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Abstract: Interferometric Synthetic Aperture Radar (InSAR) is a powerful technology for 

observing the Earth surface, especially for mapping the Earth's topography and 

deformations. InSAR measurements are however often significantly affected by the 

atmosphere as the radar signals propagate through the atmosphere whose state varies both in 

space and in time. Great efforts have been made in recent years to better understand the 

properties of the atmospheric effects and to develop methods for mitigating the effects. This 

paper provides a systematic review of the work carried out in this area. The basic principles 

of atmospheric effects on repeat-pass InSAR are first introduced. The studies on the 

properties of the atmospheric effects, including the magnitudes of the effects determined in 

the various parts of the world, the spectra of the atmospheric effects, the isotropic properties 

and the statistical distributions of the effects, are then discussed. The various methods 

developed for mitigating the atmospheric effects are then reviewed, including the methods 

that are based on PSInSAR processing, the methods that are based on interferogram 

modeling, and those that are based on external data such as GPS observations, ground 

meteorological data, and satellite data including those from the MODIS and MERIS. Two 

examples that use MODIS and MERIS data respectively to calibrate atmospheric effects on 

InSAR are also given. 
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1. Introduction 

 

Synthetic Aperture Radar (SAR) Interferometry, commonly referred to as InSAR, IFSAR or SARI, 

is a synthesis of the SAR and the interferometry techniques [1]. InSAR is a powerful technology for 

topographic and ground surface deformation mapping due to its all-weather and day-and-night imaging 

capability, wide spatial coverage, fine resolution, and high measurement accuracy. Rogers and Ingalls 

[2] reported the first application of radar interferometry in Earth-based observations of Venus, while 

Graham [3] was regarded as the the first to apply an InSAR system to Earth topographic mapping. 

Airborne and spaceborne InSAR systems were then applied to Earth observation by Zebker and 

Goldstein [4] and Goldstein et al. [5], respectively. Gabriel et al. [6] first demonstrated the potential of 

differential InSAR (DInSAR) for centimeter or sub-centimeter level surface deformation mapping over 

a large area.  

Significant progress has been made in further developing InSAR technology in the past two decades 

with the availability of a vast amount of globally covering SAR images from, e.g., ERS, Radarsat, 

JERS, Envisat, ALOS and TerraSAR sensors and with a wide range of applications of the technology 

(e.g., [7-19]). It is expected that InSAR will play a wider and more important role in both research and 

applications in the future with the advances of the technology and many ambitious SAR missions 

planed.  

InSAR technology, however, has also limitations. One of the most intractable is the effect of the 

atmosphere (mainly the troposphere and the ionosphere) on repeat-pass InSAR. It is well known that 

electromagnetic waves are delayed (slowed down) when they travel through the troposphere. The effect 

often introduces significant errors to repeat-pass InSAR measurements. Massonnet et al. [8] first 

identified such effects. Since then, some intensive research has been carried out aiming to better 

understand and mitigate the effects. Zebker et al. [20] reported, for example, that spatial and temporal 

changes of 20% in the relative humidity of the troposphere could lead up to 10 to 14 cm errors in the 

measured ground deformations and 80 to 290 m errors in derived topographic maps for baselines 

ranging from 100 m to 400 m in the case of the SIR-C/X-SAR. A number of researchers have 

concluded that the tropospheric effects are a limiting factor for wide spread applications of repeat-pass 

InSAR (e.g., [11, 21-23]).  

Contrary to the effects of the troposphere, the ionosphere tends to accelerate the phases of 

electromagnetic waves when they travel through the medium. The zenith ionospheric range error is 

proportional to the total electron content (TEC) in the ionosphere. For example, for C-band SAR, a 

TEC of 1 x 1016 m-2 causes a phase shift of about half a cycle [28]. The ionosphere is however a 

dispersive medium affecting the radar signals proportionately to the square of the wavelength [83]. For 

example, if the ionosphere causes 1.5 m range errors to the C-band (wavelength = 5.6 cm) signals, it 

will cause about 24 m range errors to the L-band (wavelength = 23 cm) signals if the same imaging 

geometry and atmospheric conditions are assumed. Since there are only very limited published works 
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available on the ionospheric effects on InSAR, we will limit our discussions to the tropospheric effects 

hereafter. We will review systematically the work carried out in studying the atmospheric, especially 

the tropospheric effects on InSAR. The basic principles of the atmospheric effects on repeat-pass 

InSAR are first introduced. Research results on the properties of the atmospheric effects will then be 

examined. The various methods developed for mitigating the atmospheric effects will finally be 

studied.  

 
2. Repeat-Pass SAR Interferometry 

 

InSAR can be classified into across- and along-track interferometry according to the interferometric 

baseline formed, or single- and repeat-pass interferometry according to the number of platform passes 

involved. Two antennas are mounted on the same platform in along-track interferometry and a single 

platform pass suffices [24]. Across-track interferometry can be performed either with a one-antenna 

(e.g., ERS, Envisat) or a two-antenna (e.g., SRTM) SAR system. Revisit to the same scene is required 

for a one-antenna SAR system so that this is called repeat-pass SAR interferometry [25]. The 

atmospheric effects in the single-pass interferometry are basically removed completely in the 

interferometric computation as the effects are almost the same for the two SAR images. In repeat-pass 

interferometry, however, the atmospheric effects can become significant as the atmospheric conditions 

can vary considerably between the two SAR acquisitions. We will hereinafter limit our discussions to 

repeat-pass InSAR only. 

 

Figure 1. Interferometric geometry (from Li et al. [23]). 

 (a)  (b) 

 

The geometrical configuration of repeat-pass SAR interferometry is illustrated in Figure 1a. A1 and 
A2 are the positions of radar platforms corresponding to the two acquisitions. The phases, 1ψ  and 2ψ , 

measured at the two platform positions to a ground point are:  
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where 1L  and 2L  are the slant ranges and λ  is the wavelength of the radar signal. The interferometric 

phase φ  is then 

)(
4

2121 LL −=−=
λ
πψψφ          (2) 

Under the far field approximation, one gets  
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πψψφ −=≈−= BB         (3) 

where α is the orientation angle of the baseline and θ is the look angle.  

When assuming a surface without topographic relief as illustrated in Figure 1b, the interferometric 

phase becomes [11] 
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where 0θ  is the look angle. If topographic relief is present, the look angle will differ from 0θ  by δθ , 
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Combining Equations (4) and (5), we get the "flattened" phase 
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The relationship between the topographic height and δθ  can be easily established (see Figure 1b) 
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The aforementioned process of topography reconstruction is based on the assumption that the 

imaged surface is stationary during the acquisitions. The interferometric phase in repeat-pass 

interferometry in fact measures any ground displacement in addition to topography. DInSAR is the 

technique to extract displacement signature from a SAR interferogram over the acquisition period. 

In Figure 2, there is an exaggerated ground displacement ∆d between the two acquisitions whose 

projection onto radar line-of-sight (LOS) direction is ∆r. 

 
Figure 2. Geomtry of DInSAR. 
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The displacement will introduce a variation of interferometric phase which is proportional to ∆r: 

rflat ∆=∆
λ
πφ 4

           (9) 

Therefore, the interferometric phase includes topography information as well as deformation 

information, 
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To map the ground deformation between two SAR acquistions, the topographic contribution must 

be removed. According to the ways to remove the topographic contribution, three types of DInSAR 

configuration can be distinguished: (1) two-pass plus external DEM, (2) three-pass, and (3) four-pass. 

In two-pass plus external DEM formulation, a SAR interferogram (topographic interferogram 

thereinafter) is simulated based on the DEM and the imaging geometry of the “real” interferogram 

(deformation interferogram thereinafter) and is removed from the deformation interferogram. However, 

in three-pass and four-pass formulations, both the topographic and the deformation interferograms are 

generated from SAR images. The only difference between them is that in three-pass interferometry, 

one image is shared by both the topographic and the deformation interferograms. The two-pass plus 

external DEM and three-pass and four-pass configuration DInSAR can be expressed as: 
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where dφ  and tφ  are phases of deformation and topography interferograms, respectively, and dB⊥  and 

tB⊥  are perpendicular baseline components of the deformation and topography interferograms, 

respectively. 

The interferometric phase in Equation (10) may also include linear phase ramps caused by orbital 

errors that should be modeled and removed to derive the ground deformation [22, 28]. This can at 

times become a problem when the deformation or topography phases also have linear trends. We will 

however not discuss this problem further in this paper. 

 
3. The Atmosphere and its Effects on Repeat-Pass InSAR 

 

Atmospheric artifacts in SAR interferograms are mainly due to changes in the refractive index of the 

medium. These changes are mainly caused by the atmospheric pressure, temperature and water vapor. 

In most cases, the spatial variations of pressure and temperature are not large enough to cause strong, 

localized phase gradients in SAR interferograms. Their effects are generally smaller in magnitude and 

more evenly distributed throughout the interferogram when comparing with that of the water vapor, 

and sometimes difficult to be distinguished from errors caused by orbit uncertainties [22, 26]. The 

artifact caused by localized water vapor generally dominates the atmosphere induced artifacts in SAR 

interferograms. Water vapor is mainly contained in the near-ground surface troposphere (up to about 2 

km above ground), where a strong turbulent mixing process occurs. Turbulent mixing can result in 

three-dimensional (3D) spatial heterogeneity in the refractivity and can cause localized phase gradient 
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in both flat and mountainous regions [27, 28]. Besides turbulent mixing, another atmospheric process 

with clear physical origin is the stratification of the atmosphere. Stratification of the atmosphere into 

layers of different vertical refractivity causes additional atmospheric delays in mountainous regions [27, 

28]. It should be noted that although water vapor is often considered the most important parameter 

causing the tropospheric delays, there are cases, e.g., in regions with strong topography, changes in 

pressure between two acquisitions can generate a bigger tropospheric delay signal than humidity 

variation.  

Clouds are formed when the water vapor in the air condenses into visible mass of droplets or frozen 

crystals. Clouds are divided into two general categories, layered and convective. These are named 

stratus clouds and cumulus clouds respectively. The liquid water content in the stratiform clouds is 

usually low so that they do not cause significant range errors to SAR signals. The liquid water content 

in the cumulus clouds can however range from 0.5 to 2.0 g/m3 and cause zenith delays of 0.7 to 3.0 

mm/km [26], significant to InSAR measurements.  

Due to the propagation delay of radar signals, in repeat-pass SAR interferometry systems, the phase 

measurements corresponding to Equation (1) becomes: 
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where 1L∆  and 2L∆  are atmospheric propagation delays of radar signals corresponding to the first and 

the second acquisitions. This gives the interferometric phase 
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 are topography and surface deformation induced interferometric phase, and 
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 is the atmosphere induced interferometric phase. From Equation (14), we can see that 

the atmosphere induced phase errors are easily interpreted as topography or surface deformation. 

 

It is obvious from Equation (14) that it is the relative tropospheric delay )( 21 LL ∆−∆  that causes 

errors in InSAR measurements. If the atmospheric profiles remain the same at the two acquisitions, the 

relative tropospheric delay will disappear. In addition, if constantLL =∆−∆ 21  for all the resolution 

cells in an area of interest, the atmospheric effects will also be cancelled out. The two conditions are, 

however, next to impossible to occur in practice. First, the troposphere, especially the tropospheric 

water vapor, varies significantly over periods of a few hours or shorter. It is, therefore, highly unlikely 

to have the same atmospheric profiles even over currently the shortest revisit interval of one day (for 

ERS-1/ERS-2). Second, it is also rather rare for the relative tropospheric delays to be constant for all 

the resolution cells due to local tropospheric turbulences, which affect flat terrain as well as 

mountainous terrain and to vertical stratification which only affects mountainous terrain [27-29]. 

The influences of the atmosphere induced phase errors on repeat-pass topographic and two-pass 

surface deformation measurements are straightforward [4, 9] 

φθσ
π
λσ sin

4
L

Bh ⊥=           (15) 

φσ
π
λσ
4, =∆ twor            (16) 



Sensors 2008, 8                            

 

 

5432

where φσ is the phase error in the interferogram; hσ is the resultant height error; and twor ,∆σ  is the 

deformation error for two-pass D-InSAR. 

 
Assuming the same standard deviation φσ  on each interferogram, the covariance matrixes of 

[ ]Ttd φφφ =  for three-pass and four-pass interferometry are: 
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According to error propagation theorem, the effects of atmosphere induced phase errors on deformation 

mapping in three-pass and four–pass interferometry are: 
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4. Properties of Atmospheric Signals in SAR Interferograms 
 

4.1 Atmospheric Signals from SAR Interferograms 

 

A SAR interferogram is a superposition of information on the topography, the surface deformation 

between the two SAR acquisitions, the differential atmospheric propagation delays between the two 

SAR acquisitions, and various noise (e.g., [22, 26]). The contribution from the topography can be 

removed by using a reference elevation model. That from the surface deformation can be neglected or 

removed if the surface deformation of the study area between the two SAR acquisitions is insignificant 

or the deformation is known. In addition, multi-looking operations and careful interferometric 

processing can help to suppress the noise. Therefore at the end an interferogram that contains only the 

atmospheric signature can be obtained [26]. The atmospheric signature thus obtained is very useful for 

studying the properties of atmospheric effects on InSAR. Besides, the atmospheric signals can be used 

to derive various atmospheric products. For example, Hanssen et al. [30] used atmospheric signals 

derived from SAR interferograms to map high-resolution water vapor. 

 

4.2 Anisotropic Properties of Atmospheric Signals 

 

Radon transform is the projection of image intensities along a radial line at a specified angle. A 

single Radon transform is a mapping of an image from two dimensions to one dimension where the 

image intensities collapse to a profile. Radon transform is therefore a tool to investigate anisotropy in 

images since systematic intensity variations in a particular direction will be visible as a profile [31].  
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Hanssen [26] first used Radon transform to examine the anisotropy of atmospheric signatures in 

SAR interferograms, while Jónsson [32] used it to characterize the anisotropy of the noise in SAR 

interferograms. Li et al. [33] used Radon transform to study the anisotropy of atmospheric signatures in 

four SAR interferograms over Shanghai. The results are shown in Figure 3. 

 

Figure 3. Radon transform of atmospheric signals in SAR pairs acquired on: (a) 19 and 20 

February, 1996, (b) 25 and 26 March, 1996, (c) 3 and 4 June, 1996, and (d) 16 November 

and 21 December, 1999 (from Li et al. [33]). 

 

 
The Radon transform of atmospheric signals showed varying degrees of anisotropy. For example, 

the first transform (Figure 3a) showed strong asymmetry especially for profiles of 0º to 90º. This 

implies that there are areas of very different atmospheric signals in the southwest and northeast corners 

of the interferogram. However, as the authors pointed out, none of the transforms showed complex 

variations in the signals, perhaps due to the fact that the studied region is very flat. The results are quite 

different from those obtained in mountainous regions where the atmospheric effects vary significantly 

(e.g., [34]) perhaps due to the vertical stratification or the “static” effect of the troposphere in the 

mountainous regions [29, 35, 43] and the effects of mountains on local weather conditions.  

 

4.3 Gaussianity of Atmospheric Signals 

 

It is important to examine the Gaussianity of atmospheric signals in SAR interferograms as different 

processing strategies must be applied for Gaussian and non-Gaussian signals. There are a number of 

hypothesis tests to study whether a signal is Gaussian or non-Gaussian. The Jarque-Bera test is based 

on classical measures of skewness and kurtosis and it examines whether the sample skewness and 

kurtosis are unusually different from their expected values [36]. The Hinich test is however a frequency 

domain test that examines the deviation of the bispectrum of the signal from zero as the bispectrum of 

a Gaussian signal is zero [37]. Li et al. [33] used both the Jarque-Bera and the Hinich methods to test 
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the atmospheric signals in the four SAR interferograms over Shanghai. The results from both of the 

methods indicate that the atmospheric signals in all the interferograms are non-Gaussian. 

 

4.4 Spectral Characteristics of Atmospheric Signals 

 

The spectrum of atmospheric signals in a SAR interferogram reveals the energy distribution of the 

atmospheric effects at different spatial scales. Two-dimensional (2D) FFT is generally used to estimate 

the 2D power spectra of atmospheric signals. As the power spectra derived can be very noisy, the one-

dimensional (1D) rotationally averaged power spectra are usually calculated from the 2D power spectra 

and used to study the energy distribution of atmospheric signals (e.g., [28, 38]).  

Goldstein et al. [39] first calculated the power spectra of atmospheric signals in a SAR 

interferogram, and demonstrated that the spectra followed a power law distribution with a power 

exponent of –8/3. This feature is associated with Kolmogorov turbulences, indicating the nature of 

scale invariance or scaling [40]. Hanssen [26] analyzed the spectra of atmospheric signals in 26 SAR 

interferograms over Netherland. The results also showed the power law feature. Li et al. [33] calculated 

the power spectra of atmospheric signals for the four interferograms over Shanghai (Figure 4). It is very 

clear that the signals follow on the whole the power law distribution. The results are in good agreement 

with those presented for Mojave desert of California by Goldstein et al. [39] and for the Groningen and 

Flevoland area of Netherlands by Hanssen [28]. 

The power law spectral characteristics of the atmospheric signals are very useful. For example, 

Ferretti et al. [41] used the spectral characteristics to estimate the powers of thermal noise and 

atmospheric effects, and developed a method based on the results to combine SAR DEMs in wavelet 

domain. Ferretti et al. [42] also utilized the spectral characteristics to design filters to separate 

atmospheric effects from nonlinear subsidence. Williams et al. [43] considered that the low-frequency 

(long wavelength) components of atmospheric effects had larger energy so that sparse external data 

such as GPS and ground meteorological data can be used to calibrate the effects. Li et al. [44, 45] used 

the power law nature of the atmospheric effects in designing algorithms to model and correct the 

effects based on GPS and meteorological data. 

The power law can be described by 
β−∝ kkE )(            (21) 

where )(kE  is the power; k  is the spatial frequency; and β  is the power exponent. The power 

exponent is an important indicator of data stationarity. Theoretically, when 31 << β , the data series 

are considered non-stationary but with stationary increments [28, 46]. The estimated spectral exponents 

range from 2.31 to 2.66 so that the signals have this property. Stationary increments lead to stationary 

structural function but do not imply that the variance and covariance of the atmospheric signals can be 

uniquely determined. Therefore, care should be taken when using InSAR data to constrain geophysical 

models, where the covariances of the noise are generally needed (e.g., [32, 38, 47]).  

 

Figure 4. Power spectra of atmospheric signals for SAR pairs acquired on: (a) 19 and 20 

February, 1996, (b) 25 and 26 March, 1996, (c) 3 and 4 June, 1996, and (d) 16 November 

and 21 December, 1999. (from Li et al. [33]). 
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The 3D Kolmogorov tropospheric turbulence can occur within the region of up to several kilometers 

in elevation, usually referred to as the effective height of the wet troposphere. The LOS ranges of 

space-borne SAR systems are much larger than the effective height. The wet tropospheric delays can be 

therefore typically modeled as 2D turbulence [28].  

The power exponent is an important parameter for estimating to what extent the atmospheric effects 

can be determined and removed with the help of external data. The accumulated energy of the 

atmospheric signals can be estimated based on the information for different scales by integrating the 

atmospheric power over the spatial frequencies. The spatial scales corresponding to 90% of the energy 

thus computed for the four interferograms mentioned above are 0.82, 1.01, 0.94, and 0.29 km, 

respectively [33]. The spatial scales can be considered as the lowest spatial resolution of external 

atmospheric data required to calibrate 90% of the atmospheric effects in the SAR interferograms. 

Therefore, to calibrate 90% of the atmospheric effects for the four interferograms, the spatial resolution 

of the external atmospheric data (assuming no measurement errors) must reach 0.82, 1.01, 0.94, and 

0.29 km, respectively [33]. This can be a reference when one applies corrections for atmospheric 

effects on InSAR based on external data. 

5. Mitigation of Atmospheric Effects on Repeat-Pass InSAR 
 

5.1 Correction of Atmospheric Effects based on External data 
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5.1.1 Correction of atmospheric effects based on ground meteorological observations 

 

Using ground meteorological data to calibrate tropospheric delays in radio ranging has been well 

documented [48-52]. Hanssen and Feijt [53] and Zebker et al. [20] proposed the use of the 

Saastamoinen model to assess the potential effects of the troposphere on InSAR measurements. 

Delacourt et al. [29] presented a case study of correcting atmospheric errors by using meteorological 

observations at a reference point together with tropospheric delay models, vertical gradient models of 

the meteorological parameters, and the DEM of the study area. The results showed that tropospheric 

corrections reached 2 fringes for some interferograms, and that on average the accuracy of the 

interferograms was about ±1 fringe after the corrections were applied. Bonforte et al. [54] 

demonstrated congruence between the tropospheric zenith delays estimated from GPS observations and 

from tropospheric models and meteorological data. The results confirmed that the meteorological data 

could be applied to calibrate InSAR measurements like what had been done to correct GPS 

observations, and suggested a possible integration of the two data sources for improving models of the 

atmospheric effects. Li et al. [45] studied InSAR atmospheric correction by using meteorological 

observations, GPS observations, and both types of observations. The results showed that the integration 

of the observations produced better results. 

The difficulties in using meteorological data to correct atmospheric effects on InSAR include 

mainly the poor accuracy of the atmospheric delays estimated from empirical tropospheric models and 

the usually very sparse distribution of meteorological stations. 

 

5.1.2 Correction of atmospheric effects based on GPS observations 

 

The advances in GPS meteorology have enabled accurate estimation of tropospheric delays from 

GPS observations [55, 56], and have provided an opportunity to use GPS observations to evaluate and 

calibrate the atmospheric effects on InSAR measurements. However, the spatial resolution of GPS 

stations is in general much lower than that of InSAR data. This poses a potential limitation in applying 

GPS observations to correcting InSAR measurements.  

Considering the power law nature of the atmospheric noise, Williams et al. [43] however dismissed 

the belief that the spatially sparse GPS observations (compared to the scales of the atmospheric 

irregularities and the resolutions of SAR data) were unsuitable for calibrating the atmospheric effects. 

Using simulated data, the authors demonstrated that in general it is possible to use sparsely distributed 

data to reduce the noise in a more densely distributed data set, and that in particular it is possible to use 

zenith delays estimated from GPS observations to reduce the atmospheric noise in InSAR 

measurements. Bock and Williams [57] reported through a cross validation analysis that using zenith 

delays estimated from GPS observations and the Kriging interpolator, more than 90% of the 

atmospheric delays at the unsampled points in a SAR image can be retrieved and therefore removed for 

the Los Angeles basin where fairly dense GPS stations had been in operation. On the other hand, only 

40% of the atmospheric delays can be retrieved for regions outside the basin where the density of GPS 

stations is much lower. Also using cross validation analysis, Janssen et al. [58] tested the effectiveness 
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of three interpolators, i.e., inverse distance weighting, Kriging and spline, in interpolating the GPS-

derived atmospheric delays to the SAR resolution level and correcting the atmospheric effects on 

InSAR on a pixel-by-pixel basis. The results showed that the inverse distance weighting and Kriging 

interpolators are better than the spline interpolator. Webley et al. [59] proposed a procedure to use the 

water vapor delays derived from both the GPS observations and the non-hydrostatic three-dimensional 

(NH3D) meteorological model to calibrate the atmospheric effects on InSAR.  

The research results in [43, 57-59] are mainly from cross validation analysis, but not from 

corrections to real SAR interferograms. Li et al. [44] recently proposed a new method and applied it to 

correct a SAR interferogram. In this method, an atmospheric delay map for each SAR acquisition is 

generated in two steps. First, a “mean” atmospheric delay map is calculated using the method adopted 

by Delacourt et al. [29]. Second, the “mean” atmospheric delay map is amended with the atmospheric 

zenith delays derived from a dense GPS network, mainly to calibrate the estimated “mean” 

atmospheric delays and to compensate their horizontal heterogeneity. Using 14 GPS stations over Mt. 

Etna, the authors corrected a SAR interferogram and achieved 27.2% overall improvement in the 

accuracy of the InSAR measurements. Based on the variance model of water vapor delays derived by 

Emardson et al. [47], a linear interpolator and the best linear unbiased estimator, Li et al. [60] 

developed a GPS topography-dependent turbulence model for InSAR atmospheric correction. Test 

results show that the model is much better than the inverse distance weighting interpolator.  

There are many GPS networks around the world operated in continuous mode. If GPS observations 

prior to and after SAR acquisitions are available, they can also contribute to the correction of 

atmospheric effects on InSAR. Onn [62] and Onn and Zebker [61] applied this method to InSAR 

atmospheric correction based on Taylor’s “frozen-flow” hypothesis. The results showed that additional 

improvement can be achieved when GPS observations prior to and after SAR acquisitions are added to 

the GPS-based InSAR atmospheric correction models. 

The various methods proposed to date that use GPS observations to correct InSAR atmospheric 

effects differ primarily in the algorithms used to generate atmospheric delay maps from the spatially 

sparse GPS atmospheric delay measurements. Therefore, the accuracy of the corrections depends on 

how much atmospheric delays can be retrieved at the unsampled locations from the sparse GPS 

measurements. With the gradual increase in the density of GPS networks around the world, the method 

should become more and more useful. 

 

5.1.3 Correction of atmospheric effects based on high-resolution meteorological models 

 

Numerical meteorological modeling is an essential tool in atmospheric research. Numerical 

meteorological modeling can be carried out on global, regional or mesoscale. The global and regional 

numerical meteorological models are usually too coarse to model atmospheric effects on InSAR. The 

mesoscale numerical models can have a continuous time scale and a horizontal spatial scale of a few 

kilometers, and are therefore suitable for InSAR atmospheric correction. Integrated water vapor content 

along the radar paths can be retrieved from such models and used to calibrate atmospheric effects on 

InSAR. 
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Wadge et al. [59] used the local-scale non-hydrostatic three-dimensional models (NH3D) to 

simulate the path delays due to water vapor over Mount Etna, and found that the NH3D delays were in 

general agree well with the ERS-2 SAR interferogram and the GPS estimates. Webley [65] and Webley 

et al. [64] tested correcting atmospheric effects on a descending and two ascending SAR 

interferograms over Mount Etna by using the path delays derived from the NH3D models. The results 

showed that the correction can result in up to 28.6% improvements in terms of the phase standard 

deviations. The accuracy improvement is however highly dependent on the data used to initialize the 

NH3D models. Foster et al. [66] used the MM5 models (a non-hydrostatic mesoscale meteorological 

model produced by the National Center for Atmospheric Research (NCAR)/Pennsylvania State 

University) to predict the atmospheric delay maps and then to correct 44 SAR interferograms over 

Hawaii. The results showed that on average atmospheric effects with wavelengths of 30 km or greater 

can be significantly reduced, while those with wavelengths shorter than 30 km cannot be effectively 

reduced. More recently, Puysségur et al. [67] found that water vapor content estimated from Envisat 

Medium Resolution Imaging Spectrometer (MERIS) and from MM5 model were consistent and 

unbiased, and thus proposed to integrate MM5 model and MERIS data for InSAR atmospheric 

correction. Test results showed that about 43% of the atmospheric signals can be removed. High-

resolution meteorological models have offered some promising opportunities for mitigating 

atmospheric effects on InSAR although further research needs to be carried out to enhance the accuracy 

and reliability of the method.  

 

5.1.4 Correction of atmospheric effects based on MODIS data 

 

The near-IR water vapor products provided by the Moderate Resolution Imaging Spectroradiometer 

(MODIS) have a spatial resolution of 1 km× 1 km (at nadir) and an accuracy of 5-10% [68]. The high-

resolution water vapor products appear to be very useful for modeling and correcting atmospheric 

effects on InSAR although as an optical sensor MODIS measurements are sensitive to the presence of 

clouds. The resolutions of even the densest GPS networks in the world, e.g., the Southern California 

Integrated GPS Network (SCIGN), are more than ten times sparser than the resolution of MODIS.  

Li et al. [69] first presented some results of using MODIS data to correct atmospheric effects on 

InSAR over Mount Etna and Los Angeles. Li et al. [70] proposed an integration of MODIS and GPS 

data for InSAR atmospheric correction, where the GPS data (more exactly the GPS precipitable water 

vapor (PWV) data) are mainly used to calibrate the MODIS PWV data. Experiments over Los Angeles 

area showed that the atmospheric singals in the SAR interferograms were significantly reduced with 

this method and the geophysical signals in the InSAR measurements became more prominent after the 

corrections were made.  

Considering that all data interpolators unavoidably suffer from smoothing effects [71], Li [72] 

proposed a hybrid algorithm that jointly uses the Kriging interpolator and the conditional spectral 

simulation method to interpolate the MODIS PWV in correcting the atmospheric signals in SAR 

interferograms.  
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Figure 5. Atmospheric path delay corrections for interferometric pair of 29 July 2000 and 

18 August 2001 over Los Angeles basin, South California. (a) original interferogram 

(deformation field has been modeled with GPS observations and removed from the 

interferogram); (b) interferogram corrected using MODIS data. (from Li [72]). 

 

 
Figure 5 shows the original and the corrected ERS-2 interferogram over Los Angeles by using the 

MODIS data and the developed hybrid algorithm. Note that the original interferogram has been 

corrected for topographic phases with a known DEM and for deformation phases with GPS positioning 

results from SCIGN [72]. Thus, the signals left in the original interferogram can be considered solely 

from the atmospheric effects. After the corrections were applied, the negative atmospheric phases in 

the southwestern part of the interferogram and the positive atmospheric phases along the eastern 

margin of the interferogram were largely removed. The phases at the lower central part of the 

interferogram became however more significant, coupled with some under-modeled positive/negative 

residual phases in the corners of the interferogram. The phase standard deviation in the original 

deformation-free interferogram (Figure 5a) is 14.9 mm, while this becomes 10.6 mm in the corrected 

interferogram (Figure 5b), representing an improvement of 28.9% in the measurement accuracy.  

The MODIS PWV measurements however are sensitive to the presence of clouds as noted earlier, 

which limits significantly the use of MODIS PWV in cloudy regions. In addition, systematic biases in 

space borne MODIS PWV measurements may exist and need to be calibrated with more accurate PWV 

measurements (e.g., GPS PWV).  

 

5.1.5 Correction of atmospheric effects based on MERIS data 

 

The MERIS onboard the Envisat satellite allows for global retrieval of PWV every three days, with 

two near infrared water vapor channels. It therefore can acquire water vapor data simultaneously with 

the Advanced SAR (ASAR). Its PWV measurements have a resolution as high as 300 m and accuracy 
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higher than that of MODIS [69]. MERIS measurements therefore offer an opportunity for the 

atmospheric effects on ASAR measurements to be accurately modeled.  

Li et al. [73] assessed the potential of using MERIS near-infrared water vapor products to correct 

ASAR interferometric measurements. The MERIS and the GPS/radiosonde water vapor products tested 

agreed to each other to within 1.1 mm (standard deviation) on average. It was also pointed out that the 

major limitation with the use of MERIS water vapor products is the low frequencies of cloud free 

conditions, i.e., about 25% globally although for certain areas like Easter Tibet and Southern California, 

the frequencies can be much higher. 

Using the Los Angeles area as an example, Li et al. [74] showed that MERIS water vapor data could 

significantly reduce atmospheric effects in SAR interferograms. After corrections were made with the 

MERIS data, the RMS difference between GPS and InSAR range changes in the satellite LOS direction 

decreased from 0.89 cm to 0.54 cm in one interferogram, and from 0.83 cm to 0.59 cm in another. 

Puysségur et al. [67] proposed the integration of MM5 simulated water vapor data and MERIS data for 

InSAR atmospheric correction, as noted earlier. However, no significant improvements were found by 

adding the MERIS data to the MM5 model.  

Figure 6 shows an example of correcting atmospheric effects on InSAR using MERIS data over 

Hong Kong region. The SAR images are acquired on 30 April 2006 and 11 March 2007, respectively. 

Topographic phases have been removed with a reference DEM. GPS positioning results have shown 

that there were no significant deformations during this period in region. The signals in Figure 6a can 

therefore be considered from atmospheric heterogeneity only. Figure 6b shows the corrected 

interferogram with reduced resolution (RR) MERIS water vapor data. It can be seen that the positive 

atmospheric phases in some of the areas have been significantly removed. The standard deviation of 

the phases in the original interferogram (Figure 6a) is 5.72 mm and that in the corrected interferogram 

(Figure 6b) is 4.51 mm, indicating an improvement of about 21% after the corrections were made.  
 

Figure 6. Atmospheric path delay correction for interferometric pair of 30 April 2006 and 

11 March 2007 over Hong Kong area. (a) original interferogram; (b) interferogram 

corrected using MERIS data. 

 

(a) (b) 

mm 

10 km 
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5.2 Correction of Atmospheric Effects based on Correlation Analysis 

 

There are mainly two types of correlation analysis adopted to reduce atmospheric effects on InSAR. 

The first type analyzes the correlation between interferograms, and the second the correlation between 

atmosphere-induced interferometric phases and elevation. Sarti et al. [75] proposed to characterize the 

atmospheric artifacts in SAR interferograms and to remove them through analyzing the correlation 

between interferograms. Fruneau and Sarti [76] proposed to separate the deformation signals from 

atmospheric artifacts by exploiting the correlation between interferograms. The method does not aim to 

remove atmospheric noise from a SAR interferogram, but manages to extract the common (correlated) 

deformation signals within two SAR interferograms through analyzing the correlation of the signals. 

Using this method, the authors successfully extracted the deformation signals from interferograms over 

Paris. Sarti et al. [77] compared this method with other methods for atmospheric effect mitigation like 

the stacking and the persistent scatterer (or permanent scatterer) InSAR (PSInSAR) method and 

pointed out the advantages of the correlation analysis method when the number of available SAR 

images is not large. 

Beauducel et al. [35] proposed to separate deformation signals from atmospheric artifacts over 

Mount Etna by analyzing the correlation between the atmosphere-induced interferometric phases and 

the elevations. Using 238 interferograms over the area, the authors jointly estimated the deformations 

and the tropospheric delays. The results revealed that the estimated large-scale deformation and magma 

evolution from this study were much less than those from other studies, perhaps due to the fact that the 

atmospheric artifacts (ranging from -2.7 to +3.0 fringes) had been better accounted for in this study. 

Using ten SAR interferograms over Sakurajima volcano, Remy et al. [78] carefully investigated the 

relationship between the atmosphere-induced interferometric phases and the elevations, and found that 

the non-linear piecewise polynomial form of cubic splines was better in modeling the atmospheric 

delays than the linear models.  

Chaabane et al. [81] suggested using the correlation between interferograms and that between 

atmosphere-induced interferometric phases and the elevation to correct for the atmospheric effects. In 

this approach, the global-scale atmospheric contribution is corrected by exploiting the correlation 

between the interferometric phases and the elevation, while the local atmospheric artifacts are 

corrected based on the correlation between interferograms containing a common acquisition. Test 

results with 81 differential interferograms covering the Gulf of Corinth (Greece) show that (1) the 

average uncertainty of the stacked deformation map has been decreased from ± 26 mm to ±12 mm, and 

(2) the RMS value of the differences between InSAR and GPS measurements at four stations has 

decreased from ±30 mm to ±19 mm after applying the correction. 

The method of correlation analysis is advantageous in that no external data are needed. The method 

however strongly depends on the correlations between the deformations and between the atmospheric 

signals in different interferograms. Weak correlation may lead to insufficient atmospheric effect 

reduction. 
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5.3 Correction of Atmospheric Effects based on Pair-Wise Logic 

 

The atmospheric signature in a SAR interferogram can be determined with the pair-wise logic 

method [21]. Atmospheric perturbations that are different from the pattern of local ground 

displacements can be identified by comparing interferograms spanning different time intervals. The 

method was used to find a 25×20 km kidney-shaped feature caused by ionospheric perturbations [8, 

21]. Massonnet and Feigl [21] also found irregular patterns of up to three complete fringes resulted 

from tropospheric turbulences or increased water vapor over a 5×10 km area with this method. The 

qualitative nature of this method however makes it difficult to give exact values of the atmospheric 

effects. Hanssen [28] therefore suggested to sum or subtract two interferograms that use a common 

SAR image for removing atmospheric anomalies. The approach has also been referred to as the method 

of linear combination. It is effective when the atmospheric anomalies exist only in the common SAR 

image of the two interferograms. 

 

5.4 Correction of Atmospheric Effects based on PSInSAR Technique 

 

PSInSAR is a relatively new interferometic processing method [42, 79, 80]. It works on temporally 

stable coherent targets (permanent scatterers) only and can overcome the difficulties of coherence loss 

and atmospheric heterogeneities in conventional SAR interferometry. In PSInSAR, the atmospheric 

effects are modeled as linear phase ramps in the azimuth and the range directions for small ground 

areas or a more sophisticated model that includes, e.g., the linear ramps as well as the topography 

dependent term and the turbulence can be used for large rugged ground areas [82]. Parameters of an 

atmospheric model are estimated jointly with other unknowns such as the DEM errors and the LOS 

ground deformations at the permanent scatterers. The estimated atmospheric effects corresponding to 

each interferogram are then resampled onto the image grid with an interpolator and removed from the 

interferogram. Ferretti et al. [42, 79] reported that improved estimation of local topography and terrain 

motions was resulted over Ancona, Italy and Pomona, California with this method. Hooper et al. [80] 

modified the PSInSAR algorithms and applied the method to study the temporal and spatial 

deformation of volcanoes. A shortcoming of the method is that a significant number of SAR images 

over the same area, typically over 30, are needed to get reliable results. 

 

5.5 Reduction of Atmospheric Effects with the Stacking Method 

 

Stacking is a method that reduces the atmospheric effects on InSAR by averaging independent SAR 

interferograms. Assuming that atmospheric effects are uncorrelated between the interferograms, 

averaging N  independent interferograms will reduce the atmospheric signals to 1 N  fold. The 

method was once regarded as the only viable solution to the problem of atmospheric effect mitigation 

[20]. Williams et al. [43] considered the method of interferogram stacking and that of atmospheric 

effect calibration with the assistance of external data (such as continuously operating GPS) to be 

complementary and suggested the two to be used simultaneously. Ferretti et al. [41] proposed a 

weighted averaging method by taking into account the spectral features of the thermal noise and the 
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atmospheric component. Stacking in general degrades the temporal resolution of InSAR measurements, 

and the method works when there are only linear ground deformations as non-linear deformations can 

be lost in the process of stacking. 

We have in this section looked through the various existing methods for mitigating the atmospheric 

effects on InSAR measurements. It should however be pointed out that in principle an optimal 

integration of some of the methods should yield the best results. 

 
6. Conclusions 

 

Atmospheric effects are one of the limiting error sources in repeat-pass InSAR measurements. They 

can introduce errors of over ten centimeters to ground deformations and of several hundred meters to 

DEMs measured with the conventional DInSAR method when considering the typical baseline 

geometries used. Studies have shown that atmospheric signals in SAR interferograms are anisotropic 

and non-Gaussian in distribution. The spectra of the atmospheric signals follow a power law 

distribution with the power exponent very close to -8/3. Various methods have been developed for 

mitigating the atmospheric effects on InSAR measurements based on external data such as ground 

meteorological observations, GPS data, satellite water vapor products such as those from MERIS and 

MODIS, and results from numerical meteorological modeling. These methods are typically able to 

reduce the atmospheric effects by about 20-40 percents. The other methods developed for mitigating 

the atmospheric effects are mainly based on simple data analysis or numerical solutions, including the 

pair-wise logic, the stacking, the correlation analysis, and the PSInSAR methods. Each of the methods 

developed has its pros and cons. The most suitable method should be chosen considering the number of 

SAR scenes acquired, the method used for InSAR processing, the atmospheric conditions (e.g., cloud 

conditions) and the external data available. Despite the progress already made in the research, further 

studies are still necessary in the area to develop more effective methods for the mitigation of the 

atmospheric effects. 
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