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Abstract: This paper presents the analysis of the electronapbgc signals from rat
stomaches to identify and classify contractionse Tfésults were validated with both visual
identification and an ultrasonic system to guararbe reference. Some parameters were
defined and associated to the energy of the signfatquency domain and grouped iPa
vector. The parameters were statistically analyz®tl according to the results, an artificial
neuronal network was designed to use Bheectors as inputs to classify the electrical
signals related to the contraction conditions. rAtfapproach classification was performed
with and without contraction classes (CR and NC®Rgn the same database were
subdivided in four classes: with induced contrat(i€R), spontaneous contraction (SCR),
without contraction due a post mortem condition @®Nr under physiological conditions
(PNCR). In a two-class classifier, performance &8%, 93% and 91% of detections for
each electrogastromyografic (EGMG) signal from eadhthree pairs of electrodes
considered. Because in the four-class classifresugh data was not collected for the first
pair, then a three-class classifier with 82% offqrenance was used. For the other two
EGMG signals electrode pairs, performance was &b a&d 86% respectively. Based in
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the results, the analysis &f vectors could be used as a contraction detectonatility
studies due to different stimuli in a rat model.

Keywords: Motility, artificial neural network, stomach conttgon, ultrasound system,
electromyographic signals.

1. Introduction

In the literature, there is a controversy about tiwbe the stomach of the rat really has a
myoelectrical signal similar to those presentediher biological models such as humans and dogs [1-
5]. Reliable knowledge about the motility of theé stkomach could be relevant because this biological
model could be widely used in research, mainlyrialg to determine relationships between bolus
effects, some metabolic disorders or drug pharmaetiks with stomach motility [5-8,16]. Electrical
signals from biological models may be differentsimape, but similar in the functions they represent.
Consequently, the establishment of a relationskatwéen electrical signals and functions of the
stomach, through the motility, could be very uséulresearch and clinical studies.

The dog model has been widely used for mechaniwhledectrical analysis of the performance of
the stomach [10-12]. However, experimentation wihht model has become very difficult at the
present time, because of several constraining aéigak [13-14] and economical factors.

On the other hand, the rat has become an integelstihogical model because has a stomach with
mechanical and electrical similarities to the hurstomach [3,6]. In this sense, studies of hormones,
pH, and pharmaceutical actions have been done. [Beéfe reports use the myoelectrical signal in the
stomach of rat as an electrical pacemaker mon8d,§], but the literature also recognizes that a
detailed knowledge of gastric motility in rat stachas related to electrical signals is required [1-
3,5,6,16].

Nowadays, the gastric myoelectrical signal in huraad dog is considered to be composed by two
kinds of signals: the electrical pacemaker sigi&CA) and a stochastic signal called spikes or
electrical response activity (ERA), associateddotactions. The pacemaker signal has been widely
studied, whereas the ERA analysis has been rgoplpached.

In this study, the rat was used as the experimentalel for a gastric myoelectrical signal analysis
in search of a parameter that could be used asntiaction identifier. By means of analysis in
frequency domain of the electromyographic signplameters based on the segmentation of the
power spectrum in fixed blocks were defined in thiwk. These parameters were used for identifying
events with and without contractions by statist@ahlysis and for classifying contraction condition
performed by an artificial neural network. Based the obtained results, this technique can be
considered not only as an electrical pacemaker tmotiut also as a contraction analyzer.
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2. Methods
2.1. Subjects and protocol

Nine Wistar male rats (250 g average weight) weseluEach experiment involved a rat with 24-
hours fast and watexd libitum Intraperitoneal anesthesia with penthobarbit&8¥8LVET, Tokkyo,
México) was applied. The rat was placed on a thebmed in supine position. A laparoscopy was
realized in order to expose the stomach but presgmnervation and blood irrigation. The stomach
was maintained hydrated with saline solution (0.@ing all procedures. The body temperature and
the respiratory frequency were recorded for momtpthe physiological conditions. All experiments
were performed following our institutional guidedaregulation manual to research with animals [13,
14]. Electrogastromyographic (EGMG) signals wenagiad with a frequency of 20 Hz and acquired
in a personal computer-based system for off-lirec@ssing. Signals were marked when contractions
were visually observed on the exposed stomach Whétse records were used as a reference for the
classification of the database. The experimentatiogol was divided into four procedures:

The first procedure

Three pairs of Ag/AgCI electrodes were placed althreggmain curvature of the stomach. The first
pair was placed at 20% of the total distance batvibe proximal zone and the pylorus. The second
and third pairs were placed 4 mm below the previpais (Figure 1). An ultrasonic system (USS,
customized system, CINVESTAV, Mexico) was placecerothe distal zone [15]. A sensor for
respiratory monitoring and a rectal temperaturesgemvere used. At least five consecutive records,
under physiological conditions, of 2.5 minutes umation were obtained.

The second procedure

A system for detecting the stomach motility basedaostrain gage (SGS, customized system,
CINVESTAYV, Mexico) was used, with the sensor placedt to the second pair. The USS was placed
over the strain gage zone. The signals were cotigelyurecorded during at least five times under
same physiological conditions.

The third procedure

A pylocarpine solution (PT, Sophia, Bulgaria) was applied on the surfacehefstomach wall in
order to obtain contractions in the distal zonecdReés were obtained while motility effects of threigl
were observed on the wall.

The fourth procedure

Overdose of pylocarpine solution was applied asgiratory failure was induced. After 20 minutes,
the last records were obtained.
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2.2. Data pre-processing and conditioning

The EGMG signals were sampled at 20 Hz and theapga per experiment. The maximum and
minimum values of magnitude were obtained for eaxperiment and the records were normalized
from 1 to -1. Three consecutive records of 2.5 glumation of the same experiment, obtained from
each of the four procedures were used as sigmal Sdten, the spectra of these sets were computed
and values of the parameters were obtained. Inrdaleompare the overall results of the nine
experiments, maximum and minimum values were useddrmalizing all experiments from 1 to -1.

Figure 1. Experimental protocol design. SGS: strain gagdesys USS: Ultrasonic
system,el, first pair of electrodese2, second pair of electrodes, aed, third pair of
electrodes.

distal stomach

pylorous

2.3. Parameter selection

The frequency spectrum of the electrical signabblase was obtained using the Fast Fourier
Transform (FFT). When the analysis of the eleckrstgnals in frequency domain was performed, an
increment in energy was observed in a band of geetaum, around the corresponding frequency
component of the pacemaker, reported as 0.05 ldz@e contractions per minute in rats [3, 4].

After a visual inspection, the frequency changeseweainly observed from low frequencies up to
1.5 Hz. Then, a frequency subdivision of spectruas wroposed and energy contained in each band
was associated to a parametearm used for the signal analysis (Table 1).

Additionally, the mean of jpparameters (mean), the Root Mean Square (RMS)midmamum
magnitude (MM) in each power spectrum frequency tedfrequency associated to MM ( MF) were
obtained. All these parameters were grouped inoveatamed® = [pl p2 p3 p4 p5 mean RMS MF
MM]. The last two parameters represent the maxinemergy concentration related to the pacemaker
frequency, reported as 3 cpm (0.05 Hz) for themadel [3, 4, 6, 7]. The generated database of
parameters vectors was obtained from the spectEEGMG signals of three electrode pairs using 50
records with contraction and 50 with no contractiteast.
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2.4. Parameter validation

The obtained parameters were classified as witlvittrout contractions, according to the visual
detection. Because visual detection was used &fesence, a customized ultrasonic system (USS,
CINVESTAYV, Mexico) was also employed as a redundaonitraction detector to guarantee reliable
information [15].

The information was divided into two classes foralgsis: with (CR) and without (NCR)
contractions. In turn, each class was divided o subclasses: contractions pharmacologically
induced (ICR) and spontaneous (SCR) for the subeta®f the first class. In the second class,
subclasses were assigned for under physiologigadlitons (PNCR) and for post-mortem records
(PMR). The aforementioned is summarized in Tabkes2yell as the number of vectors for each class.

Table 1. Energy of frequency bands was quantified and & yaposed as a parameter
for classification of electrogastromyographic signa

Parameter Band of the spectrumBand of the spectrum

Pi considered in Hertz considered in contractions
(Hz) per minute (cpm).

pl 0.01-0.04 06-24

p2 0.04-0.1 24-6

p3 0.1-05 6 — 30

p4 05-1 30 -60

p5 1-15 60 — 90

Table 2. Summary of the total vectors (TC) obtained frora tiverall EGMG database.
Each set used for quantifying the spectrum of t8ME signals of three electrode pairs
that were obtained simultaneously from the stomi#&due. CR stands for contraction
condition and NCR is non contraction condition.

Vectors classified as CR Vectors classified as

Electrode Total parameter NCR
Pair vector (TC)
ICR SCR PNCR PMR
el 24 14 5 5
e2 59 25 16 12 6
e3 57 25 13 7 12

2.5. Statistical analysis

Each parameter was analyzed with ANOVA for repeateshsurements, looking for a single
parameter which could be used as contraction detdg@ased on the statistical analysis resultsfitbe
seven parameters of tievector were used for classifying the signals elyiplp an artificial neural
network. Because maximum magnitude (MM) and itqqiency (MF) represent the pacemaker
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presence in the frequency domain [3], but its effedncluded in p2, the last two parameters were
proposed for pacemaker analysis and they wereamstigered in the classification inputs.

2.6. Classifier

The classification was performed with a backprogiagaartificial neural network formed by an
input layer with seven inputs, one hidden layerhwibur neurons, and an output layer with four
neurons. Hyperbolic tangent sigmoid and lineargi@nfunctions were used for processing in hidden
and output layers respectively. As a first approdbls structure was used for classifying the cases
related to with and without contractions (CR andRYCThen, it was used for identifying four diffeten
subclasses: ICR, SCR, PNCR, and PMR.

Figure 2. Artificial Neural Network proposed is the input vector, Rx1 is the dimension
of theP vector,W; andWare the initial weights for each neuron; &nd b are the bias

for each neuron;jwas the output of the first layer; 8 the number of input neurons and
S; is number of output neurora; anda, are the results of the hidden and output layers.
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The test set was the 25% of the total cases fdr el@ctrode pair, randomly selected. Remain cases
were used as the training set. Weight and biasaoh layer were initialized with the Nguyen-Widrow
method and the network was trained with the Levembdarquardt backpropagation method. The
obtained output vector was matched to target veatdth minimal mean squared error (MSE). The
maximum iteration number and the maximum error @alere selected for each electrode pair
according a previous analysis of the training penfince. Processing was performed with the neural
network toolbox in Matlab ® version 7 (The Mathwsilkc., USA).

The target vectors used a specific combinatiomefdautput neurons for each class, for example in
two classes case, the target vectors were T1 =1[411] for CR class and T2 =[1 1 -1 -1] for NCR
class.

For each vector of the testing set, the obtainddevaf each neuron was adjusted to the two
possible values, following the next rule: If thdueawas more than zero, then the adjusted valuelywas
otherwise -1.

Then each adjusted neuron value was compared hétrexpected target value, and if the four
output neurons values were the same, a correctifatasion of the vector was performed.
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After selecting a test set, training and classiiftcawas performed. To demonstrate non over fifting
a k-fold cross validation with k=10, was performédditionally, for evaluating the effect of the
selection of the initial weights and bias valuég, training and testing were repeated three timts
the same set (r=3).

The success of each classifier was obtained frarcdinrect classification (CC) of the 25% of total
P vectors for each electrode pair, repeated threesti(r). For example&l has a 24 total number Bf
vectors and the 25% are 6 vectors, so in this T&@de=3 x 6 =18. Summary of the TC1 for each pair is
presented in table 3 as well as the results obpmdnce for each classifier.

Finally, success of the structure of the neuralvogt used as a classifier is evaluated. All k times
validation results are presented in table 4 anddtse test cases considered was defined as:

TC=k* TC1.

3. Results and Discussion
3.1. Statistical analysis results

The statistical analysis of thie vector was performed for the three pairs of recwyalectrodes.
With the first pairel, no sufficient data could be obtained in the fpsicedure related to spontaneous
contractions. Then, this case was not consider#tkifiour-class detection.

Figure 3. Mean + SEM ofP vector of the EGMG from the first pair of electeskl.
Energy data of ICR: induced contraction recordsCRNphysiological non contraction
records, PMR: post mortem records were normaliZée. x-axis shows the elements of

the P vector.
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0 pl  p2 p3 p4 p5 Mean RMS

Parameters of P vector
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For the pair of electrodegl, the parameters from the four classes could béststally
differentiated except RMS because of the large mhadm of its standard error of the mean (SEM),
shown in Figure 3. However, considering feector as a set of informatipit could be used as a
contraction condition identifier.

Figure 4. Mean + SEM oP vector of the EGMG from the pair of electrodes Energy
data of ICR: induced contraction records, SCR: &pwmwous contraction records,
PNCR: physiological non contraction records, PMRistp mortem records were
normalized. The x-axis shows the elements oftkector.

Pair of Electrodes e2

1.0 7
—i— SCR
-4—ICR
Normalized 0.5 T *— PNCR
Energy
—— PMR
0.0 T
-0.5 T
-1.0 T T T T T T T 1

0 pl p2 p3 p4 p5 Mean RMS

Parameters of P vector

In the second pair of electrode® the parameter p4 presented the biggest differbeteeen
contraction conditions (Figure 4). In this paire tharameter magnitudes were higher for records with
than without contractions. Again, considering Eheector contraction condition could be identified.

In the pair of electrodes3 the parameter p5 presented the largest diffesean®ng contraction
conditions (Figure 5). In this case, contractiomditons could be statistically identified for tiaur
classes. Th& vector could also be used for identifying the caciion conditions. Moreover, it was
found that p2 parameter in two of the three elenpairs could be used as a good pacemaker detector
This finding was expected because p2 (signals letwWe04-0.1Hz or 2.4-6 cpm), is closely related to
the reported pacemaker frequency (3 cpm) [1,3,4].
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Figure 5. Mean + SEM ofP vector of the EGMG from the pair of electrods® Energy
data of ICR: induced contraction records, SCR: s&pwous contraction records, PNCR:
physiological non contraction records, PMR: postrtem records were normalized. The
x-axis shows the elements of tAevector.
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Normalized 0.5
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0.0 7
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0 pl p2 p3 p4 p5 Mean RMS
Parameters of P vector
3.2. Classifier

As mentioned above, an artificial neural networksvwaoposed to be used as a classifier. The
output layer of the neural network had four neunamged from 1 to -1. The target vector was assigne
to each class for each classifier.

The maximum number of epochs was established whenmmiaximum error goal was obtained at
least in five trainings or when a larger numbeepbchs did not represent a less error in the trgini
results. Training considered all the 10-fold creafdation sets.

In training for each electrode pairs (el, e2 and maximum number of epochs were from 1200 to
1700 with a performance goal from 0.05 to 0.1.

The first approach was to classify with or with@ontraction classes (CR or NCR). The results of
each classifier are presented in Table 3 and teeatiwvesults from the k classifiers are shown abl€
4. The classification was possible in at least 8%e cases in all the electrode pairs (Table 4).

The second approach was used with the four clda€$sSCR, PNCR, and PMR. In this case, the
overall identification of classes for e2 and e3paif electrodes was 76% and 87% respectively. For
the first pair of electrodeg{), not enough data were obtained, then, this casenot considered.

For the pair of electrodesl, three classes were analyzed and an overall peafuze of 82% was
obtained.

Because a successful classification was definediline four neurons values were the same as the
target value, and it was repeated three times &wh & classifier, results were summarized per
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classifier. These results are presented in Tala@led3the overall performance of the neuronal network
structure in Table 4.

Table 3. Accuracy results of each classifier are presemtedhe ratio between the
correct classification value (CC) and the totalddssectors (TC1).

2-class classifiers
k 1 2 3 4 5 6 7 8 9 10| TC1
Electrode pairs
el 0.83 | 0.83| 0.94 0.8 0.6 0.83 0.77 1 0,88 118

e2 1 0.91| 0.97| 0.8 0.9 098 097 093 0/88 0945
e3 0.9 09| 0.74 093 0.9 1 1 09 0.86 09542
3-class classifiers

el 0.83| 0.83] 0.67] 094 094 083 0.72 O0J2 0[94 0.728

4-class classifiers
e2 0.73| 0.71| 084 071 O0.7L 086 086 082 0|64 Q.745
e3 0.93| 0.93| 0.83 0.81 0.98 0.9 083 0PpP3 0|83 Q.72

3.2. Discussion

The use of the ultrasound system as a redundantaction system to complement the visual
identification ensured the initial identificatiorf the classes as a reference for the evaluaticimeof
contraction monitor based in the analysis ofRheector proposed in this work.

The P vector was initially proposed with nine elemeniscduse inclusion of the maximum
magnitude peak of the density spectrum (MM), whighassociated with the pacemaker frequency
(MF) has been traditionally included in monitor etgbrs. In this study, the presence of the eladtric
pacemaker was observed as well as an increases imégnitude of the spectral density due to the
presence of contractions, as it has been reporyedeberal authors [1,3,4,7]. Moreover, it was
observed that the pacemaker frequency magnitudeigrasicant in all pairs of electrodes when the ra
model was under physiological condition. Ongeost mortemcondition was induced, the MM
(maximum magnitude) parameter decreased until $t wed differentiated from the rest of the spectrum
components. The effectiveness of those two paramate pacemaker detectors was comparable with
the p2 parameter capacity to recognize the presante pacemaker frequency (MF). Then, given the
good results to detect the pacemaker activity andlentify contractions by using tHe vector, the
parameters MF and MM were not considered in theasigrocessing anymore.
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Table 4. Overall results of the neural network structure presented as the mean of
successful classification and its standard dewnatwer total tested vectors evaluated
(TC). CR stands for contraction class, NCR for gontraction class, ICR for induced

contraction class, CR for spontaneous contractlassg PNCR for physiological non

contraction class and PMR for post mortem non eatitbn class.

Number  Classes EGMG, EGMG, EGMG,
of classes pairel Paire2 paire3
CcC TC CC TC CC TC
4 ICR, SCR, 0.76 £0.01 450 0.87+0.11 420
PNCR, PMR.
3 ICR, SCR, 0.82+0.08 180 ---
PMR
2 CRvs.NCR 0.86+0.14 180 0.93+0.077 450 0.9140 420

4. Conclusions

The EGMG signal was studied in the distal stomaichats in order to look for parameters that
could be used as contraction identifiers. Accordiogthe results, the parametervector could
satisfactorily fulfill that purpose. Analyzing the vector, identification of contractions from the
EGMG signal of rats as the biological model wadesysitically possible

The use of an artificial neural network as a cfemsmakes possible the detection of contractions
associating the conditions they were produced. Téchnique could identify the spontaneous or
pharmacological induced contractions as well asatisnce of them due to the lack of any electacal
mechanical activity, after a minimum pre procesfghe signal in order to obtain the spectrum and
maximum and minimum of the signal set.

This contraction detector could be used to stu@yefiects on motility of the stomach related to
different stimuli in a rat model.
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