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Abstract: An immunoassay performed on a portable microfluidic device was evaluated for 
the determination of urinary albumin. An increase in absorbance at 500 nm resulting from 
immunoagglutination was monitored directly on the poly(dimethylsiloxane) (PDMS) 
microchip using a portable miniature fibre-optic spectrometer. A calibration curve was 
linear up to 10 mg L–1 (r2 = 0.993), with a detection limit of 0.81 mg L–1 (S/N = 3). The 
proposed system showed good precision, with relative standard deviations (RSDs) of 5.1%, 
when evaluated with 10 mg L–1 albumin (n = 10). Determination of urinary albumin with 
the proposed system gave results highly similar to those determined by the conventional 
spectrophotometric method using immunoturbidimetric detection (r2 = 0.995; n = 15). 
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1. Introduction 

Detection of albumin contents in the range of 30–300 mg L–1 from 24-hr urine samples, known as 
microalbuminuria, is commonly accepted to be a sensitive forecast of the outcome of nephropathy 
complications in diabetic patients [1,2]. According to the American Diabetes Association’s guidelines, 
every diabetic patient should be tested annually for microalbuminuria [3]. Because albumin contents in 
urine are usually low, a sensitive and selective method for an accurate assay is essential. 

Several methods have been proposed in the literature for the determination of urinary albumin. 
Among these, the most routinely used methods are based on immunoassays, due to their high 
sensitivity and selectivity. These include radioimmunoassay [4], immunoturbidimetry [5], 
immunonephelometry [6] and enzyme-linked immunosorbant assay (ELISA) [7]. The 
radioimmunoassay is currently not widely used because of its health hazards, although it is claimed to 
be a “gold-standard” method [8]. Numerous time-consuming and tedious washing steps are found in 
the more sophisticated ELISA immunoassay, leading to its disfavour for routine operation. Currently, 
the immunoturbidimetric method is widely used in most clinical laboratories, and it can be performed 
in an automated format in parallel with other biochemical tests in the same device. Although 
significant advantages have been found in the automation of immunoassays, these machines are 
relatively expensive, usually costing between $50,000 and $200,000 [9]. In addition, these systems 
require significant laboratory space and are not adaptable to use as portable devices. Furthermore, 
assay with the conventional instruments is known to consume large amounts of expensive  
antibody reagent.  

Several developments have been explored in an effort to downscale many assay systems, leading to 
the concept of micro-total analysis systems (μTAS) or “lab-on-a-chip” systems, which are undergoing 
rapid development. Microfluidic systems are an emerging paradigm of lab-on-a-chip technology, for 
which several advantages have been demonstrated, including low reagent and sample consumption, 
fast analysis time and potential portability [10]. Immunoassays are mainly found in clinical analysis, 
since they benefit from the very high selectivity and affinity of antibody/antigen systems. The tests of 
latex agglutination reaction are generally simple, cheap, highly specific and do not require specialised 
skills [11]. In addition, improvements in the performance of the agglutination tests have been 
continuously attempted to remain competitive with other techniques such as ELISA [9]. Therefore, a 
miniaturised scale of assay for the latex agglutination immunoassay was deemed worthy of 
development. The use of microfluidic systems for clinical diagnostic applications has been reviewed 
extensively in the literature [12–15]. 

In this work, we demonstrated the potential of a portable microfluidic system for albumin 
determination that reduced reagent consumption several-fold. The latex agglutination reaction was 
performed on-chip, and the absorbance changes were simultaneously monitored. Absorbance detection 
is classified as an unconventional detection method for microfluidic devices due to the short optical 
path length and the difficulties in coupling the light into and out of microchannels [16]. In an attempt 
to increase the sensitivity of absorbance detection in a microfluidic chip, a simple custom-made flow 
cell with a 1-cm path length, similar to a standard cuvette, was fabricated. In our approach, the optical 
fibres were horizontally aligned at 90° to the fluid flow. Poly(dimethylsiloxane) (PDMS) has become 
one of the most widely used materials for microfluidic system. PDMS-based microfluidic 
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immunoassays have been previously reported in the literature [17,18]. Attractive for its simple 
fabrication and low cost, its relatively low refractive index and optical transparency to wavelengths 
above 230 nm [19,20] have enabled its successful utilisation for on-chip immunoassay and absorbance 
detection in our system.  

2. Results and Discussion 

2.1. Reaction Time  

The immunoagglutination reaction, the formation of a complex between albumin and antibody 
immobilised on latex beads, was proposed for the kinetic detection of urinary albumin. The initial rate 
of the immunoassay was investigated. Urine samples were diluted 30-fold before analysis, and the 
protocol described in Section 2.5 was followed. As shown in Figure 1, the agglutination kinetics was 
noticed to be rather slow, which might be due to the use of surfactant-free latex beads. Surfactants can 
be utilized to improve the diffusion of particles as well as to enhance antigen–antibody binding [21]. 
With regard to our experiment, the results demonstrated that a linear response was obtained for an 
assay time of up to 2 min. It was observed that at longer reaction times a plateau trend appeared. 
Longer incubation times are not recommended for kinetic immunoassays because they lead to  
non-specific agglutination and decreased reproducibility [22]. Thus, in our study, the optimal reaction 
time for each albumin assay was 2 min.  

Figure 1.  The time course of absorbance change measured at 500 nm by the 
immunoagglutination reaction. Each point is the mean value from duplicate assays; the 
error bars represents the standard deviation. 
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2.2. Effect of Carrier-Buffer pH 

In our experimental design, the streams of latex reagent solution and albumin standard solution or 
urine sample were introduced to the system simultaneously by using individual injection valves. The 
carrier buffer delivered both solution streams to the microchip. The pH of the carrier buffer was 
studied and optimised since dispersion of reagents and buffer can influence the rate of 
immunoagglutination. The effect of carrier-buffer pH on the rate of the latex agglutination reaction 
was studied over the range of pH 6–9 with 5 mg L–1 albumin. The results, shown in Figure 2, implied 
that pH 7.5 was the optimum for this assay since the highest signal was obtained at this pH value. 
Performing the assay at near-neutral pH was also advantageous in terms of the stability of the tubing in 
the flow system. 

Figure 2. Effect of pH on the rate of immunoagglutination reaction. Solid circles ( ),  
20 mM phosphate buffer; open circles ( ), 20 mM Tris-HCl. 

 

2.3. Effect of Temperature 

Temperature is one of the factors affecting the immunoaggregation rate, and its velocity is very 
sensitive to small temperature changes; therefore, the effect of varying temperature on the assay 
reaction was studied. The optimised temperature chosen was employed for the microfluidic 
immunoassay by means of a temperature controller. As shown in Figure 3, it is apparent that the 
sensitivity of the reaction increased with temperature. Although at 40 °C the highest signal was 
observed, this high temperature was eliminated in order to avoid protein denaturation. In addition, we 
observed that air bubbles were easily generated at this temperature. The sensitivity gained from 
performing the reaction at 37 °C was about 90% of that at 40 °C. Generally, performing the reaction  
at 37 °C is a common protocol for most immunoassays. For this reason, we kept the temperature 
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constant at 37 °C during all experiments, by means of the temperature controller. However, the 
reproducibility obtained at both 37 °C and 40 °C was quite poor, which might possibly be due to the 
flow rate inaccuracies of the pump. 

Figure 3.  Effect of temperature on the rate of immunoagglutination reaction for 
determination of urinary albumin.  

 

2.4. Calibration Curve and Limit of Detection 

A 100-µL aliquot of latex reagent solution and 5 µL of a standard solution of albumin were injected 
into the system via different injection valves. A typical curve for the albumin assay, shown in  
Figure 4, indicates that at a concentration of albumin higher than 10 mg L–1, the absorbance signal 
dramatically decreased. This could be explained by the “hook effect” or post-zone phenomenon [23], 
which is attributed to the presence of excess antigen. As shown in the inset, a linear response was 
obtained in the range of 0 to 10 mg L–1 albumin (r2 = 0.993). The limit of detection (LOD) was 
calculated from ten replicate assays of the blank sample. Based on a signal-to-noise ratio (S/N) of 3, 
the detection limit obtained for albumin was 0.81 mg L–1.  

Comparing to other microfluidic immunoassays, our method achieved much lower sensitivity than 
others. For example, Yoon and You [24] described the backscattering particle immunoassays in  
wire-guide manipulation with achieved detection limit as extremely low as ~1 pg/mL.  

However, our detection limit as low as 0.81 mg L–1 was sufficient to detect the urinary albumin, 
especially in the stage of microalbuminuria. For the early detection of microalbuminuria, a detection 
limit of 1 mg L–1 is desirable. With respect to urinary albumin analysis, our proposed system was 
slightly more sensitive than such previously described methods as HPLC [25] and the 
immunoturbidimetric method [26], which were able to obtain detection limits of 6.1 mg L–1  
and 2 mg L–1, respectively. 
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Figure 4.  Analytical curve of the microfluidic immunoassay for determining urinary 
albumin. Inset, a linear range was achieved at 0–10 mg L–1 (r2 = 0.993).  

 

2.5. Interference Effects 

To study the effect interfering substances on the determination of albumin, several common 
interfering substances were added to the human serum albumin standard (5 mg L–1). The results, 
shown in Table 1, indicate that 0.2 mg L–1 haemoglobin, 3 mg L–1 IgG, 3 mg L–1 transferrin, 80 mg L–1 
bilirubin, and 1,500 mg L–1 NaCl each interfered slightly in the system, as recovery ranges  
from 110–115.3% were obtained.  

Table 1. Effects of the tested substances on the determination of urinary albumin using the 
proposed microfluidic system. 

Tested substances Concentration (mg L–1) %Recovery 

albumin 5.0 100.0 ± 3.7 
haemoglobin 0.2 110.0 ± 2.8 
IgG 3.0 111.3 ± 0.9 
transferrin 3.0 115.3 ± 2.8 
bilirubin 80.0 114.0 ± 0.9 
NaCl 1,500.0 110.7 ± 1.8 
ascorbic acid 200.0 101.3 ± 3.7 
glucose 1,250.0 100.0 ± 0.0 

 
These slight interferences could be explained by cross-reaction of the antibody with other proteins, 

especially in high-concentration conditions. These findings confirm observations reported previously 
in the literature [22]. At high concentrations, the colour of bilirubin is known to disturb the absorbance 
measurement and generate noise signals. Moreover, this immunoassay requires optimal ionic strength; 
therefore, a high concentration of salt might disturb the agglutination reaction [23]. With our system, 
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200 mg L–1 ascorbic acid and 1,250 mg L–1 glucose were not found to significantly interfere with the 
experimental system (recovery 100–101.3%). 

2.6. Precision and Carry-Over Affect 

One advantage of our proposed microfluidic system is reusability of the microchip. Because a 
known property of PDMS is that it can easily adsorb proteins during assay, the carry-over effect was 
evaluated. High (10 mg L–1) and low (1 mg L–1) albumin concentrations were injected into the system. 
The formula (b1–b3)/(a2–b3) × 100 was used for calculation of the percentage of carry-over [27], 
where a and b represent the absorbances obtained at the high and low albumin concentration 
injections, respectively, and their numbers represent the order of injection. With our system, carry-over 
was calculated to be 3.75%, which is acceptable for the current system. The repeatability and precision 
of the system were also assessed. The same-day precision was obtained at 5.1% coefficient of variation 
(CVs) when evaluated with a 10 mg L–1 albumin standard (n = 10). The results indicated that the 
microchip can be reusable with good repeatability. 

2.7. Analysis of Urine Samples 

To evaluate the accuracy of the proposed system for clinical sample analysis, urine samples were 
assayed, and the results were compared with those obtained from the conventional 
immunoturbidimetric method. Urine samples (n = 15) were diluted with normal saline 15-30-fold 
before assay. A scatter-plot of the results obtained by both methods is shown in Figure 5 (r2 = 0.995,  
n = 15). The regression analysis obtained the linear relation y = 0.993(±0.04)x + 0.6898(±2.9). 

Figure 5. A scatter-plot of results determined by the microfluidic system and  
the conventional method for the urinary albumin. The regression analysis relation is  
y = 0.993(±0.04)x + 0.6898(±2.9); n =15, r2 = 0.995. 
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A Bland-Altman plot [28] comparing the microfluidic system with the conventional immunoturbidity 
method is displayed in Figure 6a.  

Figure 6.  Comparison of results from the microfluidic system and the conventional 
immunoturbidimetric method for the urinary albumin assay. Results shown with  
(a) Bland-Altman bias plot and (b) Passing-Bablok regression analysis.  

 

 
 
The results demonstrated that there is no apparent bias for urinary albumin determined by the 

proposed system because the differences between the two methods are entirely within the mean ± 1.96 SD. 
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A Passing-Bablok regression [29] was employed to assess the agreement between both methods, as 
shown in Figure 6b. The equation for the Passing–Bablok regression line, y = 1.0396x + 1.1594, is 
displayed. Within a 95% confidence interval, the results indicated that our proposed microfluidic 
system for determination of urinary albumin was in good agreement with the conventional 
immunoturbidimetric method. A linearity test indicated no significant deviation (p > 0.1). 

3. Experimental Section 

3.1. Chemicals, Reagents and Samples 

All chemicals were of analytical reagent grade. Haemoglobin, IgG, transferrin, ascorbic acid,  
D-(+)-glucose, bovine and human serum albumin were obtained from Sigma (St. Louis, MO, USA). 
Bilirubin was purchased from Fluka (Buchs, Switzerland). NaCl, potassium dihydrogen phosphate 
(KH2PO4), and dipotassium phosphate (K2HPO4) were products from Merck (Darmstadt, Germany). 
Poly(dimethylsiloxane) (PDMS, Sylgard 184) and its curing agent were obtained from Dow Corning 
(Midland, MI, USA). Photoresist (SU-8 2100) and developer were purchased from MicroChem 
(Newton, MA, USA). All solutions were prepared in Milli-Q water. Regarding the reagents used for 
the latex agglutination test, the surfactant-free plain polystyrene latex beads with 50–70 nm bead size 
were purchased from BioSystems (Barcelona, Spain). The latex reagent was freshly prepared 
according to the manufacturer’s instructions. The antibody-coated latex beads in borate buffer were 
freshly prepared by mixing them together in ratio of 1:1, and then the solution was further diluted 
twofold with 20 mM phosphate buffer (pH 7.5), corresponding to OD500 nm of 0.5 and a protein 
concentration of 2.64 mg mL–1. The microalbumin assay kit used for method validation was supplied 
by Randox Laboratories (Antrim, United Kingdom). Anonymous human urine samples were collected 
from Chulalongkorn General Hospital and Rajavithi Hospital, Bangkok, Thailand. The urine 
specimens were centrifuged at 1,500 rpm (214 g) for 5 min before subjecting the supernatant to assay 
with the microfluidic system.  

3.2. Apparatus and Instrumentation 

A miniature fibre-optic spectrometer (USB4000) with an LS-1-LL tungsten light source was a 
product of Ocean Optics Inc. (Dunedin, FL, USA). The two-channel syringe pump (Fusion 200) was a 
product of Chemyx (Stafford, TX, USA). Injection valves (V-451), PTFE tubing with a 0.5-mm i.d. 
and all PEEK connectors were products of Upchurch Scientific (Oak Harbor, WA, USA). Tygon 
tubing was obtained from Bio-Rad Laboratories (Richmond, CA, USA). 

A spin coater (model WS-400A-6NPP, Laurell technologies Corp., North Wales, PA, USA) was 
used for spin coating of the photoresist onto the silicon substrate for mould fabrication. The  
UV-lithography process was done using an MJB4 mask aligner (SUSS microtec, Germany). The 
oxygen-plasma cleaner (PDC-32G) used for PDMS surface oxidation prior to bonding was a product 
of Harrick Scientific Corp. (Ossining, NY USA). The temperature-control system, set at 37 °C with  
±0.2 °C accuracy, was made locally in our laboratory. A UV-VIS spectrophotometer (Evolution 600, 
Thermo Scientific, USA) was used for determination of urinary albumin based on the conventional 
immunoturbidity for comparison to our method. 
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3.3. PDMS Microchip Fabrication and Design 

The masks used for UV-lithography were designed using the L-edit program (version Pro v8.03) 
and then printed onto a transparency film. The microchip comprised three main areas: a y-shaped 
microchannel, a mixing zone and a detection zone. The dimensions of the whole microchannel  
were 500 µm wide and 100 µm deep. The silicon wafer was coated with a 100-µm-thick photoresist 
(SU-8) by a spin-coating technique. To cast the PDMS microchip, the prepolymer was prepared by 
mixing the curing agent with PDMS prepolymer at a 1:10 weight ratio, and then the PDMS mixture 
was degassed and poured over the SU-8 master mould.  

Two PDMS sheets were separately prepared for the upper and lower layers. The upper layer,  
a 2-mm thick PDMS cast containing the channel structure, was peeled off from the master, and holes 
for inlets were drilled into the PDMS chip using metal pipes (1.5 mm i.d.). A modified flow cell made 
from a polystyrene cuvette with a 1-cm path length and a total volume of 90 µL was incorporated into 
the lower, 6-mm thick PDMS layer. A hole was punched above the detection zone of the lower 
microchip for receiving the fluid flow from the upper PDMS layer. This type of microchip was 
successfully developed for determination of urinary creatinine in the previous report by our group [30].  

Before assembling the complete microchip, both upper and lower PDMS slabs were exposed to 
oxygen plasma and then immediately bonded together. Subsequently, the microchip was further heated 
on a hotplate at 70 °C for 10 min to strengthen the bonding. Tygon tubes (0.8 mm i.d.) were connected 
to the microchip for inlets and outlets and glued with epoxy resin. Finally, the microchip was filled 
with bovine serum albumin (1 mg mL–1) and held overnight in order to reduce non-specific binding 
and improve hydrophilicity of the chip.  

3.4. Microfluidic System Set-Up  

The microfluidic system components for the on-chip immunoassay are shown in Figure 7. A  
two-channel syringe pump (0.098 μm/step, CVs of flow rate accuracy <1%) equipped with  
two 20-mL plastic syringes (Terumo®, Terumo Corporation, Tokyo, Japan) was used to deliver the 
carrier buffer (20 mM phosphate, pH 7.5). Two injection valves, with sample injection loops of 100 µL 
and 5 µL, were used for introduction of the latex reagent and urine sample, respectively. The PDMS 
microchip was placed in a temperature controller which maintained a constant temperature  
of 37 °C ± 0.2 °C throughout the assay. The absorbance detection was performed on-chip using the 
fibre-optic cables, which were connected to a USB4000 spectrometer and tungsten light source. The 
cables were horizontally arranged in the detection zone of the PDMS microchip at 90° to the fluid 
flow. Absorbance and spectral changes were recorded using the software provided by the manufacturer 
of the spectrometer, which was controlled by a portable computer. In terms of system set-up i.e., 
utilizing a microchip with PDMS Y-channel and USB4000 fibers optic spectrometer for latex 
immunoagglutination assay, our proposed system was similar to the systems described by Lucas et al. [13], 
Han et al. [31], and Heinze et al. [32]. Nevertheless, the apparent difference was the detection 
technique as we utilized a simple absorbance detection rather than a light scattering assay. Light 
scattering optical systems are more difficult to construct whereas turbidimetry is more broadly 
applicable [33]. 
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Figure 7.  Microfluidic system set-up for on-chip immunoassay and absorbance detection. 
(A) dual syringe pump; (B) injection valves; (C) temperature controller with PDMS 
microchip inside; (D) detailed view of the PDMS microchip; (E) miniature spectrometer; 
(F) light source; (G) portable computer. 

 

3.5. Assay Procedure 

Prior to the experiments, the temperature controller was turned on, and the buffer was flowed 
through the microchip until stable signals were observed. Unless otherwise stated, the buffer used  
was 20 mM phosphate buffer, pH 7.5, and the flow rate was fixed at 40 µL min–1. A 100-µL aliquot of 
latex reagent solution and 5 µL of diluted urine sample or human serum albumin standard were 
injected into the system via the separate injection valves. After the stream of mixed solutions reached 
the detection zone, the flow was allowed to stop. Increments in absorbance of 500 nm due to the 
immunoagglutination reaction were recorded for 2 min at 30-sec intervals. To regenerate the surface of 
the microchip for another round of injection, the pump was turned on and buffer circulated until the 
baseline was gradually reduced to the original signal. Including the washing step, each assay run 
required about 10 min.  

3.6. Immunoturbidimetric Method 

The proposed method was validated for accuracy by comparison to the immunoturbidimetric 
method using the commercial microalbumin kit from Randox Laboratories. A UV-VIS 
spectrophotometer set at 340 nm was used according to the manufacturer’s instructions. First, 1.0 mL 
of reagent buffer was mixed well with 0.1 mL of the sample/standard, and the initial absorbance (A1) 
was measured against water. Subsequently, 0.1 mL of the antibody solution was added. After thorough 
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mixing, the solution was incubated at room temperature for 30 min. The solution was mixed again, and 
then the final absorbance (A2) of each solution was measured. The unknown concentrations of the 
samples were interpolated from the semi-log standard curve, which was plotted between the albumin 
concentrations and the change in absorbance (A2-A1) using the microalbumin calibration series 
supplied with the kit. Quality control of the assay was performed using the two levels of control 
samples provided with the kit. 

4. Conclusions 

An on-chip immunoassay for the determination of low levels of urinary albumin was proposed. 
Universal absorbance detection was utilised for monitoring the immunoagglutination reaction by 
means of a portable miniature fibre-optic spectrometer. The limitation of a short path length in the 
microfluidic device was overcome by utilising a custom-made flow cell; together, this approach 
considerably improved the assay sensitivity. With our proposed system, the reagents can be used more 
economically than in the conventional immunoassay, allowing for a tenfold lower reagent 
consumption. Other advantages of the presented system are simplicity of operation and convenience, 
low cost of analysis, good reproducibility of results, reusability of the microchip and full portability for 
in-field analysis. 
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