Next Article in Journal
Next Article in Special Issue
Previous Article in Journal
Previous Article in Special Issue
Sensors 2008, 8(7), 4033-4061; doi:10.3390/s8074033
Article

Laurate Biosensors Image Brain Neurotransmitters In Vivo: Can an Antihypertensive Medication Alter Psychostimulant Behavior?

1,2,3,* , 1, 1 and 1
Received: 29 May 2008; in revised form: 30 June 2008 / Accepted: 2 July 2008 / Published: 4 July 2008
View Full-Text   |   Download PDF [540 KB, uploaded 21 June 2014]
Abstract: Neuromolecular Imaging (NMI) with novel biosensors enables the selective detection of neurotransmitters in vivo within seconds, on line and in real time. Biosensors remain in place for continuing studies over a period of months. This biotechnological advance is based on conventional electrochemistry; the biosensors detect neurotransmitters by electron transfer. Simply stated, biosensors adsorb electrons from each neurotransmitter at specific oxidation potentials; the current derived from electron transfer is proportional to neurotransmitter concentration. Selective electron transfer properties of these biosensors permit the imaging of neurotransmitters, metabolites and precursors. The novel BRODERICK PROBE® biosensors we have developed, differ in formulation and detection capabilities from biosensors/electrodes used in conventional electrochemistry/ voltammetry. In these studies, NMI, specifically, the BRODERICK PROBE® laurate biosensor images neurotransmitter signals within mesolimbic neuronal terminals, nucleus accumbens (NAc); dopamine (DA), serotonin (5-HT), homovanillic acid (HVA) and Ltryptophan (L-TP) are selectively imaged. Simultaneously, we use infrared photobeams to monitor open-field movement behaviors on line with NMI in the same animal subjects. The goals are to investigate integrated neurochemical and behavioral effects of cocaine and caffeine alone and co-administered and further, to use ketanserin to decipher receptor profiles for these psychostimulants, alone and co-administered. The rationale for selecting this medication is: ketanserin (a) is an antihypertensive and cocaine and caffeine produce hypertension and (b) acts at 5-HT2A/2C receptors, prevalent in NAc and implicated in hypertension and cocaine addiction. Key findings are: (a) the moderate dose of caffeine simultaneously potentiates cocaine's neurochemical and behavioral responses. (b) ketanserin simultaneously inhibits cocaine-increased DA and 5-HT release in NAc and open-field behaviors and (c) ketanserin inhibits 5-HT release in NAc and open-field behaviors produced by caffeine, but, surprisingly, acts to increase DA release in NAc. Importantly, the latter effect may be a possible adverse effect of the moderate dose of caffeine in hypertensive patients. Thus, an antihypertensive medication is shown here to play a role in inhibiting brain reward possibly via antihypertensive mechanisms at DA and 5-HT receptor subtypes within DA motor neurons. An explanatory note for the results obtained, is the role likely played by the G Protein Receptor Complex (GPRC) family of proteins. Empirical evidence shows that GPRC dimers, heteromers and heterotrimers may cause cross-talk between distinct signalling cascade pathways in the actions of cocaine and caffeine. Ligand-directed functional selectivity, particularly for ketanserin, in addition to GPRCs, may also cause differential responses. The results promise new therapeutic strategies for drug addiction, brain reward and cardiovascular medicine.
Keywords: anxiety; brain; caffeine; cocaine; dopamine; electrochemistry; G-protein receptor complexes (GPRC); homovanillic acid; hypertension; ketanserin; L-tryptophan; mesolimbic; motor tracts; neuromolecular imaging; nucleus accumbens; open-field behaviors; psychostimulants; serotonin; ventral tegmental area. anxiety; brain; caffeine; cocaine; dopamine; electrochemistry; G-protein receptor complexes (GPRC); homovanillic acid; hypertension; ketanserin; L-tryptophan; mesolimbic; motor tracts; neuromolecular imaging; nucleus accumbens; open-field behaviors; psychostimulants; serotonin; ventral tegmental area.
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Export to BibTeX |
EndNote


MDPI and ACS Style

Broderick, P.A.; Ho, H.; Wat, K.; Murthy, V. Laurate Biosensors Image Brain Neurotransmitters In Vivo: Can an Antihypertensive Medication Alter Psychostimulant Behavior? Sensors 2008, 8, 4033-4061.

AMA Style

Broderick PA, Ho H, Wat K, Murthy V. Laurate Biosensors Image Brain Neurotransmitters In Vivo: Can an Antihypertensive Medication Alter Psychostimulant Behavior? Sensors. 2008; 8(7):4033-4061.

Chicago/Turabian Style

Broderick, Patricia A.; Ho, Helen; Wat, Karyn; Murthy, Vivek. 2008. "Laurate Biosensors Image Brain Neurotransmitters In Vivo: Can an Antihypertensive Medication Alter Psychostimulant Behavior?" Sensors 8, no. 7: 4033-4061.


Sensors EISSN 1424-8220 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert