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Abstract: In this paper, a finite element (FE) procedure for modeling electrostatically actu-
ated MEMS is presented. It concerns a perturbation method for computing electrostatic field
distortions due to moving conductors. The computation is split in two steps. First, an un-
perturbed problem (in the absence of certain conductors) is solved with the conventional FE
method in the complete domain. Second, a perturbation problem is solved in a reduced re-
gion with an additional conductor using the solution of the unperturbed problem as a source.
When the perturbing region is close to the original source field, an iterative computation may
be required. The developed procedure offers the advantage of solving sub-problems in re-
duced domains and consequently of benefiting from different problem-adapted meshes. This
approach allows for computational efficiency by decreasing the size of the problem.

Keywords: Electrostatic field distortions, finite element method, perturbation method,
MEMS.

1. Introduction

Increased functionality of MEMS has lead to the development of micro-structures that are more and
more complex. Besides, modeling tools have not kept the pace with this growth. Indeed, the simulation
of a device allows to optimize its design, to improve its performance, and to minimize development
time and cost by avoiding unnecessary design cycles and foundry runs. To achieve these objectives, the
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development of new and more efficient modeling techniquaptad to the requirements of MEMS, has
to be carried out [1].

Several numerical methods have been proposed for the giovutd MEMS. Lumped or reduced or-
der models and semi-analytical methods [2][3] allow to prEithe behaviour of simple micro-structures.
However they are no longer applicable for devices, such asbodrives, electrostatic motors or de-
flectable 3D micromirrors, where fringing electrostatiddgeare dominant [4][5][6]. The FE method
can accurately compute these fringing effects at the expeis dense discretization near the corners of
the device [7]. Further the FE modeling of MEMS accountingtfeeir movement needs a completely
new mesh and computation for each new position what is dpeegpensive when dealing with 3D
models.

The scope of this work is to introduce a perturbation metlodiHe FE modeling of electrostatically
actuated MEMS. An unperturbed problem is first solved in gdanesh taking advantage of any sym-
metry and excluding additional regions and thus avoidirgrtmesh. Its solution is applied as a source
to the further computations of the perturbed problems wlogrdactive regions are added [8][9][10]. It
benefits from the use of different subproblem-adapted nseshis way the computational efficiency in-
creases as the size of each sub-problem diminishes [9].0fwe positions where the coupling between
regions is significant, an iterative procedure is requiceehsure an accurate solution. Successive pertur-
bations in each region are thus calculated not only from tiggrn@al source region to the added conductor
but also from the latter to the former. A global-to-local mad for static electric field calculations is pre-
sented in [11]. Herein, the mesh of the local domain is inetlith the one of the global domain, whereas
in the proposed perturbation method, the meshes of therpartiregions are independent of the meshes
of the unperturbed domain, which is a clear advantage w#paet to the classical FE approach.

As test case, we consider a micro-beam subjected to anadeatic field created by a micro-capacitor.
The micro-beam is meshed independently of the complete mobetween the two electrodes of the
device. The electrostatic field is computed in the vicinityttee corners of the micro-beam by means
of the perturbation method. For the sake of validation, Itesare compared to those calculated by
the conventional FE approach. Furthermore, the accuratyegberturbation method is discussed as a
function of the extension of the reduced domain.

2. Electric Scalar Potential Weak Formulation

We consider an electrostatic problem in a donfajnvith boundaryof?, of the 2-D or 3-D Euclidean
space. The conductive parts(@fare denoted).. The governing differential equations and constitutive
law of the electrostatic problem i are [12]

curle=0, divd = ¢, d=ce (1a-b-c)

wheree is the electric fieldd is the electric flux densityy is the electric charge density ands the
electric permittivity (symbols in bold are vectors). In opa free regions, we obtain from (1a-b-c) the
following equation in terms of the electric scalar potentifl2]

div(—egradv) = 0. (2)
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The electrostatic problem can be calculated as a solutidineoélectric scalar potential formulation
obtained from the weak form of the Laplace equation (2) af [13

(—egradv,gradv’)g — (n-d,v")r, = 0, V' e F(Q), (3)

where F(2) is the function space defined éhcontaining the basis functions foras well as for the test
function’; (-, -)q and(-, -)r, respectively denote a volume integralfinand a surface integral dn of
products of scalar or vector fields. The surface integrahter(3) is used for fixing a natural boundary
condition (usually homogeneous for a tangent field con#fran a portiorl” of the boundary of2; n is
the unit normal exterior t6.

3. Perturbation Method

Hereafter, the subscripts and p refer to the unperturbed and perturbed quantities and adsdc
domains, respectively. An unperturbed problem is first @efim (2 without considering the properties
of a so-called perturbing regidi. , which will further lead to field distortions [8][9][10]. Atte discrete
level, this region is not described in the mesh(bf The perturbation problem focuses thus @n,
and its neighborhood, their unidn, being adequately defined and meshed will serve as the studied
domain. Electric field distortions appear when a perturlsmgductive region). , is added to the initial
configuration. The perturbation problem is defined as artrelstatic problem ir2,,.

Particularizing (1a-b-c) for both the unperturbed andyréed problems, we obtain [8]

curle, =0, divd, =0, du = e, €4, (4a-b-c)
curle, =0, divd, =0, do = £, €. (5a-b-c)

Equations (4b) and (5b) assume that no charge density @xiie considered regions. Subtracting
the unperturbed equations from the perturbed ones, on¢8jets

curle=0, divd=0, d=¢,e+ (¢, —c,) €&y, (6a-b-c)

with the field perturbations [8f = &, — &, andd = d, — d,. Note that ife, # ¢,, an additional source
term given by the unperturbed soluti¢s), — ¢,,) €, is considered in (6¢). For the sake of simplicity,
ande, are kept equal.

For added perfect conductors, carrying floating potentiais must hava x g, |so. ,= 0 and conse-
quentlyn x e |so, .= —N X &, |aq,,. This leads to the following condition on the perturbatid¢eceric
scalar potential

U=~y [on., - (7)

This way,v, acts as a source for the perturbation problem.

Two independent meshes are used. A mesh of the whole domiiauiany additional conductive
regions and a mesh of the perturbing regions. A projectidgh@fesults between one mesh and the other
is then required.
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3.1. Unperturbed electric scalar potential formulation

Particularizing ¢ = v,,) and solving (3), the unperturbed problem is given by
(—egraduv,,gradv’)g — (n-dy,v")r, =0, Yo' € F(Q). (8)

3.2. Perturbation electric scalar potential formulation

The source of the perturbation problem, is determined in the new added perturbing conductive
region(2. , through a projection method [14]. Given the conductive reabf the perturbing region, the
projection ofv, from its original mesh to that d@. ,, is limited to 052, .. It reads

(grad v, grad v’)gq, , — (gradv,, grad v')sq,., =0, Vo' € F(0Qe,), 9)

where the function spacg(0f2.,) containsvs and its associated test functioh At the discrete level,
v, Is discretized with nodal FEs and is associated to a gaugditewmby fixing a nodal value <2, ,,.

In case of a dielectric perturbing region, the projectioowdt be extended to the whole doméip,,.
Besides, we choose to directly projegiad v, in order to ensure a better numerical behaviour in the
ensuing equations where the involved quantities are aksdignts.

The perturbation problem is completely characterised pgplied to the perturbation potentiahs
follows

(-egradv,gradv’), — (n-d,")r, =0, Yo' e F(Q,), (10)
with a Dirichlet boundary condition defined as= —v; |sq.

For a micro-beam subjected to a floating potential and plat®de a parallel-plate capacitor (Fig. 1),
the processes of the resolution and projection of the etestalar potential from one mesh to the other
are represented in Fig. 2. The domé&insurrounding the micro-beam is coarsely meshed while the
domain(2, containing the micro structure has an adapted mesh edpefon in the vicinity of the
corners.

Plate at 11

Moving micro-beam with
a floating potential

bt

on Air on

I .

Plate at 0V

v dv _ 0

Figure 1. A moving micro-beam carrying a floating potential insideaarpllel-plate capacitor

4. Iterative Sequence of Perturbation Electric Scalar Potential Problems

When the perturbing regiofl. , is close to the original source field, an iterative sequerasetb be
carried out. Each region gives a suitable correction astais@tion with an accuracy dependent of the
fineness of its mesh.
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Figure 2. Mesh of(2 (1); distribution of the unperturbed electric potentigl(2) and electrice fiela,

(3); adapted mesh 61, (4); distribution of the perturbation electric potentigs) and the perturbed one
v, (6); distribution of the perturbation electric fied(7) and the perturbed oreg (8)

For each iteration (: = 0,1, ...), we determine the electric scalar potentiglin €2, with vy = v,.
The projection of this solution from its original mesh tottlbhthe added conductde. , gives a source
vs2;+1 for a perturbation problem. This way, we obtain a potential; in o€, ,, that will counterbalance
the potential ind$2.. A new source; »;;» for the initial configuration has then to be calculated. Tikis
done by projecting,;, 1 from its support mesh to that 6f as follows

(grad v, o; 19, grad v')sa, — (grad vg; 1, grad v’)sg, = 0, Yo' € F(09,). (11)
A new perturbation electric scalar potential problem isrokdiin(2 as
(—egrad vy, gradv’)g — (N - dasa, V'), = 0, Yo' € F(Q), (12)

with Dirichlet BC V242 = —Us2i+2 |8QC.
This iterative process is repeated until convergence favengolerance.

5. Application

A parallel-plate capacitor (Fig. 1) is considered as a 2-DddEcase to illustrate and validate the per-
turbation method for electrostatic field distortions (l#ngf plates= 200 xm, distance between plates:
d = 200 xm). The conducting partS. of the capacitor are two electrodes between which the éifies
of electric potential isAV= 1V (upper electrode fixed tdV). The perturbing conductive regid. , is
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a micro-beam (length 100 xm, width= 10 pm). This perturbing region is placed at a distarcef the
electrode at V.

First, we study the accuracy of the perturbation method asetibn of the size of the perturbing
domain. In this cased; = 75 um. Fig. 3 shows examples of meshes for the perturbing prablem
An adapted mesh, specially fine in the vicinity of the corngfrshe micro-beam is used. Note that
any intersection of perturbation problem boundaries whih tinperturbed problem material regions is
allowed.

NNAVAVAY
VAV ol

faVaAve

Figure 3. Meshes for the perturbation problems with@lgft) and with a shell for transformation to
infinity (right)

The electrostatic field between the plates of the capacdtdirst calculated in the absence of the
micro-beam. The solution of this problem is then evaluatedh® added micro-beam and used as a
source for the so-called perturbation problem.

In Fig. 4(eft), the local electric field is depicted for different sizestloé perturbation domain. The
first one is a rectangular bounded perturbation region {fead 70 xm, width= 50 ym). The second
one is a rectangular perturbation domain as well (leagtR0 m, width= 150 xm). The third one is an
extended perturbation region to infinity through a shehs$farmation [15].

Comparing with the conventional FE solution, we observe tia relative error of the local electric
field is underl.2% when the perturbation domain is extended to infinity throagthell transformation
(Fig. 4(right)). This justifies our choice for this kind of perturbatiomien for the whole of our study.

The relative error of the electric potential and the eledigld near the micro-beam increases when
the latter is close to electrode BY (Fig. 5) what highlights a significant coupling of these mets. A
more accurate solution for close positions needs an iterptocess to calculate successive perturbations
in each region.

To illustrate the iterative perturbation process, theatised; = 3 um is chosen as an example
(Fig. 6). Successive perturbation problems defined in eagion are solved.

At iteration0, the unperturbed electric potential scalar is computeldemthole domaifi). Projecting
this quantity in the domaif, at iterationl leads to a perturbed electric potential scalaensuing the
electric field perturbatioe,. The relative error of the electric scalar potential coregutear the micro-
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Figure 4. g, (y-component) computed along the micro-beam top surfacefferent perturbing regions
(Ieft). Relative error of, (y-component) with respect to the FE solution in each pemgrbegion(right)
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Figure 5. Relative error ofv, (left) ande, (y-component)right) computed along the micro-beam top
surface for several distances separating electrotl¢ aind the micro-beam

beam with respect to the conventional FE technique is bigjugm 2% (Fig. 6 (eft)). Besides, the
difference between thg-components o, and the reference solution (FE) is considerable (relatina e
up to 32%) which is due to a strong coupling between these regions @(gght)). At iteration2, v

is projected from its mesh to that 6f where a new perturbation problem is solved and its soluson i
projected again i, (at iteration3). The relative error of the local electric field at iteratiziis reduced

to 1%.

In order to highlight the relationship between the distasegarating the micro-beam and electrode
at 1V and the number of iterations required to achieve the coeves without and with Aitken ac-
celeration [16], several positions of the micro-device are considered (Fig. 7). For each of thém
perturbation problem is solved and an iterative processitised out till the relative error of the local
electric field is smaller thah%.

As expected, several iterations are needed to obtain ansae@olution when the micro-beam is close
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Relative error of v (%)
Relative error of e, (%)

Position along the micro-beam top surface (um) Position along the micro-beam top surface (um)

Figure 6. Relative error ofy, (Ieft) ande, (y-component)right) computed along the micro-beam top
surface for some iterations

to the considered electrode. When the Aitken accelarasioiséd, the number of iterations is reduced.

N
a1

" Without Aitken Acceleration —s—
With Aitken Acceleration —a—

Nbr. of Iterations to achieve the convergence

3 5 10 15 35 55 75 95
Position d; (um)

Figure 7. Iteration numbers to achieve the convergence versus $ti@nde separating electrodel &t
and the micro-beam

6. Conclusion

A perturbation method for computing electrostatic fieldaisons due to the presence of conductive
micro-structure has been presented. First, an unpertyroddem (in the absence of certain conductors)
is solved with the conventional FE method in the complete @lomSecond, a perturbation problem is
solved in a reduced region with an additional conductorgisie solution of the unperturbed problem
as a source.

In order to illustrate and validate this method, we congdea 2-D FE model of a capacitor and a
moving micro-beam. Results are compared to those obtaipgdebconventional FE method. When
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the moving region is close to the electrostatic field sousesgeral iterations are required to obtain an
accurate solution. Successive perturbations in eachnegethus calculated not only from the original
source region to the added conductive perturbing domainalso from the latter to the former. The

Aitken acceleration has been applied to improve the comvexg of the iterative process.

Acknowledgements

This work was supported by the Belgian French Community (ARB®8-298) and the Belgian Sci-
ence Policy (IAP P6/21).

References

1. Batra, R. C.; Porfiri, M.; Spinello, D. Review of modelinpetrostatically actuated microelec-
tromechanical system&mart Materials and Structures 2007, 16, R23—R31.

2. Younis, M. I.; Abdel-Rahman, E. M.; Nayfeh, A. A reducedtter model for electrically actuated
microbeam-based MEMSournal of Microel ectromechanical Systems 2003, 12(5), 672—-680.

3. Osterberg, P. M.; Senturia, S. D. M-test: A test chip for W& material property measurement
using electrostatically actuated test structurdsurnal of Microelectromechanical Systems 1997,
6(2), 107-118.

4. Boutaayamou, M.; Nair, K. H.; Sabariego, R. V.; Dular, imité element modeling of electrostatic
MEMS including the impact of fringing field effects on forcds pressin Sensor Letters 2007.

5. Zhang, L. X.; Zhao, Y. P. Electromechanical model of RF MEMvitches Microsystem Technolo-
0ies 2003, 9, 420-426.

6. Zhang, L. X.; Yu, T. X.; Zhao, Y. P. Numerical analysis oétretical model of the RF MEMS
switches.Acta Mechanica Snica 2004, 20(2), 178-184.

7. Rochus, V.; Rixen, D.; Golinval, J.-C. Modeling of eleetnechanical coupling problem using the
finite element formulation. IProceedings of the 10th SPIE, volume 5049, pages 349-3&M03.

8. Badics, Z.; Matsumoto, Y.; Aoki, K.; Nakayasu, F.; Uesalkh; Miya, K. An effective 3-D fi-
nite element scheme for computing electromagnetic fielebdiens due to defects in eddy-current
nondestructive evaluationEEE Transactions on Magnetics 1997, 33(2), 1012-1020.

9. Dular, P.; Sabariego, R. V. A perturbation finite elemepthmod for modeling moving conductive
and magnetic regions without remeshinghe international journal for computation and mathe-
maticsin electrical and electric engineering 2007, 26(3), 700-711.

10. Dular, P.; Sabariego, R. V. A perturbation finite elemmethod for computing field distorsions
due to conductive regions with-conform magnetodynamic finite element formulation$EEE
Transactions on Magnetics 2007, 43(4), 1293-1296.

11. Sebestyen, I. Electric field calculation for HV insulataising domain decomposition method.
|EEE Transactions on Magnetics 2002, 38(2), 1213-1216.

12. Stratton, J. A. Electromagnetic Theory. McGraw-Hif#41.

13. Dular, P.; Legros, W.; Nicolet, A. Coupling of local anidlgal quantities in various finite element
formulations and its application to electrostatics, magstatics and magnetodynamicslEEE



Sensors 2008, 8 1003

Transactions on Magnetics 1998, 34(5), 3078-3081.

14. Geuzaine, C.; Meys, B.; Henrotte, F.; Dular, P.; LegvdsA Galerkin projection method for mixed
finite elements]EEE Transactions on Magnetics 1999, 35(3), 1438 — 1441.

15. Brunotte, X.; Meunier, G.; Imhoff, J.-F. Finite elemenbdeling of unbounded problems using
transformations: a rigorous, powerful and easy solutidBEE Transactions on Magnetics 1992,
28(2), 1663-1666.

16. Weniger, E. J. Prediction properties of Aitken’s itedat’> process, of Wynn’s epsilon algorithm

and of Brezinski’'s iterated theta algorithndournal of Computational and Applied Mathematics
2000, 122(1-2), 329-356.

(© 2008 by MDPI (http://www.mdpi.org). Reproduction is pettad for noncommercial purposes.



	Abstract
	Introduction
	Electric Scalar PotentialWeak Formulation
	Perturbation Method
	Iterative Sequence of Perturbation Electric Scalar Potential Problems
	Application
	Conclusion
	Acknowledgements
	References

