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Abstract: In this paper, a finite element (FE) procedure for modeling electrostatically actu-

ated MEMS is presented. It concerns a perturbation method for computing electrostatic field

distortions due to moving conductors. The computation is split in two steps. First, an un-

perturbed problem (in the absence of certain conductors) is solved with the conventional FE

method in the complete domain. Second, a perturbation problem is solved in a reduced re-

gion with an additional conductor using the solution of the unperturbed problem as a source.

When the perturbing region is close to the original source field, an iterative computation may

be required. The developed procedure offers the advantage of solving sub-problems in re-

duced domains and consequently of benefiting from different problem-adapted meshes. This

approach allows for computational efficiency by decreasing the size of the problem.

Keywords: Electrostatic field distortions, finite element method, perturbation method,

MEMS.

1. Introduction

Increased functionality of MEMS has lead to the development of micro-structures that are more and

more complex. Besides, modeling tools have not kept the pace with this growth. Indeed, the simulation

of a device allows to optimize its design, to improve its performance, and to minimize development

time and cost by avoiding unnecessary design cycles and foundry runs. To achieve these objectives, the
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development of new and more efficient modeling techniques adapted to the requirements of MEMS, has

to be carried out [1].

Several numerical methods have been proposed for the simulation of MEMS. Lumped or reduced or-

der models and semi-analytical methods [2][3] allow to predict the behaviour of simple micro-structures.

However they are no longer applicable for devices, such as comb drives, electrostatic motors or de-

flectable 3D micromirrors, where fringing electrostatic fields are dominant [4][5][6]. The FE method

can accurately compute these fringing effects at the expense of a dense discretization near the corners of

the device [7]. Further the FE modeling of MEMS accounting for their movement needs a completely

new mesh and computation for each new position what is specially expensive when dealing with 3D

models.

The scope of this work is to introduce a perturbation method for the FE modeling of electrostatically

actuated MEMS. An unperturbed problem is first solved in a large mesh taking advantage of any sym-

metry and excluding additional regions and thus avoiding their mesh. Its solution is applied as a source

to the further computations of the perturbed problems when conductive regions are added [8][9][10]. It

benefits from the use of different subproblem-adapted meshes, this way the computational efficiency in-

creases as the size of each sub-problem diminishes [9]. For some positions where the coupling between

regions is significant, an iterative procedure is required to ensure an accurate solution. Successive pertur-

bations in each region are thus calculated not only from the original source region to the added conductor

but also from the latter to the former. A global-to-local method for static electric field calculations is pre-

sented in [11]. Herein, the mesh of the local domain is included in the one of the global domain, whereas

in the proposed perturbation method, the meshes of the perturbing regions are independent of the meshes

of the unperturbed domain, which is a clear advantage with respect to the classical FE approach.

As test case, we consider a micro-beam subjected to an electrostatic field created by a micro-capacitor.

The micro-beam is meshed independently of the complete domain between the two electrodes of the

device. The electrostatic field is computed in the vicinity of the corners of the micro-beam by means

of the perturbation method. For the sake of validation, results are compared to those calculated by

the conventional FE approach. Furthermore, the accuracy ofthe perturbation method is discussed as a

function of the extension of the reduced domain.

2. Electric Scalar Potential Weak Formulation

We consider an electrostatic problem in a domainΩ, with boundary∂Ω, of the 2-D or 3-D Euclidean

space. The conductive parts ofΩ are denotedΩc. The governing differential equations and constitutive

law of the electrostatic problem inΩ are [12]

curl e = 0, div d = q, d = ε e, (1a-b-c)

wheree is the electric field,d is the electric flux density,q is the electric charge density andε is the

electric permittivity (symbols in bold are vectors). In charge free regions, we obtain from (1a-b-c) the

following equation in terms of the electric scalar potential v [12]

div(−ε grad v) = 0. (2)
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The electrostatic problem can be calculated as a solution ofthe electric scalar potential formulation

obtained from the weak form of the Laplace equation (2) as [13]

(−ε grad v, grad v′)Ω − 〈n · d, v′〉Γd
= 0, ∀v′ ∈ F (Ω), (3)

where F(Ω) is the function space defined onΩ containing the basis functions forv as well as for the test

functionv′; (·, ·)Ω and〈·, ·〉Γd
respectively denote a volume integral inΩ and a surface integral onΓ of

products of scalar or vector fields. The surface integral term in (3) is used for fixing a natural boundary

condition (usually homogeneous for a tangent field constraint) on a portionΓ of the boundary ofΩ; n is

the unit normal exterior toΩ.

3. Perturbation Method

Hereafter, the subscriptsu andp refer to the unperturbed and perturbed quantities and associated

domains, respectively. An unperturbed problem is first defined inΩ without considering the properties

of a so-called perturbing regionΩc,p which will further lead to field distortions [8][9][10]. At the discrete

level, this region is not described in the mesh ofΩ. The perturbation problem focuses thus onΩc,p

and its neighborhood, their unionΩp being adequately defined and meshed will serve as the studied

domain. Electric field distortions appear when a perturbingconductive regionΩc,p is added to the initial

configuration. The perturbation problem is defined as an electrostatic problem inΩp.

Particularizing (1a-b-c) for both the unperturbed and perturbed problems, we obtain [8]

curl eu = 0, div du = 0, du = εu eu, (4a-b-c)

curl ep = 0, div dp = 0, dp = εp ep. (5a-b-c)

Equations (4b) and (5b) assume that no charge density existsin the considered regions. Subtracting

the unperturbed equations from the perturbed ones, one gets[8]

curl e = 0, div d = 0, d = εp e + (εp − εu) eu, (6a-b-c)

with the field perturbations [8]:e = ep − eu andd = dp − du. Note that ifεp 6= εu, an additional source

term given by the unperturbed solution(εp − εu) eu is considered in (6c). For the sake of simplicity,εp

andεu are kept equal.

For added perfect conductors, carrying floating potentials, one must haven × ep |∂Ωc,p
= 0 and conse-

quentlyn × e |∂Ωc,p
= −n × eu |∂Ωc,p

. This leads to the following condition on the perturbation electric

scalar potential

v = −vu |∂Ωc,p
. (7)

This way,vu acts as a source for the perturbation problem.

Two independent meshes are used. A mesh of the whole domain without any additional conductive

regions and a mesh of the perturbing regions. A projection ofthe results between one mesh and the other

is then required.
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3.1. Unperturbed electric scalar potential formulation

Particularizing (v = vu) and solving (3), the unperturbed problem is given by

(−ε grad vu, grad v′)Ω − 〈n · du, v
′〉Γd

= 0, ∀v′ ∈ F (Ω). (8)

3.2. Perturbation electric scalar potential formulation

The source of the perturbation problem,vs, is determined in the new added perturbing conductive

regionΩc,p through a projection method [14]. Given the conductive nature of the perturbing region, the

projection ofvu from its original mesh to that ofΩc,p is limited to∂Ωc,p. It reads

〈grad vs, grad v′〉∂Ωc,p
− 〈grad vu, grad v′〉∂Ωc,p

= 0, ∀v′ ∈ F (∂Ωc,p), (9)

where the function spaceF (∂Ωc,p) containsvs and its associated test functionv′. At the discrete level,

vs is discretized with nodal FEs and is associated to a gauge condition by fixing a nodal value in∂Ωc,p.

In case of a dielectric perturbing region, the projection should be extended to the whole domainΩc,p.

Besides, we choose to directly projectgrad vu in order to ensure a better numerical behaviour in the

ensuing equations where the involved quantities are also gradients.

The perturbation problem is completely characterised by (3) applied to the perturbation potentialv as

follows

(−ε grad v, grad v′)Ωp
− 〈n · d, v′〉Γdp

= 0, ∀v′ ∈ F (Ωp), (10)

with a Dirichlet boundary condition defined asv = −vs |∂Ωc,p
.

For a micro-beam subjected to a floating potential and placedinside a parallel-plate capacitor (Fig. 1),

the processes of the resolution and projection of the electric scalar potential from one mesh to the other

are represented in Fig. 2. The domainΩ surrounding the micro-beam is coarsely meshed while the

domainΩp containing the micro structure has an adapted mesh especially fine in the vicinity of the

corners.

∂v
∂n

= 0
∂v
∂n

= 0

Plate at 1V

Plate at 0V

X

Y

Moving micro-beam with
a floating potential

Air

Figure 1. A moving micro-beam carrying a floating potential inside a parrallel-plate capacitor

4. Iterative Sequence of Perturbation Electric Scalar Potential Problems

When the perturbing regionΩc,p is close to the original source field, an iterative sequence has to be

carried out. Each region gives a suitable correction as a perturbation with an accuracy dependent of the

fineness of its mesh.
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Figure 2. Mesh ofΩ (1); distribution of the unperturbed electric potentialvu (2) and electrice fieldeu

(3); adapted mesh ofΩp (4); distribution of the perturbation electric potentialv (5) and the perturbed one

vp (6); distribution of the perturbation electric fielde (7) and the perturbed oneep (8)

For each iterationi (i = 0, 1, ...), we determine the electric scalar potentialv2i in Ω, with v0 = vu.

The projection of this solution from its original mesh to that of the added conductorΩc,p gives a source

vs,2i+1 for a perturbation problem. This way, we obtain a potentialv2i+1 in ∂Ωc,p that will counterbalance

the potential in∂Ωc. A new sourcevs,2i+2 for the initial configuration has then to be calculated. Thisis

done by projectingv2i+1 from its support mesh to that ofΩ as follows

(grad vs,2i+2, grad v′)∂Ωc
− (grad v2i+1, grad v′)∂Ωc

= 0, ∀v′ ∈ F (∂Ωc). (11)

A new perturbation electric scalar potential problem is defined inΩ as

(−ε grad v2i+2, grad v′)Ω − 〈n · d2i+2, v
′〉Γd

= 0, ∀v′ ∈ F (Ω), (12)

with Dirichlet BC v2i+2 = −vs,2i+2 |∂Ωc
.

This iterative process is repeated until convergence for a given tolerance.

5. Application

A parallel-plate capacitor (Fig. 1) is considered as a 2-D FEtest case to illustrate and validate the per-

turbation method for electrostatic field distortions (length of plates= 200 µm, distance between plates:

d = 200 µm). The conducting partsΩc of the capacitor are two electrodes between which the difference

of electric potential is∆V= 1V (upper electrode fixed to1V). The perturbing conductive regionΩc,p is
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a micro-beam (length= 100 µm, width= 10 µm). This perturbing region is placed at a distanced1 of the

electrode at1V.

First, we study the accuracy of the perturbation method as a function of the size of the perturbing

domain. In this case,d1 = 75 µm. Fig. 3 shows examples of meshes for the perturbing problems.

An adapted mesh, specially fine in the vicinity of the cornersof the micro-beam is used. Note that

any intersection of perturbation problem boundaries with the unperturbed problem material regions is

allowed.

Figure 3. Meshes for the perturbation problems without(left) and with a shell for transformation to

infinity (right)

The electrostatic field between the plates of the capacitor is first calculated in the absence of the

micro-beam. The solution of this problem is then evaluated on the added micro-beam and used as a

source for the so-called perturbation problem.

In Fig. 4(left), the local electric field is depicted for different sizes ofthe perturbation domain. The

first one is a rectangular bounded perturbation region (length= 170 µm, width= 50 µm). The second

one is a rectangular perturbation domain as well (length= 180 µm, width= 150 µm). The third one is an

extended perturbation region to infinity through a shell transformation [15].

Comparing with the conventional FE solution, we observe that the relative error of the local electric

field is under1.2% when the perturbation domain is extended to infinity througha shell transformation

(Fig. 4(right)). This justifies our choice for this kind of perturbation region for the whole of our study.

The relative error of the electric potential and the electric field near the micro-beam increases when

the latter is close to electrode at1V (Fig. 5) what highlights a significant coupling of these regions. A

more accurate solution for close positions needs an iterative process to calculate successive perturbations

in each region.

To illustrate the iterative perturbation process, the distanced1 = 3 µm is chosen as an example

(Fig. 6). Successive perturbation problems defined in each region are solved.

At iteration0, the unperturbed electric potential scalar is computed in the whole domainΩ. Projecting

this quantity in the domainΩp at iteration1 leads to a perturbed electric potential scalarvp ensuing the

electric field perturbationep. The relative error of the electric scalar potential computed near the micro-
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Figure 4. ep (y-component) computed along the micro-beam top surface for different perturbing regions

(left). Relative error ofep (y-component) with respect to the FE solution in each perturbing region(right)
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Figure 5. Relative error ofvp (left) andep (y-component)(right) computed along the micro-beam top

surface for several distances separating electrode at1V and the micro-beam

beam with respect to the conventional FE technique is biggerthan 2% (Fig. 6 (left)). Besides, the

difference between they-components ofep and the reference solution (FE) is considerable (relative error

up to32%) which is due to a strong coupling between these regions (Fig. 6 (right)). At iteration2, v

is projected from its mesh to that ofΩ where a new perturbation problem is solved and its solution is

projected again inΩp (at iteration3). The relative error of the local electric field at iteration25 is reduced

to 1%.

In order to highlight the relationship between the distanceseparating the micro-beam and electrode

at 1V and the number of iterations required to achieve the convergence without and with Aitken ac-

celeration [16], several positionsd1 of the micro-device are considered (Fig. 7). For each of them, the

perturbation problem is solved and an iterative process is carried out till the relative error of the local

electric field is smaller than1%.

As expected, several iterations are needed to obtain an accurate solution when the micro-beam is close
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Figure 6. Relative error ofvp (left) andep (y-component)(right) computed along the micro-beam top

surface for some iterations

to the considered electrode. When the Aitken accelaration is used, the number of iterations is reduced.
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Figure 7. Iteration numbers to achieve the convergence versus the distance separating electrode at1V

and the micro-beam

6. Conclusion

A perturbation method for computing electrostatic field distortions due to the presence of conductive

micro-structure has been presented. First, an unperturbedproblem (in the absence of certain conductors)

is solved with the conventional FE method in the complete domain. Second, a perturbation problem is

solved in a reduced region with an additional conductor using the solution of the unperturbed problem

as a source.

In order to illustrate and validate this method, we considered a 2-D FE model of a capacitor and a

moving micro-beam. Results are compared to those obtained by the conventional FE method. When
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the moving region is close to the electrostatic field source,several iterations are required to obtain an

accurate solution. Successive perturbations in each region are thus calculated not only from the original

source region to the added conductive perturbing domain, but also from the latter to the former. The

Aitken acceleration has been applied to improve the convergence of the iterative process.
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