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Abstract: This paper outlines how light Unmanned Aerial Vésc(UAV) can be used in
remote sensing for precision farming. It focusestlo@ combination of simple digital
photographic cameras with spectral filters, desigimeprovide multispectral images in the
visible and near-infrared domains. In 2005, thesériments were fitted to powered glider
and parachute, and flown at six dates staggeredtbeecrop season. We monitored ten
varieties of wheat, grown in trial micro-plots imet South-West of France. For each date,
we acquired multiple views in four spectral bandsresponding to blue, green, red, and
near-infrared. We then performed accurate cormestiof image vignetting, geometric
distortions, and radiometric bidirectional effect&fterwards, we derived for each
experimental micro-plot several vegetation indexekevant for vegetation analyses.
Finally, we sought relationships between these xaedeand field-measured biophysical
parameters, both generic and date-specific. Thexefoe established a robust and stable
generic relationship between, in one hand, lea argex and NDVI and, in the other hand,
nitrogen uptake and GNDVI. Due to a high amoumaite in the data, it was not possible
to obtain a more accurate model for each date smtgntly. A validation protocol showed
that we could expect a precision level of 15% ia Hiophysical parameters estimation
while using these relationships.
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1. Introduction

The American National Research Council [1] defipeekcision agriculture (or precision farming) as
“a management strategy that uses information tdoggdo bring data from multiple sources to bear
on decisions associated with crop production”slcommonly admitted that it encompasses all the
techniques and methods of crop and field inforrmagathering that help taking into account in crop
management the local and site-specific heterogeii2iB-4-5-6]. Remote sensing image products,
such as biophysical parameters maps for instarasas proven to be of high information content for
that purpose, especially thanks to their spatialegision [7-8-9]. Vegetation indexes, derived from
accurately calibrated remote sensing images, cgnpneducing such maps by means of empirical or
modelled relationships [10-11-12-13-14-15]. They arow widely used by the remote sensing
community especially to provide coupled agronomarad spatial information about cereal crop status
like wheat [e.g. 16-17-18-19-20-21-22-23]. Suchduis are then often assimilated in crop models to
derive more complex crop stress information [24]ewen directly integrated into a Geographical
Information System for precision practices managerizb-26].

Because it has rapidly appeared that satelliteosgrdid not meet the requirements in increasing
image temporal frequency and spatial resolution diach application like crop monitoring, many
airborne photographic or video systems have beerelgged to compensate spatial lack of
opportunities [27 - 28 - 29 - 30]. On the other dhain-field devices (like onboard traction-engiraeg
also relevant for site-dedicated systems at affiedaosts [e.g. 31-7]. However, they are difficualt
move from one site to another, have a small mappwath capability, and are often only available
during cropping activities. Cameras mounted oradight aircrafts or even unmanned aerial vehicles
(UAVs) are now a good compromise between the hggfopmances that such sensors can provide and
cost-effectiveness of data acquisition. First depetl for defence applications, especially as atamg
weapon reconnaissance platform [e.g. 32-33-34$¢tldle vectors are now catching the attentioa of
wider range of image-users like archaeologists. [8%] or forest-fires detectors [e.g. 36]. The
increasing capabilities of such remotely controletiicles, of on-board attitude-control or positnan
systems, and of digital cameras technology, conabitee the improvements of remote sensing
techniques, have recently pushed the UAV into tleeipion farming field. For instance, Herwitz et al
[37] have shown that multispectral sensors on babkd's can provide spectral indexes to be related
with the mature yield of coffee crops. Sugiuralef38] even developed a complex platform dedicated
to corn agricultural management, flying on board tlaimanned helicopter, with a whole image
processing and LAl maps production adapted chanenBhough their system is very efficient, on-
board technology is quite expensive. It includesordy the imaging sensor itself (composed of three
distinct matrices), but also inertial and geomaignsensors, GPS receivers, and data acquisition
computer. Fortunately, many laboratories also saeipler but efficient systems that could meet
vegetation monitoring requirements with less caists [e.g. 39]. In this context, we propose irsthi
paper to analyse the potential for precision fagnif a cost-effective system composed of simple
digital cameras modified for multispectral acquasis, fitted on board small UAVs.
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We will focus on the case study of wheat, croppedgmall plots, over the growing season. We will
first describe the agronomical trials set for thigpose, and the ground truth data acquired as the
reference information on wheat crops. Then we wexlplain the principle of our image acquisition
device. After that, the data pre-processing prdtoed be exposed, followed by the method of
biophysical parameters estimation. Finally, we wiicuss the validity of the derived relationshipsl
the precision of the produced maps, to concludeitathe relevance of such remote sensing platform
for wheat crop monitoring.

2. Material

2.1 Trial plots

A rainfed variety trial of wheat was conducted Ire t2004/2005 growing season at the French
National Agronomical Research Institute (INRA) &iatin Auzeville, near Toulouse (South-West of
France). This trial included 332 micro-plots (Efgure ), each one covering 7.7 square meters (4.2 m
*1.83 m, 16 cm apart).

Seventeen genotypes were sowed into these micte-pitbeen durum-wheat (Triticum Turgidum
L. var. durum) and two bread-wheat (T. Aestivum, Wwjth three seeding densities: 170, 250 (the
standard practice) and 390 seeds per square ridigestatistical design was a set of five sub trials
established in the same field, containing a randethdesign of three or four replicates of eachiipec
genotype at different seeding densities.

Five different levels of Nitrogen availability werapplied: 1- a standard N fertilization, 2- a
standard N fertilization without the last applicatiin the season (low N stress), 3- a medium lefel
N stress, 4- a high level of N stress, 5- an oegtilization. Not all combinations of genotype/N
level/seeding density were tested.

For four N-levels, additional plots were includear fdestructive sampling during the growing
season, for five genotypes (four durum wheat aredlweaad wheat) with the three densities.

This trial allows displaying a wide range of biormakeaf area, and nitrogen uptake over the field
and the growing season, useful to test remotesgmnsievance for wheat monitoring.

2.2. Ground-truth data

Biophysical parameters were measured on the addltots at dates close to each UAV flyby: 30
plots on the 28 of March, 46 plots on theé"6of April, and 61 plots on the #7f April and the 18 of
May, 2005. Heading occurred around th& b® May and flowering around the #&f May. On each
sampled plot, the number of plants at early tiigrand the number of spikes per square meter were
counted on four rows of one meter. To avoid premeatiestruction of the sample plots and to represent
correctly the whole plot, plants were picked atrfdifferent places in the plot at each date. Leaha
index (LAI, in square metre per square mewap assessed on a sub-sample with a Licor planimete
Fresh plants were oven-dried at 80°C to a constaight and then ground to 0.5 mm. Total nitrogen
content (NC) was determined using a LECO CHN-20@yaer (Dumas method). Shoot-biomass per
square metre was estimated by multiplying stem raunfbr spike number after heading) per square
metre by the mean stem weight. The total nitrogptake (QN, in kg N/ha) is then calculated by
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multiplying above ground biomass by total N contét overall precision of 15% was estimated for
these destructive measurements.

Figure 1. Sketch-plot of the wheat trial studied in this papdéumbers indicate the
sown genotype in the micro plot.
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LAl and QN measured in the sampled micro plots dkerseason have a correlation coefficient less
than 0.6: they are thus complementary to charaetevheat crops agronomical status.

In addition to quantitative measurements, deseeptiata were recorded during the experiment, like
the plant habit, height, vigour, and earring date.

2.3. UAV-airborne images

Imaging data were collected with sensors derivednfistandard cameras, fitted on two kinds of
radio-controlled UAVs: a powered glider developey the French corporation L’Avion Jaune
(www.lavionjaune.fr), and a small “Pixy” motorizgghrachute developed by ABS-Aerolight and the
French Research Institute for Development (IRB)y(re 3. These different vehicles were used to test
their respective agility and flight constraints,igfhwe will not discuss here because it has noctlire
incidence on image production during this campaign.

Figure 2. L’Avion Jaune’s powered glider (left) and Pixy moaed parachute (right).

The sensor was composed of a pair of similar digéaneras, available on the public market, but
with some instrumental adaptations. Depending eratiguisition date, we used two different models:

- CANON EOS 350D: a reflex camera with 8 GigaPixdéssical Bayer CCD-matrix splitting the

light in three channels (Red, Green, and Blue).

- SONY DSC-F828: a reflex camera with 8 GigaPixelsD@@atrix splitting the light in four

channels (Red, Green, Blue, and Cyan).

The information about the CCD photodiodes specs@hsibility is not available from the
manufacturer, neither the Bayer matrix to be ableestimate the spectral correspondence of each
camera produced channel [40]. We were thus obliggukrform afterwards an optical characterization
in the ONERA laboratories in Toulouse to get theuleng relative spectral response of the
camera.Figure 3shows the spectral sensitivity of the Canon EO@8%and the Sony DSC-F828,
respectively. Bandwidths are then derived at tHeH®aght of the response curve, and givermable
1. Considering common satellite sensors wavelengtlerage (sedable ), these bands are quite
close to those generally used in remote sensitigowdh slightly (10 to 30 nm) shifted to smaller
wavelengths. They are thus correctly located toatttarize the vegetation, even if the red bandtfiiés
negative slope of the chlorophyll absorption baattier than its minimum.
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Figure 3. Spectral relative response of: a) the three Can©8-B50D, and b) the four
Sony DSC-F828 channels.

100 Ta) Canon EOS-350D

—Red 100 7p) Sony DSCF828 —Red
| K Green [\ -Green
80 1 k! —Blue a0 4 ——Blue

Cyan

50 A

704

60

50 A

40 4

Relative response
Relative response

T T T T T T T T
400 450 500 550 £00 650 700 400 450 500 550 600 650 700
Wavelength (nm) Wavelength (nm)

Each camera contains, in front of the CCD-matridhaad-pass filter dedicated to catch only the
visible part of the incident radiation and to stihe UV and infrared ones. But the CCD itself is
sensible to infrared radiations up to 900nm. On cer@era of each pair, we replaced this band-pass
filter by an equivalent transparent glass slicekéep the same optical path than inside the other
camera, and mounted on the objective a 715 nm egk-filter (MaxMax trademark, model: X-Nite
715 Infrared) to block the visible part of the @tn. Finally, the red channels of these two medif
cameras both provide an infrared sensor in theer@2@-850 nm. This spectral range is also shifted t
shorter wavelengths compared to common satellisae (seelable ), but includes the relevant
wavelengths to characterize the infrared plateaplayed by vegetation reflectance, just after gue r
edge.

Table 1. Spectral ranges corresponding respectively toReddgreen (G), blue (B), and

near infrared (NIR) channels of the two camerasdusethis study, compared to
common satellite sensors.

Channel Canon EOS-3500D Sony DSC-F828 Landsat, Qiui;Kdkonos SPOT
R 570-640 nm 570-650 nm 630-690 nm 610-680 nm
G 490-580 nm 490-570 nm 520-600 nm 500-590 nm

B 420-500 nm 430-510 nm 450-520 nm -
NIR 720-850 nm 720-850 nm 760-900 nm 790-890 nm

As the two cameras were mounted on the same adisyarchronized with a single trigger, the pair
of standard plus modified cameras acquires the sarage frame simultaneously. It thus composes a
multispectral imager providing four spectral banttue, green, red, and near infrared, that are
consistent with the more common remote sensingosemmnds. Considering that low-altitude flights
performed by UAVs avoid strong interactions of mead reflected light with atmosphere, it provides
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scenes of higher radiometric homogeneity than air@r satellite sensors, and thus a better overall
quality of signal. Nevertheless, other problemg.(geometrical) occur from the UAV use, especially
because of the lack of motion and attitude corftr@t could provide an Inertial Unit for instancajhd
homemade sensors specifications that we will dsouthe next section.

The focal distance was fixed to a value betweera@®8.0 mm. The shutter speed depended on the
light conditions on acquisition day, set in geneatil1/1000 second or 1/2000. The rate of image
recording in this configuration was only 3 secofatsa “jpg” file, compared to 15 seconds for aftif
file. Thus, “tiff” storage was too long to captuiee whole area of interest in a single flyby. Hoeev
the jpg format has the data compression inconvenwamich may add radiometric degradation, and
which model for the used cameras was not availmbia the manufacturer. Therefore, we tested both
jpg and tiff files recorded on the same views an1/04/2005: difference between these pairs showed
that the mean radiometry is not altered inside @aplot but can be strongly affected at the mjuliod
borders due to high frequency JPEG filtering metht/é then decided to store the files in the “jpg”
format and use a buffer when extracting the mediomaetry of a micro plot (see section 3.2).

We performed the six flights on the following dat€8/02, 01/04, 14/04, 29/04, 25/05 and
08/06/2005. Solar zenith-angle was constrained &&twl0° and 50°, thanks to an acquisition time
shifting from 1 to 3 pm (solar time) from date tatel As several photo frames might be necessary to
cover the whole scene swath, all the acquisitioesewdone in a short single flyby to avoid light
variations. At the end, a dozen of images were isgedat each date. Among them, we selected the
smallest set of images among the less fuzzy omibdobthat allows covering the whole site: the lass t
number of images, the fewer inter-frame calibratimas while producing a mosaic. Finally, three
(14/04, 08/06), four (28/02, 01/04, 25/05), or f{a9/04) images were used per date to complete the
scene.

Figure 4. Example of UAV’s acquisition (29 of April, 2005) covering the whole trial field,
displayed in the true Red-Green-Blue color-comparsit
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3. Method
3.1. Pre-processing:

3.1.1. Vignetting correction

Vignetting is the image darkening in circular geadifrom the image centre to its borders [41-42],
due to light obstruction and differences in liglatlpin some parts of the optics combination (lens +
filters + neutral glasses). For the selected dettaitscorresponds to a mean digital number deereés
about 5% in the visible bands and 35% in the ieflawne. Higher vignetting in the infrared is mostly
due to the additive high-pass filter in front oétbptical device. In regards with the low radioneetr
variations observed from one micro plot mean tatlro(about 30 digital numbers), correction of this
effect before extracting any quantitative data fittwnimages seems highly important.

As vignetting has been studied for a long time iostapplications of photography, from
microscopy [e.g. 43] to astronomy [e.g. 44] scalssyeral methods have been developed to
compensate for it [e.g. 45-46-47-48-49-29-50-5he Tost widely used deals with the acquisition of a
flat field image, which means an acquisition ovarmaform region, such as brightness variations can
solely be attributed to vignetting [52-53-47]. Sibile image conditions for this approach, howevam, ¢
be difficult to produce because of uneven illumimatand camera tilt. Indeed, the vignetting
measurements are only valid under the same cameéliiags, which are challenging to obtain with
UAVs. Therefore, we have applied a basic three-stegthod usually adopted in astronomy, for
instance by [54]: vignetting characterization ofcleasensor with an illumination radial profile,
antivignetting filter production, and applicatiohtbe filter to the images.

1) The radial profile is derived from the mean imadealbthe images acquired by a single camera in
the same conditions (focal distance, aperturetashapeed), to avoid specific objects radiometric
variations contribution. This mean image is smliLDO, regularly spaced, concentric rings, in which
the median value is calculated. The correspondiafil@ (the curve of the median intensity value as
a function of the distance to the image centreFifure 5 is then interpolated by a two degrees
polynomial function to discard the residual noise.

2) A circular image is produced, based on conceningst Each ring is given the value of the
illumination profile polynomial fit corresponding fits distance to the centre. The number of rings
depends on the size of the image to be correctédsagqual to the half of its largest dimensions to
respect the Nyquist sampling theorem. A rectangteow then truncates the circular image to fit
the original image dimensions, producing the vigngtimage. We have chosen to lighten the
corners of the image rather than darken the céotpeeserve the overall image dynamics as much
as possible: the area to be modified is smallethisa case. The antivignetting filter is thus the
inverse of the vignetting image, produced by suiing it to 255, minus its minimum to fix the
filter minimum to zero.
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Figure 5. Examples of radial illumination profiles derivedbiin the infrared images
series, and their polynomial interpolations.
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3) The antivignetting filter is applied to the imagelte corrected, simply summing these two images
pixel to pixel. We here assume that, before sumphighest values lay near the image centre, and
lowest values at the corners. Regarding the chafi@®rners lightning, we chose to avoid possible
saturation by interpolating pixels values betwele@ summed image minimum and the original
image maximum. This interpolation also allows presg radiometry temporal variatiokigure 6
illustrates the result obtained with this vignegtrorrection method.

To prevent from color variations occurring in thisille image corners while working band by band,

the visible image set is transformed from RGB toSHiystem. Then we apply the same correction

method than for the infrared, but only on the Ldhdrinally, we transform the corrected HLS image to

the RGB system.

Figure 6. Example of result obtained by the vignetting caimet process:
original image (left), anti-vignetting filter (midig), and corrected image (right).

3.1.2. Bidirectional reflectance effects correction

Surface reflectance varies with the incidence amelvvangles, following the Bidirectional
Reflectance Distribution Function (BRDF) [55-56-5A given object will thus reflect different
intensities of light in different directions. Thigell-known effect in aerial images is emphasizedavh



Sensor008 8 3566

using UAV’s because they are flying at low altitadeith large field of view (compared to high
resolution satellite data): the observation configjons, and especially the view angles, correspgnd

to each different object of a single image are tineneased. As the intensity of radiometric vacias

due to this phenomenon is comparable to the expacsaations due to crop agronomic status, we
have to correct it too. Unfortunately, using oungle system impeded us to get any measurement of
these configuration parameters and thus to dene&RDF.

Therefore, we have developed a method that regekatihe received light quantity on any part of
the image. We have first tested a homogenizatioth@de named Local Range Modification [58-59],
and some adaptations of this latter. Results disdl@oo strong radiometric changes compared to the
original images to be relevant. We have thus addetlis method a complex re-sampling, following
five consecutive steps:

1) Sub-sampling of the original image. Blocks okgls are averaged by means of a bilinear
interpolation. This method has the advantage taebelar and reproducible, and rather independent of
the strong dominant objects radiometry. Best resuéire obtained with scale factors equal to 2005 th
sub-sampling for example a 2000x2000 pixels image 10x10 pixels image.

2) Gaussian filtering on a 3x3 pixels window. Togess all the pixels, even the first and last lines
and rows of the image, we have first duplicateanth@ltered the new image, and discarded them off
the resulting image.

3) Over-sampling to the original size by bicubiterpolation. We have chosen to perform a bicubic
interpolation because the bilinear interpolatioregimot translate the radiometric variations in the
image with enough accuracy to provide an apprapra@rrection of the effects contained in the
images. Minimum Curvature Splines, Thin Plate S3dirand Krigeage were also tested but resulted in
too smooth results, and thus inaccurate correctimosg with a high consumption of processing time
and complicated parameterization.

4) Inversion of the resulting image by subtraciirg 255, then scaling it to null origin.

5) Application of the resulting filter to the orrgil image.

Although this correction method is not optimum fbe whole set of images, especially for those
acquired at lower altitude, it appeared to be quated for the overall datd&igure 7.

Figure 7: Example of result obtained by the radiometric hoemgation of
bidirectional effects: original image (left), homesgzation filter (middle), and corrected
image (right).
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Like for vignetting correction, band-by-band diiec@l corrections of the visible bands result itoco
alterations. So, we also proceed with a RGB-HL&dgi@mation, L-band correction only, and HLS-
RGB forward transformation.

3.1.3. Geometric corrections and georeferencing

UAV images, compared to satellite data for instanbave the inconvenience of lacking
geographical metadata (i.e. attitude parametes)saffering from important geometric deformations.
To acquire data at a very high spatial resolutignto 5¢cm/pixel, UAV have to fly at very low altde:
from 20 to 100 meters. This altitude does not mie\stable conditions and the spatial resolutios thu
might differ from one shot to another during a &nfityby. In addition, the platform instability lda to
the acquisition of each image with slightly diffeteriewing angles. We have chosen for this study to
correct these different effects only by means efdkoreferencing process, performed by warping any
image on the basis on a single reference imagallfthe dates and frames [60-61-62]. This reference
image was acquired on the 29/05/2005 and coveredhal micro plots, with the resolution of
10cm/pixel. First, it was geographically referendgdmeans of fifty Differential-GPS measurements
scattered over the frame. Then, about thirty grozortrol points were selected independently foheac
image to be corrected. Finally, the warping wadquared independently for each image, using a
second-degree polynomial fit and a bilinear resamgpResults have a root mean square error of only
one to three pixels, which is acceptable compaveditro plot size (several tenths of pixel). Indeed
the buffer used to extract micro plot data willdf¢hree pixels at least (see section 3.2).

3.1.4. Intra-date and date-to-date radiometridcation

BRDF causes radiometric variations inside a siimgkege and thus generates differences between a
given object radiometry on two consecutive imagles:observation configurations are not equivalent
for the two acquisitions. This effect was correctesed on common features comparison. For each
date independently, we have selected for referdreenost homogeneous image displaying the largest
common area with the others. We have then extramtddzen of plots, chosen to cover the largest
possible radiometric scale, and derived their nradiometric value. Bare soil was avoided because of
its high sensibility to directional effects. Thadar regression between the reference and the itbage
correct was then derived out of these values, haddsulting function applied to the whole image.
Once all the images corrected, we produced ondesingsaic per date per multispectral channel. The
image limits for the assembling were defined foilagvthe path separating two micro plots, so thgt an
micro plot is covered by a single image.

We performed the date-to date calibration usingstree indirect calibration method, but based on
invariant features like roads, parking areas, itrgfaintings on roads, and buildings. We assumed th
results are correct because of the very high airoel coefficients obtained for any calibrationelam
regression (more than 90%) and the coherent hetogariation for the whole scene over the period.

We have chosen to keep the data in digital numiagher than transform them into reflectance data
because of the challenging task that would haveesemted the spectral correspondence between
camera channels and field spectrometric measurame&herefore, it limits data analysis to relative
methodologies, without any reference to other datguired either with the present or other systems.
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Moreover, we will derive only normalized vegetatimmlexes to avoid results bias due to calibration
effects. Considering the scope of the present suelyicated to show the potential of a simple desig
on board light UAV for crop monitoring before going towards larger projects, we consider this limit
as reasonable.

3.2. Quantitative data extraction

Ground-truth trial plots were accurately delimitedh a differential GPS, and inserted in a vector-
layer to be displayed over the mosaic-image. Wee lthen calculated the mean radiance of each plot
considering a buffer of forty centimetres, corregtiag to four pixels, in order to limit the analysi
area to the centre of the plot. This buffer alla¥iscarding possible georeferencing errors and image
distortions, micro plots geometric fluctuations,daavoids the inclusion of soil pixels. Averaging
decreases residual errors of the various correstfoh section 3.1). Moreover, it is consistenthwit
ground-truth biophysical measurements that werepdeoh as means for each micro plot. Vegetation
indices calculated in the next section were derfvech the plot mean radiance.

3.3. Biophysical parameters estimation

A large set of vegetation indices have been andlghgce the development of remote-sensing [63]
to provide information about crop biophysical statCommonly, indices implying infrared and red
bands are related with biomass, canopy structune,LAIl, while others implying only visible bands
are related with the leaf pigment concentration aidogen content Table 3. An exponential
relationship is usually assumed between a biopalyparameter K and the vegetation index | to which
it is correlated, in the form:

K=Aexp(BxlI)+C (2)
where A, B, and C are the coefficients to be derij23-64-65-66]. These parameters have to be
calibrated for the specific vegetation type andgeacquisition conditions any time such relatiopshi
is to be used.

Table 2. Mathematic expression of the vegetation indicesyaed in this study:

Name of Indices tested in this study Index expoFssi Reference
NDVI (normalized difference vegetation index) (NHRR)/(NIR + R) [63]
SAVI (soil-adiusted tation ind (2 -L)(NIR-R)/(NIR+R-L)

(soil-adjusted vegetation index) With L=0 5 [67]
_GNDVI (green normalized difference vegetation (NIR = G)/(NIR + G) 20]
index)

Gl (greenness index) (R-=-V)(R+V) [66]

We first calculated the mean NDVI, SAVI, GNDVI, atl (Table 3 from the mean radiance of
each plot were the biophysical parameters LAl amNlwW@re measured in the fields (cf. section 2.2).
We then applied a linear interpolation between mgasurements date to derive LAl and QN at each
UAV acquisition date. Finally, we sought a relasbip of the form (Eq.1) for each of the height
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couples (K; 1), with K {LAIl, QN} and IT { NDVI, SAVI, GNDVI, Gl }, using the “R” software Two
directions were explored:

1) A generic expression for any date and any g@eotyf wheat, taking into account the four
acquisitions: 1/04, 14/04, 29/04, and 25/05, base#l92 ground-truth plots.

2) Date-specific expressions, reliable for eaclegidate independently among 1/04, 14/04, 29/04, and
25/05, based on 30 to 50 ground-truth plots depgnaolin the date.

4. Results and discussion
4.1. Generic relationships between LAI vs. NDVH @N vs. GNDVI.

The best relationships were obtained between, a@n h@nd, the leaf area index (LAI) and the
normalized difference vegetation index (NDVBidure §, and, on the other hand, the total nitrogen
uptake per square metre (QN) and the green noredatifference vegetation index (GNDVFigure
9):

LAl = 0.011 exp (11.756 x NDVI) + 0.827 (2)
QN =17.8exp (5.2 x GNDVI) - 82.4 3

Root Square Error (RSE) of the determination o¢helationships were respectively 0.57 for LAl and
19 for QN, corresponding respectively to a meaatined error of 17% and 13%. This error falls down
to 8% for higher LAl values~6 nf/m?) and 6% for higher QN values-300 Kg/ha). A very good
correlation was found between the values calculaiititl these relationships and the values measured
in the fields, respectively of 0.82 for LAl and 2.fbr QN.

These results are quite comparable with those lysofaiained in remote sensing [e.g. 6-12-63-66-68],
showing the potential of UAVS’ acquisitions despite wide range of corrections applied to the data.
The obtained accuracy lies in the range of therdetste measurements precision too.

Table 3. Errors of estimation and correlation coefficien&tvireen calculated and actual
values for LAl and QN:

Derived parameter RSE Mean relative error  Min.tredaerror | Correlation coefficienlt
LAI 0.6 m/m? 17% 8% 0.82
QN 19 Kg/ha 13% 6% 0.92

4.2. Date-specific relationships between LAl vsMN2nd QN vs. GNDVI.

No converging exponential model of the form (Eqvhk found to relate either LAl to NDVI, or QN
to GNDVI at a specific given date. Indeed, in thea#l range of values occurring for each date, these
relationships are rather linedfigure 10 Figure 1), of the form:

K=AxI +B 4)
A and B coefficients are given for each dat@able 4 together with the corresponding model errors
and the coefficient of correlation between estimated ground truth parameters. These results glearl
show that either LAl or QN estimations are loosingjuantitative accuracy while using date-specific
relationships. Indeed, the mean relative errorke3timation is increasing from 13% with the generi



Sensor008 8 3570

relationship to 16-18% with the date-specific on&l estimation depends on the considered date: for
the two middle dates, close to the flowering phegiglal stage, the error is a little bit lower (16%4
against 17%), while it increases up to 23% fordhdier and later dates. This effect is often oleser
in the literature (e.g. 22, 69, 70, 71), and gs@se confidence in the validity of the observeddese

In the global point of view, the overall valuesiesited date by date are slightly more correlated to
the ground-truth measurements: the coefficientasfedation of the whole data set is 0.86 (against
0.82) for LAl and 0.93 (against 0.91) for QN. Howewthis gain is too small to justify the use oflsu
date-specific relationships for the whole seasonitodng, in regards with the loss of accuracy [eg
mean relative error) the number of parametersne {a.g. height coefficients, compared to three).

Figure 8. Relationship between micro-plot mean NDVI and anogan leaf area index (LAI)

6

+ Ground-truth (LAl field measurements)
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>
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Figure 9. Relationship between micro-plot mean GNDVI and amggan nitrogen
uptake per square meter (QN)

300
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Figure 10.Date-specific relationships between micro-plot mEB&VI| and crop mean
leaf area index (LAI) for each acquisition, comuhbre the generic relationship.
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Figure 11.Date-specific relationships between micro-plot m&iNDVI and crop mean
nitrogen uptake per square meter (QN), compardaetgeneric relationship.
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Table 4: Coefficients (A and B) of the date-specific linexpression relating LAI to
NDVI, and QN to GNDVI, for each date. RSE is theresponding root square error of
the model, and MRE the mean relative error:

Parameter Date A B RSE MRE
01/04 35 -0.1 0.2 mé/m? 19%

14/04 9.5 -1.5 0.3 mé/m? 15%

Al 29/04 27.7 -8.0 0.5 mé/m? 16%
25/25 29.1 -10.1 0.6 mé/m? 23%

01/04 197 -44 4 Kg/ha 16%

14/04 700 -220 11 Kg/ha 18%

N 29/04 1580 -627 17 Kg/ha 17%
25/25 1234 -457 23 Kg/ha 18%

4.3. Cross-validation and sensibility analysis

We have chosen to present in this paper only treduation of the two generic relationships,
because they are the more relevant. A way to esitha quality of the results in terms of stabiltyd
applicability is to analyze the sensibility of tterived relationship coefficients to the learniragadset.
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In addition, comparison of calculated and groundhktparameters on a data sample that was not used
to derive the relationship is a common validatiaotpcol. Therefore, we produced ten couples of
{learning, validation} data sets, randomly spligithe whole population in two parts in the respecti
proportions of two thirds and one third. For eatlthese couples, we derived on the learning sample:
“A”, “B”, “C” coefficients of (Eq. 1), and “RSE”, he mean error committed by the model. Then we
applied the corresponding relationship to the eelavalidation sample, and we calculated the
coefficient of correlation between resulting valwesl ground-truth measurements of this validation
sample “CC Valid.”. Results are givenTiable 5for LAl and Table 6for QN estimations. These tables
also give, for all the tests, the mean LAI or QNivkd on the validation data set, to be compared to
the ground truth data set means, respectively %> and 88 Kg/ha. The mean difference observed
between the new calculated LAl and QN of the vaimasample and the generic relationship results
are indicated respectively under “DLAI” and “DQN".

Variations of the three coefficients of the expdremrelationship between LAI and NDVI on one
hand, and QN ad GNDVI on the other hand, are verglls showing a good stability of the model. In
addition, the error of the model increase a litdleg to the reduction of the sample on which it is
derived. Still, it remains under in the limit o0x?/m? for the LAl and 20 Kg/ha for QN.

Values of the two variables obtained with the teskationships are also very close to those obthine
with the generic one, difference between both bésg that 0.1 Am? for the LAI and less than 10
Kg/ha for QN. Moreover, the mean values derivedofoth LAl and QN on the total validation sample
is very stable and almost equal to the means ajrivend-truth measurements.

Table 5.Results of the sensibility analysis on the estioratf LAl by means of NDVI.
A, B, and C are the respective coefficients of éxponential relationship. RSE is the
mean error committed on LAl with the correspondingdel, in ni/m? MLAI is the
mean derived LAl for the validation data set, i/mf. DLAI is the mean difference
between the test result on the validation samptethe generic result, in #m?. CC
Valid. is the coefficient of correlation betweerethAl calculation on the validation
sample and the measured ground-truth.

LAl vs NDVI A B C RSE MLAI DLAI CC Valid.
Initial 0.011 11.76 0.83 0.57 2.34 0 0.83
Test 1 0.019 10.69 0.70 0.56 234 0.02 0.81
Test 2 0.012 11.42 0.78 0.53 233 014 0.81
Test 3 0.014 11.32 0.73 0.57 23 0.02 0.79
Test 4 0.019 10.65 0.72 0.56 234 0.02 0.78
Test5 0.016 10.99 0.76 0.58 234 0.01 0.82
Test 6 0.008 12.34 0.93 0.57 236 0.02 0.86
Test 7 0.01 11.97 0.85 0.59 235 0.06 0.85
Test 8 0.014 11.22 0.73 0.57 233 0.01 0.8
Test 9 0.012 11.61 0.86 0.57 232 0.08 0.81
Test 10 0.016 11.03 0.80 0.57 234 0.06 0.83
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Table 6. Results of the sensibility analysis on the estioratof QN by means of
GNDVI.

A, B, and C are the respective coefficients of éxponential relationship. RSE is the
mean error committed on QN with the correspondingdeh, in Kg/ha. MQN is the
mean derived QN for the validation data set, irKgiha. QN is the mean difference
between the test result on the validation samptethe generic result, in Kg/ha. CC
Valid. is the coefficient of correlation betweeretN calculation on the validation
sample and the measured ground-truth.

QN vs GDVI A B C RSE MQN DQN CC Valid]
Initial 17.8 5.2 -82.4 19 89 0 0.93
Test 1 20.8 4.9 -88.1 20.5 90 193 0.93
Test 2 11.7 5.9 -68.1 19.3 87 3.66 0.92
Test 3 13.3 5.6 -70.4 20.4 92 4 0.92
Test 4 18.6 5.1 -86.3 20.3 91 6.7 0.92
Test5 23.2 4.7 -96.7 19.6 91 4.07 0.89
Test 6 20.7 4.9 -89.8 19.9 88 107 0.9
Test 7 185 5 -82.2 19.9 91 984 0.91
Test 8 22.7 4.7 -93.9 18.7 87 4.44 0.9
Test 9 19.6 5 -85.7 19.8 90 4.49 0.92
Test 10 17.7 5.1 -80.4 19.6 88 4.4 0.92

In addition, the coefficients of correlation betwethe derived and the measured values decrease
slightly, due to the reduction of the sample like the model residual error, but it stays very lst@md
high (upper than 0.79 for LAl and upper than 0.@9QN).

Figure 12shows LAl and QN distributions for the 10 validetisamples, and their correlation with the
ground-truth values. This distribution is quite qmaat and shows a good clumping around the 1:1 line.
It shows that there is no artefact due to the ramdelection of the two sets of individuals, respety

for learning and for validation, and that each datirelationship gives results quite close to ttteia
values without a systematic over or under-estimatio

In conclusion, this sensibility analysis shows tthet generic relationships derived at section 4.1 i
very stable, does not depend on the choice of rimiig data set among the completely available
measurements, and is quantitatively accurate.

4.5. LAl and QN maps

We have applied the two relationships derived dher whole season to each pixel of the final
mosaics of the four last dates, when LAl and QNeheached significant values. It results in time-
series of LAl and QN over the growing season atitikaplot scale Kigure 13andFigure 14. The
overall time-variation of these two parameters seewherent with expected evolution through the
wheat growing-season: increase until the end of ,Mallowed by a strong decrease due to maturity
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and senescence. Quantitative values also seentandance to what is generally observed in wheat
fields, except that the higher values are sligbtlgrestimated (>6 for LAl and >400 for QN).

Other maps can be produced, deriving the biophlypmameters out of the median NDVI and the
median GNDVI over the micro plot, and assigning toeresponding “median” LAI or QN to the
whole plot. In some cases, this procedure couldedse the strong overestimation due to aberrant

pixels.

Figure 12. Comparison between ground truth measurements ahdlaand b) ON,

calculated by means of the different validatiorigeslationships.
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Such maps can help analyzing the different whe¢t@s response to the same environment, under
different fertilizing conditions. It can also proM information about the soil resources prior te th
crop, especially at early stages of wheat growti. ifistance, on the T4of April, a square patch of
very high values appears on the bottom left-haé siorner (plot number from left to right and
bottom-up: 0101, 0102, 0103, 0201, 0202, and 020Bpth LAI and QN mapsHigure 13 Figure 14
and Figure 1p This is not an artefact due to the image pregssing, as it is explained by field
factors: this part of the trial was inadvertentlgged on an area that was managed as bare soNdor
a year ending in October 2003. Therefore, it haduah higher level of soil nitrogen availability. i§h
is also in good agreement with the plant sampliatadn the fields (Table)7 This heterogeneity
vanished as the growing season moved on and wikisesuent fertilizer applications, as the
surrounding area corresponded to the non-limiteattnent for nitrogen.

In addition, the fine resolution of the maps dediva the pixel scale (20cm/pixel) allows getting
very accurate information to analyze the intrapiatiability. For instance, a diagonal pattern appea
on the five plots on row 35, for both LAl and QNightly on the 28 of April and &" of June (Figure
13 andFigure) and very clearly on the $5of May (Figure 15 These plots are indeed buffer plots
between two nitrogen treatments. On the lower phthe trial (row 34 to 22), a nitrogen dressing
(ammonium nitrate) of 50 kgN/ha as was applied raeially on the 8 of April. On the upper part
(row 36 to 52) no nitrogen was applied. The imafythe 14/04 was acquired too early to display the
effect of nitrogen, but this latter is obvious ¢ following dates (29/04, 25/05 and 08/06) for La&l
well as for QN. The diagonal pattern in the bufiee is due the nitrogen spraying method used.

Table 7. Comparison of LAl (in /m?) and QN (in Kg/ha) biophysical parameters
between the left bottom ‘bare soil corner’ ploteefgcells) and the same cultivars on the
nearest plot, on the Tf April:

Measured | Interpolated | Calculated Measured | Interpolated | Calculated

Plot Cultivar LAI LAI mean LAl QN QN mean QN
(06/04) (14/04) (14/04) (06/04) (14/04) (14/04)

0101 25 1.7 2.7 3.5 55 143 251
0404 25 1.1 1.6 1.8 36 61 59
0102 24 1.2 2.1 3.1 44 76 219
0605 24 0.8 1.2 15 27 58 81
0103 23 1.2 2.1 25 36 72 91
0502 23 1.2 1.9 1.8 39 76 88
0201 5 2.4 3.5 3.8 78 118 124
0504 5 14 25 2.0 44 168 156
0202 4 2.3 3.2 3.7 78 123 150
0505 4 11 1.9 15 38 152 160
0203 3 1.9 3.1 2.8 55 184 166
0602 3 14 2.3 1.8 43 149 148
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Figure 13. Sequence of leaf area index maps, obtained ovewrlieat growing-season
using the derived generic relationship between NBX\ LAI (black frame indicates the
zoom presented &igure 15.
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Figure 14. Sequence of nitrogen uptake maps, obtained ovewltieat growing-season
using the derived generic relationship between GNBW QN (black frame indicates
the zoom presented Bigure 19.
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Figure 15.Zoom in the biophysical parameters maps on Apré, 14", over atypical
plots at the bottom left-hand size corner of tied showing very high QN and LAl

values

a) ON (Kg/ha) b) LAI

Figure 16.Zoom in the biophysical parameters maps on May2#le over atypical line
of plots (line 35) of the trial, showing a diagonadttern of QN and LAl values
distribution.

a) ON (Kg/ha)
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5. Conclusion and perspectives

A cost-effective multispectral sensor was desidgmegsed on commercially available digital cameras,
adapted with relevant filters. It was fitted onhligJAVs to perform six aerial acquisitions of wheat
crop micro plots during the growing season, at Very altitude. Resulting images need several
preprocessing before use, to correct vignettingngaric and resolution-related problems, directiona
effects, and radiometric intercalibration. Somecefht methods were adapted for this purpose, with
quite good results, and we were able to produceoleerent mosaic at the spatial resolution of
10cm/pixel, in four spectral bands: blue (420-510),ngreen (490-580 nm), red (570-650 nm), and
near infrared (720-850 nm). Mean vegetation indexere then derived for each trial micro plot and
compared to ground-measured biophysical parametemslationship between NDVI and LAI on one
hand, and GNDVI and QN on the other hand, was ddrivith respective RSE of 0.57°tm” and 19
Kg/ha, and 82% and 92% of respective correlatiawéen calculated and ground-truth values. These
relationships were evaluated using a cross vatidadnd a sensibility analysis to the learning data
and proved to be quite stable and accurate. Thityqoé the derived relationships also shows that
spectral ranges reached by standard cameras aablsuior remote sensing, and that the data pre-
processing is quite effective, even if it mightibmgroved.

At the end, we were able to produce LAl and Nitrogéptake maps for the whole field of wheat
including the trial, at any acquisition date, wéith average precision of about 15% on the quamati
values, indeed in the range of the destructive oreasents precision. Such maps were proved
temporally and spatially coherent, even at theapltot scale. Indeed, it shows relevant information
about the intraplot variability that was explair®dcropping or trial practices.

Such study thus shows that cost-effective UAV rsplictral devices are relevant for quantitative
wheat monitoring with a good precision. Neverthglasany technical aspects can be improved, like
the location of spectral bands (choice of nearanefd filter), the characterization for the spectral
sensibility and the potential for reflectance caltibn. Data pre-processing are quite complex &ed t
data quality would be improved if some of them cobé avoided thanks to more stable platforms or
laboratory pre-calibration of sensors. In the théenaoint of view, other relationships should als®
explored to evaluate the possibility of estimatafndifferent agronomic parameters through various
other indices, to increase the crops characteozatDeeper investigation of the genotype effects
should also be considered in the future.
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