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Abstract: HF radar systems are widely and routinely used for the measurement of ocean 

surface currents and waves. Analysis methods presently in use are based on the assumption 

of infinite water depth, and may therefore be inadequate close to shore where the radar 

echo is strongest. In this paper, we treat the situation when the radar echo is returned from 

ocean waves that interact with the ocean floor. Simulations are described which 

demonstrate the effect of shallow water on radar sea-echo. These are used to investigate 

limits on the existing theory and to define water depths at which shallow-water effects 

become significant. The second-order spectral energy increases relative to the first-order as 

the water depth decreases, resulting in spectral saturation when the waveheight exceeds a 

limit defined by the radar transmit frequency. This effect is particularly marked for lower 

radar transmit frequencies. The saturation limit on waveheight is less for shallow water. 

Shallow water affects second-order spectra (which gives wave information) far more than 

first-order (which gives information on current velocities), the latter being significantly 

affected only for the lowest radar transmit frequencies for extremely shallow water. We 

describe analysis of radar echo from shallow water measured by a Rutgers University HF 

radar system to give ocean wave spectral estimates. Radar-derived wave height, period and 

direction are compared with simultaneous shallow-water in-situ measurements. 

Keywords: HF radar oceanography, wave measurement, remote sensing. 
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1. Introduction  

HF  radar systems are widely used internationally to provide continuous monitoring of ocean waves 

and currents for a large range of environmental conditions.  

Within the US, coastal ocean current mapping with HF radar has matured to the point where it is 

now considered an important component of regional ocean observing systems. A mid-Atlantic HF 

radar network now provides high resolution coverage within five localized networks, which are linked 

together to cover the full range of the mid-Atlantic coastal ecosystem.  Similar regional networks 

around the US coastline are being formed into a national HF radar network.  

While much of the focus of these networks until now has been on offshore current mapping 

observations, a longer-term objective is to develop and evaluate near-shore measures of waves and 

currents.  These investigations aim to understand the interaction of waves in the shallow coastal waters 

and how energy is transformed into the creation of dangerous rip currents along the New-Jersey/Long-

Island shorelines. Rutgers University radars cover these coastal regions at multiple frequencies from 

4.5 to 25 MHz.  Their echoes contain information on both currents and waves from deep water up into 

the shallow coastal zone, providing an excellent archive for such studies. This paper describes the 

analysis of both simulated and measured radar echo to demonstrate the effect of shallow water on radar 

observations and their interpretation. 

Radar sea-echo spectra consist of dominant first-order peaks surrounded with lower-energy second-

order structure.  Analysis methods presently in use assume that the waves do not interact with the 

ocean floor, see [1, 2, 3] for phased-array-antenna beam-forming systems; and [4] for systems with 

compact crossed-loop direction-finding antennas, such as the SeaSonde. 

 The assumption of deep water is often invalid close to the coast and for broad continental shelves, 

and is particularly inadequate to describe the second-order sea-echo used to give information on ocean 

waves., as second-order echo is often visible above the noise only for close ranges.  To interpret this 

echo correctly, we show that the effects of shallow water must be taken into consideration. 

In Section 2, we give the basic equations describing radar echo from shallow water, expanding on 

the previous description given in  [5]. In Section 3, simulations are used to illustrate the effects of 

shallow water on waveheight, Doppler shifts and spectral amplitudes in radar sea-echo spectra, to 

investigate limits on the existing theory and to define depth limits at which shallow-water effects must 

be included in the analysis.  The effects of shallow water on the radar spectrum are illustrated using 

measured spectra. In Section 4, methods are applied to the interpretation of measured radar echo from a 

Rutgers University radar to produce wave directional spectral estimates, which are compared with 

wave observations from a bottom-mounted Acoustic Doppler Current Profiler (ADCP) moored in the 

second radar range cell. 

2. Radar spectral theory  

It follows from the solution of the equations of motion and continuity that long ocean waves are more 

affected by shallow water.  We define the depth at which waves interact with the ocean floor by the 

approximate relation: 
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d / L ≤ 1 / 8 (1)  

 

where d is the water depth and L is the dominant ocean wavelength.  The deep-water analysis must 

be modified to allow for shallow-water effects in the coupling coefficients, the dispersion equation 

refractive effects on wave direction, and the directional ocean wave spectrum itself. We only consider 

water of sufficient depth that effects of wave energy dissipation such as breaking and bottom friction 

may be ignored; thus we operate in the linear wave transformation regime.  As a general rule, this 

assumption is valid when the water depth is greater than 5% of the deep-water wavelength. 

Applying the lowest-order shallow-water dispersion equation to first-order backscatter from the sea 
gives the following equations for 

 
%ks

1 , the first-order spatial wave vector and ω s
1 , the temporal 

wavenumber of the ocean waves in shallow water producing the backscatter. In this document, a 

subscript or superscript s indicates a shallow-water variable; its absence indicates a deep-water 

variable. 

 

      (2) 

      

where 
 
%k0  is the radar wave vector, of magnitude k0 , and  ω B  is the Bragg resonant frequency in 

shallow water which is given by: 

 

ω B = 2gk0 tanh(2k0d)                     (3) 

 

with g the gravitational constant. The analogous relations for second-order backscatter are: 

 

    (4) 

 

where are the spatial wavevectors (with magnitudes ks , ks
' ) of the two shallow-water, first-

order ocean waves interacting to produce the second-order backscatter. m, m ' are equal to +1, -1 for 

waves moving toward, away from the radar respectively. 

The electromagnetic coupling coefficient has the same form as for deep water [5] but with shallow-

water wavevectors: 

 

               (5) 
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where ∆  is the normalized surface impedance. The hydrodynamic coupling coefficient, derived by 

Barrick and Lipa [6] through solution of the equations of motion and continuity, is a function of water 

depth: 

 

  (6) 

 

where k and k’ are the spatial wavenumbers of the scattering waves in deep water. The deep- and 

shallow-water spatial wavenumbers are related as follows: 

 
k = ks tanh(ksd) k ' = k 's tanh(k 's d)     (7) 

 

The total radar coupling coefficient Γ s
 is the coherent sum of the hydrodynamic and 

electromagnetic terms 

 
Γ s = ΓEM

s + ΓH
s

                          (8) 

 

It can be shown from these equations that at constant wavenumber, the coupling coefficient 

increases as the water depth decreases, resulting in an increasing ratio of second- to first-order energy 

as the depth decreases. 

In the following analysis, we assume that the deep-water directional wave spectrum is spatially 

homogeneous and that any inhomogeneity in shallow water arises from wave refraction.  When energy 

dissipation can be neglected, it follows from linear wave theory that since the total energy of the 

wavefield, is conserved, the shallow-water wave spectrum expressed in the appropriate variables is 

equal to the deep-water spectrum [7]: 

 

                                      (9) 

 

where the deep- and shallow-water wave vectors are related by Snell’s law and the dispersion 

equation: 

 
k cos(θ + β) = ks cos(θs + β )               (10) 

 
k = ks tanh(ksd)                (11) 
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Here β  is the angle between the radar beam and the depth contour and θs ,θ  are the angles between 

the radar beam and the shallow-, deep-water ocean waves respectively.  Figure 1 illustrates refraction at 

a contour between regions of differing depth. 

 

Figure 1. Schematic geometry of the radar beam and an ocean wave train at a depth 

contour, denoted by the dashed line.  Wave angles are measured counter-clockwise from 

the radar beam to the direction the wave is moving. Increasing θs ,θ  by 180° would 

define an incoming wave. 

 

 
The shallow- and deep-water rms waveheights are given by: 
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H 2 = S(k,θ )kdkdθ
0

2π

∫
0

∞

∫ H
s

2 = Ss (ks ,θs )ksdksdθs

0

2π

∫
0

∞

∫                              (12) 

 

Substituting (10) and (11) into (12) gives the following relations which are useful for deriving the 

shallow- from the deep-water wave spectrum and vice versa: 

 

 

H 2 = Ss (ks ,θs )J(ks ,θs )kdksdθs

0

2π

∫
0

∞

∫ H s
2 = S(k ,θ)J −1(ks ,θs )ksdk dθ

0

2π

∫
0

∞

∫       (13) 

where the Jacobian J(ks ,θs )  is given by: 

 

J(ks ,θs ) =

∂k

∂ks






 θ

∂θ
∂ks







k

∂k

∂θs






 θ

∂θ
∂θs







k

=
∂k

∂ks






 θ

∂θ
∂θs







k

= 1+
ksd sech2(ksd)

tanh(ksd)











sin(θs + β)

sin(θ + β)









   (14) 

 

The first- and second-order radar cross sections in shallow water at frequency ω  and azimuth 
angle ϕ  are given by: 

 

σ s
1 ω ,ϕ( )= k0

4 Ss (2k0,
m '= ±1
∑ ϕ + (m '+ 1)

π
2

)δ (ω − m 'ω B )                                    (15) 

 
whereSs (k,α ) ) is the directional ocean wave spectrum for wavenumber k and direction α �. 

σ s
2 ω ,ϕ( )= k0

4 Γ s
2

−∞

∞

∫
0

2π

∫ Ss (ks ,
m,m '= ±1
∑ θs + ϕ + mπ )

. Ss (ks
' ,θs + ϕ + m 'π )δ ω − m gks tanh(ksd) − m ' gks

' tanh(ks
' d)( )ksdks dθs

  (16) 

 
where the coupling coefficient Γ s  is given by (8).  The values of m and m’ in (16) define the four 

possible combinations of direction of the two scattering waves. Common numerical multiplicative 

constants in (15) and (16) have been omitted.  It can be shown from (4) that the wavenumbers of the 

scattering waves are related as follows: 

 

k 's = ks
2 + 2ks cos(θs ) + 1                              (17) 

 

To compute the second-order integral in (16), we choose as integration variables ks  and the deep-

water angle θ .  In terms of these variables (16) becomes 
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σ s
2 ω ,ϕ( )= k0

4 I(
−∞

∞

∫
0

2π

∫ ks ,
m,m '= ±1
∑ θ)δ (ω − h(k,θ))

∂ks

∂h




 θ

dhdθ    (18) 

 

where 

h(k ,θ) = m gk − m ' gks
' tanh(ks

' d)

    (19) 

and 

I(ks,θ) = Γs
2 S(k,θ + ϕ + mπ )S(k ',θ +ϕ + m 'π )ks

∂θs

∂θs '










k    (20) 

  and where we have substituted (9) for the shallow water directional spectra.  The factors 

∂θs

∂θs '







k and 

∂ks

∂h




θ

are obtained by differentiation using (10), (11) and (19).   

To calculate the integral in (18), it is first reduced to a single-dimensioned integral using the delta 

function constraint.  The remaining integral is computed numerically. 

Frequency contours are defined by: 

 
ω − h(k,θ ) = 0       (21) 

 

which is solved for k as a function of θ for a given value of ω .  Due to wave refraction, the shallow 

water angle and wavenumber have discontinuities when the deep-water wave moves parallel to the 

depth contour, i.e. when 

 
θ = − β, π − β       (22) 

 
where β  is the angle between the radar beam and the depth contour. 

Frequency contours are hence also discontinuous due to this effect at deep-water wave angles 

defined by (22).  Examples of frequency contours for deep- and shallow-water are shown in Figure 2, 
plotted in normalized deep-water spatial wavevector space 

 
%k / (2k0) . Normalized components p, q are 

defined so that p is along the radar beam and q perpendicular: 

 
p = k0 + k cos(θ )( )/ (2k0)

q = k sin(θ ) / (2k0)      (23) 

 

The discontinuities in the frequency contours are more pronounced when the contour is drawn in 

shallow-water wavenumber space, as it follows from (10), (11) that there are discontinuities in the 

shallow-water wave angle due to wave refraction. 
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Figure 2. Examples of frequency contours for water of depth 10m (continuous lines) 

compared with the corresponding contours for deep water (dashed lines).  

Normalized frequency: ω / ω B =1.2, β =60deg.   

Radar frequency: (a)  5Mhz ,  (b) 25Mhz 

 

 

 
 

It can be seen from Figure 2 that the deep-water ocean wave numbers corresponding to a given radar 

spectral frequency change with depth: they become either greater or smaller than the deep-water 

values, depending on the wave direction.  This results in the frequency of second-order peaks in the 

radar spectrum changing with water depth. 

The effects of shallow-water on measured radar spectra are illustrated in Figure 3, which shows 

measured spectra from a 5 MHz radar in five radar range cells, with distances ranging from 18km to 

60km. As the water depth decreases, the second-order energy increases relative to the first-order and 

the frequency displacement between the first- and second-order peaks decreases.  In the outer ranges, 

the second-order structure is almost the same from range cell to range cell, as the water is effectively 

infinitely deep. 
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Figure 3. Spectra from a 5MHz SeaSonde monopole antenna.  Range/ Water depth: 

 (a) 18km/ 5 -20m  (b) 30km/10-50m (c) 42km/ 20-70m (d) 48km/ 35-80m  (e) 54km/ 

40-100m 

 

3. Narrow-beam radar spectral simulations 

To gain insight into the effects of shallow water, simulated radar echo spectra were calculated for a 

narrow-beam radar, using the model directional wave spectrum defined in [8] which consists of the 
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sum of two terms: a continuous high-frequency wind wave spectrum and a swell component that is an 

impulse function in both wavenumber and direction.  The swell component is defined by 

 
Ss (ks ,θs ) = H s

*2δ (θs − θs
* )δ (ks − ks

* )     (24) 

 

where H s
*

,θs
* , ks

*

 are the specified rms waveheight, direction and wavenumber. For this model, four 

sharp spikes occur in the radar spectrum. Here we consider only the second-order sideband for 
whichm=1, m'=1, and assume water depths in the range 5-100m and radar transmit frequencies of 

5Mhz and 25Mhz.   For these values, it can be shown numerically that Doppler frequencies are always 

greater than the positive Bragg frequency. The radar beam is taken to be pointing perpendicular to 

parallel depth contours (i.e β  = 90° in Figure 1) 

3.1 Effect of water depth on waveheight 

For our model it follows from (13) that the relationship between the shallow- and deep-water rms 

waveheights is given by: 

 

H s
* = H * sin(θ * + β) / sin(θs

* + β)

tanh(ks
*d) + ks

*d sech2(ks
*d)       (25) 

 

This relationship is of course independent of radar frequency and has many angle symmetries.  

Figure 4 shows the ratio plotted as a function of depth for different wave directions.   

 

Figure 4. The ratio of shallow- to deepwater waveheight plotted vs. depth for a 12 s 

wave. Wave direction in deep water relative to the radar beam: Red 180°, Blue 135° 
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It can be seen from Figure 4 that the waveheight initially decreases with decreasing depth as the 

wave enters shallow water but increases at depths below about 20m, which agrees with [7]. 

 

3.2 Effect of water depth on Doppler shifts 

 

It follows from (3) that for a given radar frequency, the Bragg frequency decreases with depth, 

causing the Bragg peaks to move slightly closer together.  Figure 5 shows the Bragg frequency plotted 

as a function of depth.  

 

Figure 5. Bragg frequency plotted as a function of depth. 

Radar transmit frequency: Red 5Mhz, Blue 25Mhz 

 

 
 

It can be seen from Figure 5 that the change in the Bragg frequency with depth is small. 

Figure 6 shows the displacement of the second-order peak from the Bragg frequency plotted as a 

function of depth for an 11s wave moving at different angles with respect to the radar beam.   

It can be seen from Figure 6 that as the water depth decreases, the second-order peak shifts toward 

the Bragg frequency for waves moving toward the radar, and further away for waves moving away 

from the radar.  This is consistent with the two branches of the contour plot as shown in Figure 2.  This 

effect is more marked for lower radar frequencies and can be seen in the measured spectra shown in 

Figure 3 in which the second-order peak moves closer to the first-order as the range from the radar and 

water depth decrease, with waves moving toward the radar. 

 
 
 
 
 



Sensors 2008, 8                            

 

 

4622

Figure 6. The frequency shift of the second-order peak from the Bragg frequency for an 

11s wave. (a)  5Mhz (b) 25Mhz. Angle between wave and radar beam: Yellow 0°, Blue 

45°, Green 135°, Red 180° 

 

 
 

 
 

 

3.3 Effect of water depth on radar spectral amplitudes 

It is shown in [8] that for the impulse-function model defined by (24), the ratio R of the second-

order to first-order energy is given by: 
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R = 2H s
*2 Γ s

2   (26) 

where the coupling coefficient Γ s is evaluated at wavevectors defined by θs
* , ks

*

.  Γ s  increases with 

decreasing depth and increasing wave period at a given radar frequency as illustrated in Figures 7 and 

8, which also show that shallow water has a greater effect as the radar transmit frequency decreases.  

 
Figure 7. The absolute value of the coupling coefficient Γ s vs. depth for a 9 sec wave. 

Radar frequency: Red: 5Mhz, Blue: 25Mhz. 

 

 
 

Figure 8.  The absolute value of the coupling coefficient vs. depth for waves of different 

period.  Radar transmit frequency: 5Mhz.  Wave period:  Red 15s, Blue 12s. Green 9s. 
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Since the coupling coefficient increases as the depth decreases, it follows from (26) that the second- 

order energy will increase with respect to the to first-order.  This effect can be seen in the measured 

radar spectra shown in Figure 3.  Figure 9 shows the theoretical ratio of the second- to the first-order 

energy obtained from (26) using our model for an 11s wave.   

 

Figure 9. Ratio of second - to first-order energy for an 11s wave. Significant 

waveheight: 2.4m. Radar transmit frequency: (a) 5 Mhz,  (b) 25 Mhz. 

Angle between wave and radar beam: Yellow 0°, Blue 45°, Green 135°, Red 180°  
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It can be seen from Figure 9 that the ratio of the second- to the first-order energy exceeds unity (i.e. 

the calculated second-order energy exceeds the first-order energy) for depths less than about 8 m for a 

5MHz transmit frequency and for depths less than about 10m for a 25 MHz transmit frequency. 

This subsection demonstrates an important point.  Since we have shown that the waveheight itself 

actually decreases slightly upon moving into shallow water, while the second-order echo increases 

significantly due to the rapid growth of the coupling coefficient, wrongly using deep-water inversion 

theory to estimate waveheight will overestimate this important quantity.  We note that all previous 

treatments and demonstrations of wave extraction have been based on deep-water theory, even when in 

fact many of the radar observations have been made in shallow water.  

3.4 Effect of water depth on breakdown of theoretical model 

When the magnitude of the second-order energy approaches that of the first-order, it is apparent that 

the perturbation expansions on which (15) and (16) are based are failing to converge and they therefore 

cannot provide an adequate description of the radar echo.  This effect is similar to the well known radar 

spectral saturation occurring when the waveheight exceeds a limit defined by the radar transmit 

frequency. Above this waveheight limit, the radar spectrum loses its definitive shape and the 

perturbation expansions fail to converge. The deep-water saturation limit on the significant waveheight  
WSat  (defined to be four times the rms waveheight)  is given approximately by the relation:  

 
WSat = 2 / k       (27) 

 

For shallow-water, the saturation of the radar spectrum is exacerbated by the increase of the 

coupling coefficient and the radar spectrum saturates for waveheights less than that defined by (27).  
We here define the shallow-water saturation limit WSat

s for the model to be that waveheight for which 

the second-order energy equals the first-order, and the ratio R is given by: 

 
R = 1                           (28) 

 
In practice the theory may fail before this limit is reached. WSat and WSat

s  are plotted vs. depth in 

Figure 10 for two different radar frequencies. At depths of 30m the saturation limits are approximately 

equal.  At depths less that 30m, the shallow-water limit drops off sharply, particularly for the lower 

transmit frequency.  Thus the radar spectrum can be expected to saturate at lower values of waveheight 

in shallow water. 

For waveheights above the saturation limit, the waveheight predicted by the theory will be too high.  

However the theory cannot be applied at all when the second-order spectrum merges with the first, as 

then separation is not possible. 
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Figure 10. Significant waveheight saturation limits for  an 11-second wave coming 

straight down the radar beam. Radar transmit frequency: (a) 5 Mhz , (b) 25 Mhz 
Red: deep-water saturation limitWSat , Blue: shallow-water saturation limit WSat

s  

 

 
 

 

3.5 Depth limits for significant shallow-water effects 

We estimate depths for which shallow-water effects become significant as follows: For first-order 

echo, the depth limit is defined by equality in (1).   At this depth, the Bragg frequency defined by (3) is 
96% of its deep-water value. For second-order echo, we define the depth limit DS  at which shallow-

water effects become significant as the value at which the coupling coefficient defined by (8) exceeds 
1.25 times the deep-water value. Figure 11 plots the depths DS  vs radar transmit frequency for an 11s 

wave. 
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Figure 11. Depths at which shallow-water effects become significant vs. radar transmit 

frequency. Red: second-order echo.  Blue: First-order echo. 

 

 
 

Figures 10 and 11 help in assessing the validity of the existing deep-water methods.  However 

they are based on a wave model (24), which is quite restrictive: waves of a single wavelength are 

assumed to come down the radar beam.  Also Figure 11 applies only to an 11s wave.  Performing 

similar studies for more general wave spectral models is beyond the scope of this paper.  However, we 

observe that:  (a) Shallow water effects are stronger for longer ocean wavelengths (b) Second-order 
radar spectra for m=1, m'=1are strongest for waves down the radar beam. (c) The stronger the second-

order energy for a given waveheight, the sooner the radar spectrum will saturate as waveheight 

increases.  Therefore shallow-water effects will be more marked at a given waveheight for a broad 

nondirectional spectrum that includes longer wavelengths e.g. the Pierson Moskowitz model (32). 

These differences would probably not be large however, due to the sharp cutoff of wave-spectral 

models for long wavelengths.  The opposite effects would be expected for spectra that include wave 

directions not directly down the radar beam e.g. a cardioid directional distribution. To summarize these 
effects: WSat

s will be less and DS  will be greater than the values shown in Figs. 10 and 11 for the 

following changes from the wave spectrum (24): broad nondirectional spectrum, wave period > 11s. 
WSat

s will be greater and DS  will be less for broad directional distributions, waves nonparallel to radar 

beam , wave period < 11s. 
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4. Application to measured data 

4.1 Data set 

The results presented here are based on analysis of 10-minute radar spectra measured by a 25MHz 

SeaSonde located at Breezy Point, NJ. The time period from December 29 to 30, 2005, was chosen 

because simultaneous coverage provided by the SeaSonde and a bottom-mounted ADCP allowed a 

direct comparison to be made between results from the two sensors.  The ADCP was located in the 

second radar range cell in water of depth 8m. The bathymetry in the area and the locations of the two 

sensors are shown in Figure 12. 

 

Figure 12. The coastline and bathymetry (contours in meters) around Breezy Point, 

New Jersey,  showing the positions of the  SeaSonde and the bottom-mounted ADCP. 

 

 
In our analysis, depth contours near the radar are assumed to be parallel to shore and the depth 

profile is obtained from Figure 12.  

Figure 13 shows measured spectra from the Breezy Point SeaSonde at three ranges: the second-

order energy can be seen to increase relative to the first-order as the water depth decreases. 
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Figure 13. (a) Spectra measured by the 25MHz SeaSonde at Breezy Point. at 1:00pm 

12/30/2005. Range: (a) 3 km (b) 6 km (c) 9 km.  

 

 
 

4.2 Interpretation of the radar spectra 

Lipa and Barrick [5] describe the extension of the narrow-beam theory described in Section 2 to 

apply to a broad antenna system such as the SeaSonde, assuming ideal antenna patterns.  From the 

antenna voltage cross spectra, we form as intermediate data products the first five Fourier angular 

coefficients of the broad-beam return over a selected range ring surrounding the radar.  These 

coefficients, designated by the  index n = -2, -1, 0, 1, 2, are defined in terms of the narrow-beam first 

and second-order return through the relation: 
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bn
1,2(ω ) = ∫ σ s

1,2

(ω ,ϕ )tfn (ϕ )dϕ      (29) 

where the integration over azimuth angle ϕ  is performed over open water around the radar range 

cell and the superscripts refer to first- and second-order respectively. The narrow-beam radar cross 

sections  σ s

1,2

(ω,ϕ) are defined in terms of the ocean wave spectrum by (15), (16). Following the 

notation in [5], the trigonometric functions tfn (ϕ )  are given by 

 
tfn (ϕ ) = sin(nϕ ) n < 0

= cos(nϕ) n ≥ 0
     (30)  

As described in [4], there are three steps in the interpretation of the radar spectrum to give deep-

water wave information.  

a) The first- and second-order regions are separated.  

b) The first order region is analyzed to give the ocean wave spectrum at the Bragg wavenumber. It is 

assumed that deep-water theory is adequate for this step, as Bragg waves are short and hence 

insensitive to the effects f shallow water, see Figure 5. 

c) Second-order radar spectral data is collected from the four second-order sidebands of 10-minute 

averaged cross spectra and fit to a model of the deep-water ocean wave spectrum.  Least-squares fitting 

to the radar Fourier coefficients is used to derive estimates of the significant wave height, centroid 

period and direction. During this step, the second-order spectrum is effectively normalized by the first-

order, eliminating unknown multiplicative factors produced by antenna gains, path losses etc.  

Shallow-water analysis requires a further step: 

d) The shallow-water wave spectrum is calculated from the deep-water spectrum using (9)–(11).  

4.3 Model ocean wave spectrum 

For our analysis, we define a model for the deep-water ocean wave spectrum as the product of 

directional and nondirectional factors:  

S(k,ϕ) = Z(k)cos4 ϕ − ϕ *

2





                   (31) 

The directional factor in (31) has a cardioid distribution around the dominant direction ϕ * . For 

describing the second-order spectrum, ϕ *  is taken to be the dominant long-wave direction. For 

describing the first-order spectrum, ϕ *  is the short-wave direction, which is assumed to be the same as 

the wind direction. For the nondirectional spectrum we use the Pierson-Moskowitz model Z(k): 

Z(k) =
Ae−0.74(kc /k )2

k4                 (32) 

whose parameters are the cutoff wavenumber kc and a multiplicative constant A. The waveheight, 

centroid period and direction can be defined in terms of the model parameters. The significant 

waveheight follows from the directional spectrum through the relation: 

W = 4 S(k,ϕ)dkdϕ
γ 1

γ 2

∫
0

∞

∫














1/2

    (33) 
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This model has proven satisfactory for use in deep-water wave extraction software that produces 

waveheight, period, and direction.  It has been used for real-time SeaSonde systems for many years, 

providing good agreement with in-situ measurements e.g. as shown in [4]. 

4.4 Results 

Figure 14 shows SeaSonde results in the second radar range cell calculated using the shallow-water 

theory described above, together with the ADCP results.  

 

Figure 14.  SeaSonde (red) and ADCP (blue) results for (a) Significant waveheight (b) 

Wave period (c) Wave direction (d) Wind direction. 
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It can be seen from Figure 14 that southerly winds veer to the northwest after the passage of a storm 

front. Subsequently the wave height and period increase suddenly.  Spectral saturation may be 

occurring at the peak of the storm, causing overestimates in the waveheight. Wave direction remains 

about the same, as due to wave refraction, wave directions in very shallow water are nearly 

perpendicular to the depth contours.  Both radar and ADCP are observing directions in shallow water, 

hence this perpendicular condition is being enforced on the longer waves, although the wind direction 

driving short waves is seen to change significantly over this storm period. 

Table 1 gives the bias and standard deviation between the SeaSonde and ADCP measurements of 

waveheight, wave period and direction, for the short-period waves before the storm and the longer-

period waves afterwards. 
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Table 1.   Comparison statistics, radar vs. ADCP. 

 

 Before storm After storm 

Waveheight  
Standard deviation  0.25m 0.35m 

Bias -0.23m 0.17m 

Wave Period 
Standard deviation  

 

 

0.76s 

 

 

0.60s 

Bias 0.70s -0.27s 

 

Wave Direction 
Standard deviation 

Bias 

 

 

 

13.8° 

-9.5° 

 

 

19.7° 

17.0° 

 

To emphasize the necessity of taking shallow water into account for this location, we estimated the 

waveheight assuming infinitely deep water. Figure 15 shows the SeaSonde results together with the 

ADCP waveheight. Clearly waveheight is overestimated with this assumption.  The simulations 

described in Section 3 indicate that the cause of this overestimate is the failure to account for the 

increase of the coupling coefficient in shallow water.  

 

Figure 15.  Significant waveheight:  

Red: SeaSonde calculated assuming infinite water depth. Blue: ADCP. 
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Table 2 gives the bias and standard deviation between the SeaSonde and ADCP waveheight 

measurements, with the former calculated assuming infinitely deep water. 

 
Table 2.    Comparison statistics, radar vs. ADCP assuming deep water. 

 

 Before storm After storm 

Waveheight  
Standard deviation  0.25m 0.95m 

Bias 

 

0.19m 0.90m 

5. Conclusion 

We have presented the theory of narrow-beam HF radar sea-echo from shallow water and illustrated 

the effect of decreasing water depth using simulations for a simple swell model of the ocean wave 

spectrum. The second-order spectral energy increases relative to the first-order as the water depth 

decreases, resulting in spectral saturation when the waveheight exceeds a limit defined by the radar 

transmit frequency. This effect is particularly marked for lower radar transmit frequencies.  For 

waveheights above the saturation limit, the perturbation expansions on which Barrick’s equations (15), 

(16) are based fail to converge. The saturation limit on waveheight is less for shallow water. Shallow 

water affects second-order spectra (which gives wave information) far more than first-order (which 

gives information on current velocities).   Figure 11 shows the depths at which shallow-water effects 

become significant plotted as a function of radar frequency for an 11s wave.  We discuss how the 

waveheight and depth limits would change for a more general model. 

The shallow-water theory was then extended to apply to broad-beam systems such as the SeaSonde 

and applied to the interpretation of two days of radar data measured by a 25Mhz SeaSonde located on 

the New Jersey shore. During the measurement period, a storm passed over the area.  An ADCP was 

operated in the second radar range cell in water 8m deep. Radar results were compared with 

simultaneous ADCP measurements. The comparison confirms aspects of the theory presented in 

Section 3.  For the longer period waves occurring after the passage of the storm front, the standard 

deviation between SeaSonde and ADCP waveheight measurements decreased by a factor of three when 

the effects of shallow water were included in the analysis, and the bias decreased by a factor of  five.  

Possible explanations for the remaining discrepancies are (a) the assumption of parallel depth contours 

(b) the assumption that the wave spectrum is homogeneous in the circular radar range cell (c) 

saturation in the radar spectrum around the peak of the storm, which, as discussed in Section 3, leads to 

the over-prediction of the waveheight. 
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