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Abstract: The early detection of HER2 (human epidermal growth factor receptor 2) status 
in breast cancer patients is very important for the effective implementation of anti-HER2 
antibody therapy. Recently, HER2 detections using antibody conjugated quantum dots 
(QDs) have attracted much attention. QDs are a new class of fluorescent materials that 
have superior properties such as high brightness, high resistance to photo-bleaching, and 
multi-colored emission by a single-light source excitation. In this study, we synthesized 
three types of anti-HER2 antibody conjugated QDs (HER2Ab-QDs) using different 
coupling agents (EDC/sulfo-NHS, iminothiolane/sulfo-SMCC, and sulfo-SMCC). As 
water-soluble QDs for the conjugation of antibody, we used glutathione coated 
CdSe/CdZnS QDs (GSH-QDs) with fluorescence quantum yields of 0.23~0.39 in aqueous 
solution. Dispersibility, hydrodynamic size, and apparent molecular weights of the GSH-
QDs and HER2Ab-QDs were characterized by using dynamic light scattering, fluorescence 
correlation spectroscopy, atomic force microscope, and size-exclusion HPLC. 
Fluorescence imaging of HER2 overexpressing cells (KPL-4 human breast cancer cell line) 
was performed by using HER2Ab-QDs as fluorescent probes. We found that the HER2Ab-
QD prepared by using SMCC coupling with partially reduced antibody is a most effective 
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can be used for antibody conjugation. In this study, we synthesized three types of antibody-conjugated 
GSH-QDs by using EDC/sulfo-NHS, iminothiolane/SMCC, and SMCC coupling agents.  

 

Figure 1. Schematic representation for the surface coating procedure with GSH. GSH 
coating is performed in a mixture of THF-water at 60 °C. Potassium t-butoxide (KOBut) is 
used for deprotonation of the carboxyl groups of GSH. 

 

 

 

 

 

2.2. Characterization of GSH-QDs 
 
2.2.1. Fluorescence quantum yields 
 

In cellular imaging, the brightness of fluorescent probes is crucial for obtaining clear images with a 
high signal to noise ratio, because cells contain intrinsic fluorophores such as aromatic amino acids, 
neurotransmitters and porphyrins that emit in the visible region. Figure 2 shows the fluorescence 
spectra of GSH-QDs with the values of fluorescence quantum yields in 10 mM PBS. The fluorescence 
emission efficiencies of TOPO/HDA capped CdSe/CdZnSe QDs were very high and their quantum 
yields were 0.60, 0.45 and 0.72 in chloroform for green-, orange-, and red- emitting QDs, respectively. 
After the ligand-exchange with GSH, the quantum yields decreased to be 0.33, 0.23 and 0.39 for 
green-, orange-, and red- emitting GSH-QDs, respectively. GSH-coating retained ca. 50% of 
fluorescence efficiency after the surface modification. When the surface of the QDs was modified with 
MAA and MPA, the quantum yields of the QDs were less than 0.1. The surface modification of 
TOPO/HDA capped QDs with GSH is very simple and useful for preparing highly fluorescent water-
soluble QDs. 
 
2.2.2. Hydrodynamic size and dispersibility of QDs 
 

Hydrodynamic size and dispersibility of QDs are very important properties for their applications to 
cellular imaging. The particle size of QDs affects endocytosis or limits access to receptors of interest 
on cellular membranes [24,36,37]. In living tissues, QD particle size affects biodistribution and 
pharmacokinetics [38,39]. Hydrodynamic size of GSH-QDs was evaluated by using dynamic light 
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bound to the surface of QDs. In the case of EDC/sulfo-NHS coupling, NHS groups are introduced to 
the surface of GSH-QDs and the NHS groups react non-selectively with the primary amines of 
antibody to form amide bonds. For the iminothiolane/SMCC coupling, the primary amines of antibody 
are non-selectively modified with iminothiolane to introduce sulfhydryl groups to the antibody. The 
sulfhydryl groups of antibody react with the maleimide groups at the surface of SMCC activated QDs. 
In this coupling method, antibody orientation at the surface of QDs cannot be fixed due to the non-
selective conjugation of antibodies to QDs. In the case of SMCC coupling with reduced antibodies 
(prepared by DTT or cysteamine), the antigen binding sites of antibodies face outward, because the 
sulfhydryl groups of reduced antibodies bind to the maleimide groups at the surface of SMCC  
coupled QDs. 

Figure 6. Schematic representation for the coupling reactions between GSH-QDs and anti-
HER2 antibodies: a) EDC/sulfo-NHS, b) iminothiolane/sulfo-SMCC, and c) sulfo-SMCC 
coupling. 

The binding of antibody molecules to GSH-QDs was confirmed by the measurements of the 
hydrodynamic size and shape of QDs by using FCS and AFM. Figure 7 shows fluorescence 
autocorrelation curves of red-emitting GSH-QDs and HER2Ab-QDs prepared by three different 
coupling methods. The diffusion times of all types of HER2Ab-QDs are larger than that of GSH-QDs, 
showing that the antibodies are bound to GSH-QDs. From the values of diffusion times, hydrodynamic 
diameters are determined to be 7.0 ± 0.3 nm for GSH-QDs, 9.4 ± 0.5 nm for HER2Ab-QDs (SMCC 
coupling), 12 ± 0.4 nm for HER2Ab-QDs (EDC/sulfo-NHS coupling), and 12 ± 1.2 nm for HER2Ab-
QDs (iminothiolane/SMCC coupling). These results support that the whole bodies of antibody are 
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bound to GSH-QDs in case of HER2Ab-QDs (EDC/sulfo-NHS coupling) and HER2Ab-QDs 
(iminothiolane/SMCC coupling), while only half bodies of antibody are bound to GSH-QDs in the 
case of HER2Ab-QDs (SMCC coupling). 

Figure 7. Fluorescence autocorrelation curves for red-emitting GSH-QDs and HER2Ab-
QDs prepared by different coupling methods: (a) HER2Ab-QD (sulfo-SMCC), (b) 
HER2Ab-QD (EDC/sulfo-NHS), and (c) HER2Ab-QD (iminothiolane/sulfo-SMCC). Inset 
shows hydrodynamic diameters of the QDs in 10 mM PBS buffer. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

AFM images also confirmed the binding of antibodies to GSH-QDs (Figure 8). The images of 
GSH-QDs show spherical shapes, while all three types of HER2Ab-QDs show non-spherical shapes or 
somehow elongated shapes. Then, we compared GSH-QD structure coupled with different type of 
antibodies by using the aspect ratio. The aspect ratio of GSH-QDs was almost 1.0 [Figure 8(a)]. The 
AFM images of HER2Ab-QDs indicate that a few molecules of antibodies are bound to the surface of 
GSH-QDs and their aspect ratios were also changed. [Figure 8b,c] The aspect ratios of HER2Ab-QDs, 
which were prepared by EDC/NHS and iminothiolane/SMCC coupling methods, were 1.3 ± 0.2 and 
almost same. Since the size of anti-HER2 antibody (IgG) is comparable to the size of GSH-QDs (650 
nm), steric hindrance between antibody molecules bound at the QD surface may limit the number of 
antibodies that bind to the surface of QD. The comparison among the shapes of all three types of 
HER2Ab-QDs indicates that the whole bodies of antibody are bound to the QD surface in HER2Ab-
QDs (EDC/NHS) and HER2Ab-QDs (iminothiolane/SMCC). In contrast, only half bodies of antibody 
are bound to the QD surface in case of HER2Ab-QDs prepared by SMCC coupling to reduced 
antibodies. As the steric hindrance of half bodies of antibody was less than that of whole bodies of 
antibody, the prepared HER2Ab-QDs had the various aspect ratio [Figure 8(d)]. The changing of 
aspect ratio indicated that the binding of antibodies to GSH-QDs. 
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Figure 8. AFM images (left panel) and the histogram of aspect ratio (right panel) of red-
emitting GSH-QDs a) and HER2Ab-QDs prepared by the coupling reaction using b) 
EDC/sulfo-NHS, c) iminothiolane/sulfo-SMCC, and d) sulfo-SMCC. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    
 
 
 
2.4. Confocal Fluorescence Imagimg of KPL-4 Breast Cancer Cells  
 

We first examined staining abilities and colloidal stabilities of three types of HER2Ab-QDs for 
fluorescence imaging of KPL-4 human breast cancer cells. Figure 9 shows confocal fluorescence 
images of KPL-4 cells after 30 min incubation of HER2Ab-QDs (green, 540 nm) prepared by three 
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different coupling methods. All three types of HER2Ab-QDs clearly stained the KPL-4 cells. However, 
in the case of the HER2Ab-QDs prepared by using EDC/sulfo-NHC and iminothiolane/sulfo-SMCC 
coupling, QD aggregations were observed in the images (Figure 9a,b). HER2Ab-QDs prepared by 
SMCC coupling to reduced antibodies showed no aggregation of the QDs and the cells were intensely 
stained compared to other two types of HER2Ab-QDs (Figure 9c). QD aggregations observed in 
Figure 9a,b may have resulted from the instability of HER2Ab-QDs in the culturing medium (DMEM). 
The fluorescence image of KPL-4 cells (Figure 9d-2) in the absence of QDs shows no fluorescence 
signals, indicating that the fluorescence signals in Figure 9a-c dose not result from autofluorescence of 
KPL-4 cells. Among all three types of QDs, HER2Ab-QDs conjugated by SMCC coupling method 
was most stable and effective as a fluorescent probe for imaging of KPL-4 cells. It should be noted that 
the green-emitting HER2Ab-QDs are distributed in cytosol as well as cell membrane, indicating that 
the cellular uptake of HER2Ab-QDs occurs by macropinocytosis or endocytosis because of the small 
size of green-emitting QDs compared to remaining two types of  
QDs [51]. It has been reported that the particle size of QDs affects endocytosis or limits access to 
receptors of interest on cellular membranes [24,36,37]. We further examined the size effects of 
HER2Ab-QDs (with green, orange, and red emission) on the fluorescence imaging of HER2 receptors 
in KPL-4 cells. 

Figure 9. Fluorescence images of KPL-4 cells in the presence (a-c) and absence (d) of 
green-emitting (540 nm) HER2Ab-QDs prepared by using three different coupling agents: 
a) EDC/sulfo-NHS, b) iminothiolane/sulfo-SMCC, and c) sulfo-SMCC. PBS solutions (20 
nM) of the HER2Ab-QDs were incubated with KLP-4 cells for 30 min at 37 °C. QDs were 
excited at 405 nm and confocal images were taken with a 490-540 nm filter. Green spots in 
white circles are attributed to QD aggregates. KPL-4 cells in the absence of green-emitting 
QDs show no cellular autofluorescence signals: differential interference contrast image  
(d-1) and fluorescence image (d-2).   
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cells by mediation of HER2 receptors at the cell surface. The size of HER2Ab-QDs may affect the 
accessibility or binding ability of the QDs to HER2 receptors present on the cell surface. The smaller 
HER2Ab-QDs may be rapidly taken up into the cells by their stronger binding ability to the receptors. 
The use of larger (red-emitting) HER2Ab-QDs is more effective for the quantitative elucidation of the 
HER2 expression at cell surface. 

Figure 11. Fluorescence images of KPL-4 cells after incubation of red-emitting QDs for 
1.5 hrs, with their differential interference contrast images: a) SMCC-QDs, b) anti-GFP 
QDs and c) HER2Ab-QDs (650 nm) prepared by SMCC coupling with reduced anti-HER2 
antibodies. 

 

3. Experimental Section  

3.1. Chemicals 
  

Cadmium 2,4-pentanedionate (98%) was purchased from Alfa Aesar. Stearic acid, potassium t-
butoxide, 2-mercaptoethanol and ZnEt2 (1M hexane solution) were purchased from Wako Chemicals 
(Japan). Tri-n-octylphosphine (TOP), tri-butylphosphine (TBP), tri-n-octylphosphine oxide (TOPO), 
hexamethyldisilathiane, and hexadecylamine (HDA) were purchased from Tokyo Kasei (Japan). 
Selenium (powder, 99.999%), 2-iminothiolane hydrochloride, and DL-dithiothreitol (DTT) were 
purchased from Sigma-Aldrich. Dimethylcadmium (10 wt% in hexane) was purchased from Strem 
Chemicals. 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) and sulfo-
succinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carbxylate (sulfo-SMCC) were purchased from 
Pierce. Sulfo-NHS (3-sulfo-N-hydroxysuccinimide sodium salt) was purchased from Molecular 
Bioscience. Anti-HER2 antibody (Herceptin) was purchased from Chugai Seiyaku (Japan). Anti-GFP 
polyclonal antibody was kindly gifted from Medical & Biological Laboratories (Japan). Thyroglobulin 
(from bovine thyroid), bovine serum albumin, and ferritin (type I from horse spleen) were purchased 
from Sigma-Aldrich. Transferrin (apo from human) was purchased from Wako Chemicals (Japan). 
Other chemicals used were of analytical reagent grades. 
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3.2. QD Synthesis 
 
3.2.1. Preparation of Se (TBP) and Cd-Zn-S stock solution  
   

All procedures were performed under argon atmosphere. One hundred mg of selenium (powder) 
was added to 1 mL of TBP at room temperature. Selenium was easily dissolved to TBP by sonication 
using a bath-type sonicator (D150H, Delta). Two mL (2 mmol) of ZnEt2 (1M hexane solution) and 
0.57 mL (0.5 mmol) of CdMe2 were added to 7.0 mL of TOP. Then, 0.52 mL (2.5 mmol) of 
hexamethyldisilathiane was added to the CdMe2-ZnEt2/TOP solution. The stock solutions were stored 
in argon atmosphere. 
 
3.2.2. Synthesis of CdSe/CdZnS with a 540 nm emission peak 
  

A mixture of 1 g of TOPO, 3 g of HDA, 66 mg of cadmium 2,4-pentanedionate, and 250 mg of 
stearic acid was loaded into a 25 mL three-necked flask and heated at 200 °C under an argon 
atmosphere. After stirring for 10 min at 200 °C, 1 mL of the stock solution of Se (100 mg/mL TBP) 
was swiftly added, and the temperature of the solution was lowered to 150 °C. At this temperature, the 
growth of CdSe QDs was monitored by measurements of their fluorescence spectra. When the 
emission maximum reached to 515 nm, the three-necked flask was removed from the heater and the 
temperature of solution was lowered to 50 °C. Then ca. 10 mL of ethanol was added to precipitate 
CdSe QDs. The precipitation of QDs was separated by centrifuge and was redissolved in 10 mL of 
chloroform. The QD solution was loaded into a 25 mL three-necked flask, and the chloroform was 
evaporated under reduced pressure. After evaporation of chloroform, 1 g of TOPO and 3 g of HDA 
were added to the flask and the mixture was heated to 160 °C under an argon atmosphere. After 
stirring for 10 min at 160 °C, 0.25 ml of a Cd-Zn-Se stock solution was added dropwise under 
vigorous stirring. Then the temperature of solution was decreased to 100 °C and the solution was 
stirred for 5 hrs at this temperature. After the temperature was lowered to 50 °C, CdSe/CdZnS QDs 
were precipitated by addition of excess methanol and separated by centrifuge. The precipitated QDs 
were redissolved to 20 mL of tetrahydrofuran. 
 
3.2.3. Synthesis of CdSe/CdZnS with a 585 nm emission peak   
 

The mixture of 1 g of TOPO, 3 g of HDA, 66 mg of cadmium 2,4-pentanedionate, and 250 mg of 
stearic acid was loaded into a 25 mL three-necked flask and heated at 250 °C under an argon 
atmosphere. After stirring for 10 min at 250 °C, 0.6 mL of the stock solution of Se (100 mg/mL TBP) 
was swiftly added, and the temperature of the solution was lowered to 200 °C. At this temperature, the 
growth of CdSe QDs was monitored by measurements of their fluorescence spectra. When the 
emission maximum reached to 570 nm, the three-necked flask was removed from the heater and the 
temperature of solution was lowered to 50 °C. Then ca. 10 mL of ethanol was added to precipitate 
CdSe QDs. The precipitation of QDs was separated by centrifuge and was resolved in 10 mL of 
chloroform. The QD solution was loaded into a 25 mL three-necked flask, and the chloroform was 
evaporated under reduced pressure. After evaporation of the chloroform, 1 g of TOPO and 3 g of HDA 
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