unique camera cannot be obtained. When we try to
match the imaged poirii, yi1) into the image2 we follow the epipolar linei.e., the projection of
@over the image. This is equivalent to vary the parameden the 3D spae. So, given the imaged
point (X1, Yi1) in the imagel (left) and following the epipolar line, we obtain a list mfpotential
corresponding candidates represente@xbyy.,) in the image2 (right). The best match is associated to
a distancal for the 3D point in the scene, which is computed from the stereo vision system. Hence, for
eachd we obtain a specifi€x., Yi»), SO that when it is matched wifk, yi1) d is the distance for the
point P from the sensorOur matching strategy identifies comesdences between regios
simplifying correspondences betwedwo image pixed (X1, Vi) and (X., Yi2). Based on this
correspondence we start fragquation (1)and then we givealues to the variabld until the values of
(X2, ¥i2) obtained througltquation(4) are equal oms closeas possible to the ones obtained by the
stereovision matching process. Sz obtain the value o that tkest fits both pixels, it igrom the
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sensor to the 3D poirR, Figure7. A distance from the sensor to the centmfich region determines

the distance to the treergpresentsyith this distance we make the decision alitsitnclusion in the
sample plot for tree density and basal area estimation. From the central angle coveretiunkthe
width and the distance fnothe sensor, the diameter of the tree can be measured at different heights on
the stemAlso we can compute distancem the sensor t@oints inthe base and the top of a tree

with these distances and using the angles of projegtainained withEquation (1)for these points, we

can compute the hght of the tree by applyingrigonometric rules such as the cosine theorem. The
above reasoning is alspplicablefor computingdistances to significant points; this allows to measur
other variables describedtine introduction.

Figure 8. (a) Left image marked with sisquares(b) Epipolar lines in the right image
generated from the locations in the left image marked with the squares.

(b)

Based on the above, given a repiare in the left image, following the epipolar line in the south
direction we will find the corresponding matching, Figure 8(b). This implies that given a centroid of a
region in the left image its corresponding matching in the right image will be pyobatble epipolar
line. Because the sensor could introduce errors due to wrong calibration, we have considered an offse
out of the epipolar lines quantified as 10 pixels in distance. Moreover, in the epipolar line, the
corresponding centroids are sepadatea certain angle, as we can see in Figure 8(b) expressed by the
red and blue squares. After experimentation with the set of images tested, the maximum separatior
found in degrees has been quantified in 22° Obviously, the above is applicable cogsiderifeft
image as the reference, but if we consider the right one as the reference, the search for correspondenc
in the left one is made in the opposite direction. Based on the work of [34], given a centroid of a region
in the left image we search fiis corresponding centroid in the right one following the epipolar lines
drawn in Figure 8(b) and then given a centroid in the right image, we search in the reverse sense in th
left one, also following the epipolar lines.
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3.2 Similarity: Areasand HuMoments

As mentioned before, each region in hddit andright imagesof the stereo pair has its own set of
properties. The Hu moments are invariant to translations, rotations and scale change. Of particular
interest is the invariance to rotations bessthe trunks appear rotated in the right image with respect
the left one and viegersa. This is an important advantagehese moments fahe matching.

On the contrary, the scale change represents a disadvantage because a large region in one ima
could be matched with a small one in thiaerimage, both with similar form and aspect.

Due to the sensor geometgtreecloseto a camera isnaged under an area greater thararean
the other camera. This implies that the correct matches genesaligydilifferent area values.

To overcome the above problemsd simultaneously exploit all available informatiprovided by
the sensor geometrywe define the following procedure. Before describing it, let us introduce
some definitions.

Say{L,L,,...L.} and{R, R,..., R} two sets of feature descriptors representing the segmented and

labelledregions in the left and right images respectivdla stereo pair supplied by the senddic and
NRare the number of features in the khd right image respectively.

Each featurd.; contains: the area\(), the centroid X, y;) and a vector with the seven Hu invariant
momentsh 1 {fl' .., ‘7}fi Aie, L1{A (x,y).h}. Similarly, for R { A, (x, y),h} where as

before h, 1 {1‘1J A '7}’ I ABecause the seven moments range in different scales, we map linearly
each Hu moment to rangethe interval [0,1] as follows:
h -
Fr =l M hoijandk=12,..7 )
M, - m
where M, = max{ff(, ,{} andm, = min{ff(, ,[} RN
Then, say
Di={| k -1F i 12.NR.k 12..J (6)

is the set of all distances between a given compoRertnd allF), j = 1, 2, € , NR Instead of

computing a distance for matchibgtween the vectoits and allh;, we have preferred to compute the
individual distanceB; . This is justifiedbecause each moment normally contributes in a different fashion

as an attribute for the matching between featlresnd R, so when using distances between those
vectors, such as the Euclidean one, the individual contributions could be masked.

Now the problem is: given a featuein theleft image whichits matched featurR, is in the right
image? Following the work ofScaramuzzaet al. [16] we establish the following conditions, derived
from the Hu invariant moments that must be fulfiled. S@ndR, match, based df, andF | if:

A d = min{ DK} . This meanshatthe minimum distance is indeettained forF, andF ) and

it is smaller than a fixed threshold, i.e., only small distances are accept&dis set to 0.3 after
trial and error.
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B. d = min{ DK} <'I;< DK> This means that the minimum distance is smaller enough than the mean
of the distances from all other distances between features, ‘(\m'g)es the mean value db;

andT; is a threshold ranging from 0O fio It has been set to 0.5 in our experiments, because we
haveverified that it suffices as if16].
C. the rate betweed, and the second minimum distamfle= min{ q} withh=1,2,é , NRand

h, j,is smaller than a threshold, set to 0.3 in our experiments. This guarantees that a gap

5

between the absolute minimum distance and the second one exists.

As mentioned before, because the sensor is built with two cametias given baseline, the same
tree in the 3D scene can be imaged under different areas in both images. This issue has been address
in [35] where an exhaustive study is made about the different shapes in the images of the same 3C
surface in conventional sensors. Here, it is statedtkiese is not a unique correspondence between a
pixel in one image an other pixel in tbéherimage. This is an important reason for using regions as a
featurebased approach instead of albemed because the above problem does not occur. Now two
trunks, which are true matchesne belonging to an image and the other to the seaamddisplay
different areas. Therefore, we formulate the following condition for matching twone by
considering both areas:

D. The areag\ andA do not differ betweethemmore than the 33%.
3.3. Ordering:Angles

The relative position between two regions in an image is preserved in the other one for the
corresponding matcheshe ordering constrairatpplicationis limited to regions with similar heigs and
areas in the sae image and also if the areas overpass a thre3hadt t06,400 in this paper.The
similarity is defined, as aboyin the point D,.e., with relative differences belothe 33%.This tries to
avoid violations of this constraint based on closenesseandteness relations of the trunks with respect
the sensor in the 3D scene (seet®n 4.2 for detils in the stereo pair displayed), which are applicable
to the remainder stereo pairs analyzed.

Then, gven an order fothe trunks in the left image, thi®nstraint assumebat the same order is
kept in the right one fathe respective corresponditrginks and vice versa, Figure 1a,b

To apply this constraintwe obtain the coordinates of the centroideach regiorto calculateits
oriertation in degrees

The following pedagogical clarifies this. Inigure 9b, the trunklabelledas 2 in the left image
matches to thé&belledas 1 inthe right one. The regiolabelledas 1 in the left image matches to the
labelledas 5 in the right one. Following theockwise senseegionl is found befor@egion2 in the left
image and their corresponding matches preserve this darders is found beforel in the right image.
The criterion Af ound beforeo i s established
respective centroids.
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3.4. Summary of thieull Correspondence Process

Based on the aboythe full matching process can be snamized as follows:
Correspondence Left to Right

For each regioh; in the left image we search for candidaRe# the rightimage, according to the
steps defined below.

1. Apply epipola constraint:we only consider potential matchetL; thoseR, regions thatulfil
the epipolarity, as defined in the subsection 3.1. After this dtepas agpotentialcandidates a
list I; of n regions in the right image, say* L, - {31%} , where j1,jnT {1,...NR}

2. Apply thecondition Dgiven inSection 3.2to the listl;. Exclude froml; those cadidates that do
not fulfil suchcondition D.

3. Apply conditions A to Cgivenin Section 3.2to the current list;. For each pairlj, Ry)
obtained from;, determine ifL; andR,, matchbased on th&" Hu moment according teuch
conditions A to CDefinelk asthe number ofhese individuamatches

Correspondenc®ight to Lef.

4. For each regiomR in the right image we search for candidate# the left image, following
similar stepsto the previous onefNow a listr; of candidates is built and a numbdr of
individual matchess obtainedaccording to the Hu invariant monts. The epipolar constraint is
applied following the same lingsan those used for Left to Righit in the reverseense

Final Decision Simplemajority andUnigqueness

5. We say thal; matches withR; iif Ik +rk *J, whereU has beerset to 7 in our experiments.
This value has been fixed taking into account that the maximum value that tHie sdkncan
achieve is 14i.e., a value geater than 7 represents the majority.

6. If the matching betweebh, andR is unamiguousthe correspondence between both features is
solved; otherwise in the ambiguous case, where the aboveiconglifulfilled by more than one
match, then we apply the ordering constraint based on the unambiguous correspondences whicl
have been alreadgolved. This implies the application oboth ordering and unigueness
constraing simultaneously

4. Results

The final goal is to obtain measurements about the tresample plots, typically circular shaped
with radius ranging from 5 to 2%, locatedn the forest stand at distances ranging from 100Q001m
from each other. With such purpose, the stereovision sensor is located at the centre of the plot. The
images contain trees belonging to the sample plots and also trees out of the sampleIpltts. fiGn
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ones are of interest. Although some trees out of the plots are processed by the gassoin
Section 4.1, thewre ofno interest

The centres of the plotare known 3D geographical positions previously obtained via.GPS
Moreover, as meitned during the introduction, the sensor is positioned under the identifiable
geographical direction normally the left camera oriented towards the North and the right one toward the
Southand both with théaseline of 1m. This allows that different measments spaced in the time,
probably years, are obtained under the same criteria. This alloe® compare the values of the
variables measured in different tireasd derive annual incrementche tests have been carried out with
sixteenpairs of stereamages. The pair of images displayed in this work is a representative example of
them including all relevant aspects described during the introduction, which characterize this kind of
sensed images. Because our proposal consists of two phases, someationsidean be made about
each one.

4.1. Segmentation

Figures @,b displays the regionextractedoy the segmentation process. Eaefjionappeardabelled
with a unique label. The number near of the regions identieblabd. This number is represtad as
acolourin a scale ranging from 1 to 14, where 1 is blue and 14 orange. This representation is only for a
best visualization of the regions.

Figure 9. Labelling regions:(a) left image,(b) right image. Each region appears identified
by a unique nonber.

From Rgure 9, the following conclusions can be inferred:

1. The regions have been well separated, even if there were regions very near among them. This
occurs with the regions 10 and 11 or 18 and 20 in the left image and also withitms &g
and 10 in the right one.
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2. The procedure is able to extract regions corresponding to trunks, which are relatively far from
the sasor,i.e., out of the area ahe sample plotwhich is the area of interest. This occurs with
the regiondabelledas 4 5, 18, 19 and 20 in the left image and 2, 17, 18 and 19 in the right
image. Although such regions are out of the interest, we have preferred inatudefor
matching because in the future perhaps the sensed area could be exieraiedrea greater
than 25 m and also to verify the robustness of the correspondence process. Its exclusion is an
easy task because theyfalfil that their areas are below a valie6,400 pixels which is the
thresholdT, applied for the ordering constraint

3. Through the maghological operations, the process is able to bredds llsetween regions,
allowing their identification. This occurs betweemgions 5 and 8 in the right, where two
branches are overlapped. Without this brealiagh regions ar@abelledas a unique regn and
its matching with the corresponding regions in the left image, which are sepaisated,
not possible.

4.2.Correspondence

At this stage we can compare the original stereg@nalisplayed ifrigures 1(a) and (bywith the
labelledones inFigure 9. It does not turn out to be difficult to determine the correspondences in this
stereo pair based on our human observation.

In Table 1, the first columdisplays the number ddbelledregions (trunks) in the left image and the
second column thmatchedegions in the right imagaccording to the human experiterion

The third and fourth columns display tHk andrk individual matches, as describedsection 3.4
Finally, the ffth column shows the finalecision in terms of successful decision (8upsuccessful (F)
according to the criterion of the human observation through the matches established in the first and
second columns.

Table 1.Resultsobtained using H momentgor matching regions in both stereo pairs

Left image regions Corresponding right Final decision
. ) Ik rk .
Li image regions(R) matching
1 5 7 7 S
2 1 7 7 S
3 3 7 7 S
4 2 7 7 S
5 4 7 7 S
6 no match 0 0 S
(hiddenby 5) (unmatched)
7 6 7 7 S
8 8 4 5 S
9 10 6 7 S
10 7 7 1 S
11 9 7 7 S
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Table 1.Cont.
12 11 7 3 S
13 12 1 7 S
14 13 7 7 S
15 14 7 7 S
16 15 7 7 S
17 16 7 7 S
18 17 2 4 F
19 18 5 6 S
20 19 4 3 F

Fromthe results in @ble 1, we can infer the following conclusions:

a.

Overall, the combination of the two proposed processes, segmentation and correspondence, ar

We can see that regiofebelledas 2, 1 and 3 in the left image match with regions 1, 5 and 3
respectively in the right image. Without the limitation of the ordering constraint with respect
heights and areas of the regipssction 3.3this constraint should be violated by the region 3 in
the left image because the ordering with respect the eduplith 5 is not preservedh this
case, the ordering is appliedly between regions 2, 1 in the left image and 1 and 5 in the right
one The heights and areasfil the requirements given in section 3.3. The ordering constraint is
violated forthe cae of regions 19, 18 and 20 in the left image, which correspond to 18, 17
and 19, while the order is 18, 19 and Based on theequirements in &tion 3.3, theyulffil

that the areado not differ more than the 33% hbiliey fails for the requirement thtie areas
must overpass the threshdig i.e., in this case the ordering constraint is not applied.
Occlusions: we have found a clear occlusion that has been correctly handled. Thes risgion
visible in the left image and its corresponding match isuded by5 in the right imageOur
approach does not find its match, as expected.

Ambiguities: there are two types of ambiguities which arise inside the area of intetbet
sample plotand outside this area. To the first case belongs the ambiguitgdretive region 13

in the left image and regions 12 and 7 in the right image. To the secondbetasgthe

regions 18 and 20 in the left image, where both have as preferred matches the regions 17 and 1

The first case is solved thanks to the applicatibthe ordering constraint. Unfortunately, in the

second case this constraint does not solve the ambiguity causing erroneous matches.

Nevertheless, we still consider that its applicatiofaw®urablebecause it works properly in the
area of interest. Alibugh this could be a limit for extending the area of interest.

The percentage of successful correspondences in the stereo pair displayed in this paper i
the 90%. On average, the percentage of success for the sixteen stereo pairs of images analyze

with smilar characteristics is the 88.4%.

suitable and robust enough for the kind of images analyzed.
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5. Conclusions

In this paper we have proposed automaticfeatue-basedstrategy for stereovision matching in
omnidirectional imagescquired by a sensequipped withtwo fish-eyelensesWe have designed two
sequential processes: segmentation and correspondence. Several image processing techniques :
applied for etracting regions (trunks) as features and their associated attributes. Based on these
attributes and on the specific geometridakign of the sensor, we appbur well-known matching
constraintsn stereovisionepipolarity, similarity, ordering and uniquenesgfor matching the regions
during the correspondence proceBse combination of these two processes makes the main finding of
the paper for this kind of sensasd for the type of images analyzed

The proposed approach is compared against theriorit applied by a human expert, which
determines the correct matchEgally, althoughthe proposedtereovision matching strategy, based on
fish eye lens systemis this work has been primarily developed to improve the accuracy and reduce the
costs inforest inventories, these technigumuld be easily adaptedr navigation purposem forest
with similar characteristicto the ones used in our experimerits., light environments This kind of
systems has been already used for robot naviggg&jn
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