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Abstract: Remote sensing techniques have been shown effective for large-scale damage 
surveys after a hazardous event in both near real-time or post-event analyses. The paper 
aims to compare accuracy of common imaging processing techniques to detect tornado 
damage tracks from Landsat TM data. We employed the direct change detection approach 
using two sets of images acquired before and after the tornado event to produce a principal 
component composite images and a set of image difference bands. Techniques in the 
comparison include supervised classification, unsupervised classification, and object-
oriented classification approach with a nearest neighbor classifier. Accuracy assessment is 
based on Kappa coefficient calculated from error matrices which cross tabulate correctly 
identified cells on the TM image and commission and omission errors in the result. Overall, 
the Object-oriented Approach exhibits the highest degree of accuracy in tornado damage 
detection. PCA and Image Differencing methods show comparable outcomes. While 
selected PCs can improve detection accuracy 5 to 10%, the Object-oriented Approach 
performs significantly better with 15-20% higher accuracy than the other two techniques. 

Keywords: change detection, damage, principal component, image differencing, object-
oriented 
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1. Introduction 

Remote sensing is a cost effective tool for large scale damage surveys after hazardous events. From 
hurricanes to earthquakes, satellite or airborne imagery provides an immediate overview of the 
damaged area and facilitate rescue and recovery efforts. Not only these images can provide damage 
estimates, identified damaged area from the imagery can guide limited emergency or survey crews to 
needed areas for detailed analysis. Nevertheless, the usefulness of remote sensing to the detection of 
damaged area depends on the accuracy of the detection techniques. While several studies applied 
satellite or airborne images to detect tornado damages, there is no systematic accuracy assessment of 
the accuracy of damage detection among different image processing approaches. A good 
understanding of how image processing techniques perform enables an intelligent choice of the 
techniques for damage detection. This paper compares three main approaches in remote sensing image 
processing and through the comparison to draw insights into the strengths and limitations of each 
technique in detecting tornado damage tracks. Included in the comparison are Principal Component 
Analysis (PCA), Image Differencing, and Object-oriented Classification. Fundamentally, damaged 
area detection is a classification problem. The attempt is to classify all area in the input images to two 
classes: undamaged area and damaged area. All image processing techniques for damaged area 
detection assume that damaged area and undamaged area relate to discernible differences in spectral 
reflectance on images. Therefore, classification of imagery reflectance reveals classes of damaged and 
undamaged areas. 

While PCA and Image Differencing methods are based on multivariate statistics, the two 
approaches detect changes in distinct ways. PCA classifies spectral reflectance on the before and after 
images separately and then determine the differences in the two images as damaged area. Imaging 
Differencing, on the other hand, classifies cells based on spectral differences before and after the 
events.  Furthermore, the Object-oriented Classification considers the characteristics of a conceptual 
object (such as the elongated nature of a tornado track) on a image and applies the object 
characteristics in determining whether image cells (or pixels) should be considered outside or inside 
the object. The conceptual differences in image classification are expected to play a major role in 
accuracy assessment [1-2]. 

The Oklahoma City Tornado Outbreak on May 3, 1999 serves as a case study here. Wide spread 
damage caused by the event across both urban and rural areas in central Oklahoma.  Ladsat TM images 
are used to compare all three imaging processing techniques.  Extensive field surveys conducted by the 
National Weather Service provides detailed ground data to assess accuracy of these techniques. The 
extended damaged area also provides a wide range of damage intensity that can challenge the detection 
robustness of image processing techniques.  

For all remote sensing analyses, data preparation is critical to ensure data validity of the analysis 
that follows. The next section will describe the procedures taken to perform atmospheric corrections 
and geographically match the pre- and post-event Landsat TM images so that changes caused by the 
tornadic event (i.e., damaged area) can be legitimately resulted by comparing the images. The 
following section details the conceptual and methodological foundations for each of the image 
processing techniques and their applications to detect tornado damage area. Both unsupervised and 
supervised approaches are considered in applying these techniques to damage detection. Classes of 
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undamaged area and damaged area (i.e. tornado damage tracks) then are compared with ground survey 
results. Error matrices cross-tabulate accurately identified, producer’s error, user’s error, and Kappa 
index for the overall error assessment. Discussions follow to compare error matrices among these 
tested techniques. The final section concludes the findings and suggests directions for future studies. 

2. Data Preparation and Study Area 

Landsat Thematic Mapper image data (path 28 and row 35) at 28.5 m spatial resolution with seven 
channels ranging from blue to thermal infrared portion of the spectrum was used to perform a damage 
assessment. The thermal channel was excluded in the study due to its coarser resolution. A location 
map of the study area is provided in Figure 1 (a). The image data was acquired over central Oklahoma 
area under cloud-free conditions prior to the 3 May tornado event on June 26, 1998 (Figure 1b) and 
after the 3 May tornado event on 12 May, 1999 (Figure 2). The original image was subset to extract 
the 3 May 1999 tornado damage path (upper left longitude 94o 44’ 47.76” and latitude 35o 28’ 24.82”, 
lower right longitude 97o 24’ 49.97” and latitude 35o 12’ 14.98”). The study area covers about 940.05 
sq km (1097 columns and 1055 rows). Both images were orthorectified and georeferenced in Universal 
Transverse Mercator (UTM) Zone 14 with a Clarke 1866 spheroid, NAD27 datum, and zone 14. We 
then co-registered both images to minimize locational errors (Myint and Wang, 2006). 

We then converted the Landsat ETM+ data to apparent surface reflectance using an atmospheric 
correction method known as the Cos(t) model (Chavez, 1996). This model incorporates all of the 
elements of the dark object subtraction model (for haze removal) and a procedure for estimating the 
effects of absorption by atmospheric gases and Rayleigh scattering. Even though data import, image 
layer stacking, visual judgment, and image subset were performed in ERDAS Imagine, conversion 
from DN values to reflectance was performed one band at a time using ATMOSC module in IDRISI 
software package. The reflectance data were imported back to ERDAS Imagine for layer stacking. The 
layer stacked image data was multiplied by 10,000 and kept as 16 bit integer data for easy computation 
and comparison. 

3. Methodology 

Digital change detection methods have been broadly divided into either pre-classification spectral 
change detection or post-classification change detection methods [3-5]. Regarding post-classification 
change detection, two images acquired on different dates are separately classified, and the changes are 
identified through the direct comparison of the classified information [6]. Since the approach was 
employed originally in the late 1970s for early satellite images, the method has a long history of 
applications to change detection analysis and some researchers consider it a standard approach for 
change detection [7]. The analyst can produce a change map with a matrix of changes by overlaying 
the classification results for time t1 (pre-event image) and t2 (post-event image). 

In the case of pre-classification change detection, a new single band or multi-spectral images are 
generated from the original bands to detect changed areas [8]. This approach generally involves further 
processing procedures to determine changes overtime. After obtaining a change image, a further 
analysis is required to identify change and no change pixels and to produce a classified map. 
Histogram thresholding is a simple approach for identifying the change pixels. Pixels that show no 
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significant change tend to be grouped around the mean while pixels with significant change are found 
in tails of the histogram distribution [9]. This approach is known as direct multidate classification 
technique or composite analysis [10]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. (a) Location map of the study area; (b) A false color composite of the study area 
(June 26, 1998) displaying channel 4 (0.76 – 0.90 μm) in red, channel 3 (0.63 – 0.69 μm) 
in green, and channel 2 (0.52 – 0.60 μm) in blue. 
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Figure 2. A false color composite of the study area (May 12, 1999) displaying channel 4 
(0.76 – 0.90 μm) in red, channel 3 (0.63 – 0.69 μm) in green, and channel 2 (0.52 –  
0.60 μm) in blue. 

 
The goal of the study was to assess image processing techniques that can effectively classify non-

damaged and damaged areas from remotely sensed imageries. Three main approaches of change 
detection methods are compared here according to their ability to extract changed areas and identify 
damaged areas and non-damaged areas using a commonly used supervised classifier (i.e., maximum 
likelihood), a widely used unsupervised classifier (i.e., iterative self-organizing data analysis or 
ISODATA), and an object-oriented approach. 

3.1. Damage Assessment Using Principal Component Analysis 

Spectral change detection or pre-classification techniques rely on the principle that land cover 
changes result in persistent changes in the spectral signatures of the affected land surfaces. These 
techniques involve the transformation of two original images to single-band or multi-band images in 
which the areas of spectral change are highlighted [10]. There have been efforts to increase the 
accuracy of the changed area identification using a number of direct change detection approaches: 
principal component comparison [11], change vector analysis [12], regression analysis [8], inner 
product analysis [13], correlation analysis [14], image ratioing [3], and multitemporal NDVI analysis 
method [15]. In contrast to the direct change detection approaches, [16-17] used the principal 
component bands to demonstrate the effectiveness of visualizing damaged areas affected by the 3 May 
1999 and the 18 June 2001 tornados respectively. 

In this study, we employed the direct change detection approach using a principal component 
analysis (PCA) using two sets of images acquired before and after the tornado event to produce a 
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principal composite image. This can be achieved by superimposing two N-band images to generate a 
single 2N-band image dataset followed by a principal component analysis to produce 2N principal 
component bands. Following the same procedure, two Landsat TM images with 6 bands excluding the 
thermal band each acquired before and after the May 3 1999 tornado outbreak over the study area were 
layer-stacked first to generate a single 12-band image. Then, a principal component analysis was 
performed to produce 12 principal component bands.  

The PCA results suggest that tornado damage areas can be observed in principal component (PC) 
bands 2, 3, and 4 and hence, we layer stacked PC bands 2, 3, and 4 as the first set of images for the 
assessment. Figures 3, 4, 5, 6, 7, and 8 show PC bands 1, 2, 3, 4, 5, and 6 respectively. Even though it 
is understood that the first principal component contains the largest component of the total scene 
variance [18], it can be observed from Figure 1 that the first PC band does not show damaged areas of 
the 3 May 1999 tornado well. PC5 and other principal components at higher orders do not have much 
information on changes except some noise in the images. A higher number of succeeding component 
images may contain a decreasing percentage of the total scene variance. Hence, we do not show higher 
level of PC images after PC-6. A closer inspection revealed that PC bands 3 and 4 showed the 
strongest response of tornado damage signatures in the images. We anticipated that this could 
potentially lead to a good result and we layer stacked PCA bands 3 and 4 as an additional sets of PCA 
images for the analysis. We selected training samples of damaged areas and non-damaged areas to 
perform a supervised classification approach (i.e., maximum likelihood) in the 2 selected composite of 
PC image bands (i.e., PC 2, 3, 4 and PC 3, 4). Figures 9 and 10 show the first set of PC composite 
bands 2, 3, 4, and PC composite bands 3, 4. 

We also employed an unsupervised classification algorithm, namely iterative self organizing data 
analysis (ISODATA), to identify 50 clusters. We determined the clusters that belong to damaged areas 
as we can visually identify in the images by interactively displaying one cluster at a time on the 
monitor. The ISODATA utility repeats the clustering of the image until either a maximum number of 
iterations has been performed, or a maximum percentage of unchanged pixels has been reached 
between two iterations.  This maximum percentage of unchanged pixels is known as convergence 
threshold. The convergence threshold is the maximum percentage of pixels whose cluster assignments 
can go unchanged. In this study, we used 20 iterations and 0.97 convergence threshold in the study 
area. A convergence threshold of 0.97 implies that as soon as 97% or more of the pixels stay in the 
same cluster between one iteration and the next, the utility stops processing. 

3.2. Damage Assessment Using Image Differencing Approach 

In image differencing, co-registered images of two different dates are subtracted, followed by the 
application of a threshold value to generate an image that shows changes of land use and land cover. 
As discussed earlier, threshold values are typically set based on a standard deviation value. Lower 
standard deviation may lead to greater inclusion of no change.  Optimally, selection of the proper 
threshold should be based on the accuracy of categorizing pixels as change or no change [11]. The 
threshold values for change/no change can be determined by the mean plus a number of standard 
deviation or interactively performing with a monitor and operator-controlled image processing 
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software capable of level slicing. Although this is a straight forward procedure it determines only 
changed areas instead of identifying type of changes from one class to another [9]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. Principal component composite band 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4. Principal component composite band 2. 
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Figure 5. Principal component composite band 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Principal component composite band 4. 
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Figure 7. Principal component composite band 5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Principal component composite band 6. 
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Figure 9. Principal component composite bands 2, 3, and 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 10. Principal component composite bands 3 and 4. 
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We used image differences of Landsat TM reflectance data acquired on June 26, 1998 and May 12, 
2000. We selected all image difference bands as the first set of image difference bands for the 
identification of damaged areas. Tornado damage areas appear evident in bands of 3, 5, and 7 on the 
differencing image, we layer stacked the above image differences bands as the second set of images for 
the assessment. Figures 11, 12, 13, 14, 15, and 16 show image difference bands of 1, 2, 3, 4, 5, and 6 
respectively. It can be seen from Figure 14 that image difference band 4 does not show much 
information on damaged areas. By visual judgment of the difference images, we observed that the 
second least effective image difference band was band 1. 

As mentioned earlier, we selected training samples of damaged areas and non-damaged areas to 
perform a supervised classification approach (i.e., maximum likelihood) in the 2 selected sets of image 
differences (i.e., bands 1, 2, 3, 4, 5, 7 and bands 3, 5, 7). Figure 17 shows image differences of a 
composite bands 3, 5, and 7. We also employed an unsupervised approach (Iterative Self-Organizing 
Data Analysis Technique - ISODATA) using 20 iterations and 0.97 threshold value to determine 50 
clusters for the assessment of tornado-damaged areas in the above three sets of Landsat TM data. 
Following the same procedure, we determined the clusters that belong to damaged areas as we can 
visually identify in the images by interactively displaying one cluster at a time on the monitor. 

3.3. Damage Assessment Using Object-oriented Approach 

An object is defined as a group of pixels having similar spectral and spatial properties in the object 
oriented approach in image classification. An object based classification approach generally uses 
segmented objects in relation to different level of scales as vital units instead of considering per-pixel 
basis at a single scale for image classification [19-21].  

Image segmentation is a prime task that splits an image into separated groups of cells or objects 
depending on parameters specified in the first stage before carrying out a classification. We used 
eCognition professional 4.0 to perform an object-based classification approach. There are three 
parameters that need to be identified in the segmentation function in eCognition software [22], namely 
shape (Ssh), compactness (Scm), and scale (Ssc) parameters. Users can apply weights ranging from 0 to 1 
for the shape and compactness factors to determine objects at different level of scales. These two 
parameters control the homogeneity of different objects. The shape factor adjusts spectral homogeneity 
vs. shape of objects whereas the compactness factor, balancing compactness and smoothness, 
determines the object shape between smooth boundaries and compact edges. The scale parameter is 
generally considered a key parameter in image segmentation that controls the object size that matches 
the user’s required level of detail. Different level of object sizes can be determined by applying 
different numbers in the scale function. A higher number of scale (e.g., 200) generates larger 
homogeneous objects (smaller scale – lower level of detail) whereas the smaller number of scale (e.g., 
20) will lead to smaller objects (larger scale). A smaller number used in the scale parameter is 
considered higher level in the segmentation procedure. The decision on the level of scale depends on 
the size of object required to achieve the goal. The software also allows users to assign different level 
of weights to different bands in the selected image during image segmentation. 
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Figure 11. Image difference band 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12. Image difference band 2. 

Tornado damage path 

Tornado damage path 
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Figure 13. Image difference band 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14. Image difference band 4. 

Tornado damage path 

Tornado damage path 
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Figure 15. Image difference band 5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 16. Image difference band 7. 

Tornado damage path 

Tornado damage path 
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Figure 17. Image difference bands 3, 5, and 7 
 
Image Classification with Object-oriented Approach: Regarding selection of objects to assign classes, 
we used the nearest neighbor classification procedure. The nearest neighbor option is a non-parametric 
classifier and is therefore independent of the assumption that data values follow a normal distribution. 
This technique allows unlimited applicability of the classification system to other areas, requiring only 
the additional selection or modification of new objects (training samples) until a satisfactory result is 
obtained [23]. The major advantage of using the nearest neighbor classifier is that it is capable of 
discriminating classes that are spectrally similar and not well separated using a few features or just one 
feature [24]. The nearest neighbor approach in eCognition can be applied to any number of classes at 
levels using any original, composite, transformed, or customized bands. There are two options 
available with the nearest neighbor function, namely (1) Standard Nearest Neighbor, and (2) Nearest 
Neighbor. The Standard Nearest Neighbor option automatically select mean values of objects for all 
the original bands in the selected image whereas the Nearest Neighbor option requires users to identify 
variables (e.g., shape, texture, hierarchy) under object features, class-related features, or global 
features. 

We employed the nearest neighbor approach after performing an image segmentation procedure at a 
required level of scale using a composite of PC image bands 3 and 4 to identify damaged areas and 
non-damaged areas. PC composite image of bands 3 and 4 gave the highest accuracy among all 
composite bands. A composite image of principal component bands 3 and 4 shows damaged and non-
damaged areas better than other composite bands. After testing different scale levels and parameter 
values, we considered scale level of 100 to be the optimal level of scale for the study. Shape parameter 
(Ssh) was set to 0.3 to give less weight on shape and give more attention on spectrally more 
homogeneous pixels for image segmentation. Compactness parameter (Scm) was set to 0.5 to balance 
compactness and smoothness of objects equally. Figure 18 shows a segmented image using shape  

Tornado damage path 



Sensors 2008, 8                            
 

 

1143

(Ssh) 0.3, compactness (Scm) 0.5, and scale (Ssc) 100. We identified 10 to 15 training samples of non-
damaged areas and 5 to 10 samples of damaged areas. We identified different samples iteratively and 
classified damaged areas until we received satisfactory results. 

4. Accuracy Assessment 

For the classification accuracy assessment, error matrices were produced and analyzed for each 
composite band and each method. These error matrices show the contingency of the class to which 
each pixel truly belongs (columns) on the map unit to which it is allocated by the selected analysis 
(rows). From the error matrix, over all accuracy, producer’s accuracy, user’s accuracy, and kappa 
coefficient were generated. It has been suggested that a minimum of 50 sample points for each land-
use land-cover category in the error matrix be collected for the accuracy assessment of any image 
classification [25]. We used a stratified random sampling approach to select 120 samples points that 
leads to approximately 60 points per class (damaged and non-damaged areas) for the accuracy 
assessment. To be consistent and for precise comparison purposes, we used the same sample points for 
the outputs generated by the objected oriented classifier, supervised approach (i.e., maximum 
likelihood), and unsupervised classification technique (i.e., ISODATA,). For a better evaluation, we 
performed the classification accuracy assessment on the original output maps without editing or 
manually correcting any of the output maps. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 18. A segmented image of PC composite bands 3 and 4 using shape (Ssh) 0.3, 
compactness (Scm) 0.5, and scale (Ssc) 100. 
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5. Results and Discussion 

Overall accuracies produced by a composite image of PC bands 2, 3, and 4 using the unsupervised 
approach (i.e., ISODATA) and supervised approach (i.e., maximum likelihood) were 84.17% (Table 1) 
and 79.17% (Table 2) respectively. Damaged areas also appear more visible on the supervised 
classification output compared the unsupervised method (Figures 19) and the supervised method 
(Figure 20). The unsupervised output contains more misclassified pixels in non-damaged areas 
whereas the supervised output seems to contain much less damaged areas. Producer’s accuracy that 
measures the error of omission and user’s accuracy that describes the error of commission of damaged 
areas identified by the unsupervised were 70.83% and 87.18% respectively. Even though PC bands 2, 
3, 4 with the unsupervised approach gave higher overall accuracy than the supervised approach, user’s 
accuracy of damaged areas for the supervised approach reaches 100%. It implies that a user of this 
classification would still find that 100 percent of the time, an area visited on the ground that the 
classification says damaged areas will actually be damaged areas. However, only 47.92% of the areas 
identified as damaged areas within the classification are truly of that category. This was because 25 
points that were supposed to be damaged areas were mistakenly identified as non-damaged areas, and 
only 23 points were correctly identified as damaged areas. In other words, all points in areas classified 
as damaged areas were correctly identified whereas many points in areas identified as non-damaged 
areas were found to be damaged areas on the ground (reference data). 

 
Table 1. Overall accuracy, producer’s accuracy, user’s accuracy, and Kappa coefficient 
produced by a composite image of PC bands 2, 3, and 4 with an unsupervised classifier 
(i.e., ISODATA). 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

                         Reference Producer's User's

Classified Non-Damaged Damaged Total Accuracy Accuracy

Non-Damaged 67 14 81 93.06% 87.72%

Damaged 5 34 39 70.83% 87.18%

Total 72 48 120

    Overall Accuracy = 84.17%

         Overall Kappa = 0.6595
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Table 2. Overall accuracy, producer’s accuracy, user’s accuracy, and Kappa coefficient 
produced by a composite image of PC bands 2, 3, and 4 with a supervised classifier (i.e., 
maximumlikelihood). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 19. An output map of PC composite bands 2, 3, and 4 using an unsupervised 
approach (i.e., ISODATA). Note: blue color represents non-damaged areas and red color 
represents damaged areas. 

                         Reference Producer's User's

Classified Non-Damaged Damaged Total Accuracy Accuracy

Non-Damaged 72 25 97 100.00% 74.23%

Damaged 0 23 23 47.92% 100.00%

Total 72 48 120

    Overall Accuracy = 79.17%

         Overall Kappa = 0.5247
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Figure 20. An output map of PC composite bands 2, 3, and 4 using a supervised approach 
(i.e., maximum likelihood). Note: blue color represents non-damaged areas and red color 
represents damaged areas. 

 
Overall accuracies produced by a composite image of PC bands 3 and 4 using the unsupervised 

approach and supervised approach were 85.00% (Table 3) and 87.50% (Table 4) respectively. Both 
producer’s and user’s accuracies for non-damaged areas were higher than damaged areas. This is 
probably due to the fact that area extent of non-damaged category was a lot larger than damaged areas, 
and many randomly selected points fall in non-damaged areas. The overall accuracies of 85% and 
87.5% produced by a composite image of PC bands 3 and 4 reach the minimum mapping accuracy of 
85% required for most resource management applications [26-27]. Figures 21 and 22 suggest that the 
output generated by the supervised approach shows more damaged areas whereas the unsupervised 
output contains less damaged areas. It has been found that PC composite of bands 3 and 4 with the use 
of either an unsupervised or a supervised approach can be considered an effective approach for 
identifying damaged areas due to a disaster event.  

A composite image difference of the original reflectance bands 1, 2, 3, 4, 5, and 7 using the 
unsupervised classifier and supervised classifier gave overall accuracies 80.33% (Table 5) and 83.33% 
(Table 6) respectively. We believe that both outputs generated by unsupervised and supervised look 
similar. Output maps of both techniques (Figures 23 and 24) show less noise in non-damaged areas 
and contain less damaged areas than they can be observed visually in composite images. This could 
have been the reason why producer’s accuracies for both outputs were very low (51.06% and 61.36%). 
In general, this approach seems to be a good approach as both outputs produce somewhat high overall 
accuracies. 
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Table 3. Overall accuracy, producer’s accuracy, user’s accuracy, and Kappa coefficient 
produced by a composite image of PC bands 3 and 4 with an unsupervised classifier (i.e., 
ISODATA). 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Table 4. Overall accuracy, producer’s accuracy, user’s accuracy, and Kappa coefficient 
produced by a composite image of PC bands 3 and 4 with a supervised classifier (i.e., 
maximumlikelihood). 

 
 
 
 
 
 
 
 
 
 
 
 
 

                         Reference Producer's User's

Classified Non-Damaged Damaged Total Accuracy Accuracy

Non-Damaged 72 17 89 91.03% 89.87%

Damaged 1 30 31 80.95% 82.93%

Total 73 47 120

    Overall Accuracy = 85.00%

         Overall Kappa = 0.6649

                         Reference Producer's User's

Classified Non-Damaged Damaged Total Accuracy Accuracy

Non-Damaged 71 8 79 91.03% 89.87%

Damaged 7 34 41 80.95% 82.93%

Total 78 42 120

    Overall Accuracy = 87.50%

         Overall Kappa = 0.7238
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Figure 21. An output map of PC composite bands 3 and 4 using an unsupervised approach 
(i.e., ISODATA). Note: blue color represents non-damaged areas and red color represents 
damaged areas. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 22. An output map of PC composite bands 3 and 4 using a supervised approach 
(i.e., maximum likelihood). Note: blue color represents non-damaged areas and red color 
represents damaged areas. 
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Table 5. Overall accuracy, producer’s accuracy, user’s accuracy, and Kappa coefficient 
produced by a composite image difference of the original reflectance bands 1, 2, 3, 4, 5, 
and 7 with an unsupervised classifier (i.e., ISODATA). 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Table 6. Overall accuracy, producer’s accuracy, user’s accuracy, and Kappa coefficient 
produced by a composite image difference of the original reflectance bands 1, 2, 3, 4, 5, 
and 7 with a supervised classifier (i.e., maximumlikelihood). 

 
 
 
 
 
 
 
 
 
 
 
 

                         Reference Producer's User's

Classified Non-Damaged Damaged Total Accuracy Accuracy

Non-Damaged 73 23 96 100.00% 76.04%

Damaged 0 24 24 51.06% 100.00%

Total 73 47 120

    Overall Accuracy = 80.83%

         Overall Kappa = 0.5594

                         Reference Producer's User's

Classified Non-Damaged Damaged Total Accuracy Accuracy

Non-Damaged 73 17 90 96.05% 81.11%

Damaged 3 27 30 61.36% 90.00%

Total 76 44 120

    Overall Accuracy = 83.33%

         Overall Kappa = 0.6154
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Figure 23. An output map of image difference bands 1, 2, 3, 4, 5, and 7 using an 
unsupervised approach (i.e., ISODATA). Note: blue color represents non-damaged areas 
and red color represents damaged areas. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 24. An output map of image difference bands 1, 2, 3, 4, 5, and 7 using a supervised 
approach (i.e., maximum likelihood). Note: blue color represents non-damaged areas and 
red color represents damaged areas. 
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It was evident from the visual analysis that image difference bands 3, 5, and 7 showed damaged 
areas with lower spatial variances than other image difference bands, we anticipated that a composite 
image difference of the original reflectance bands 3, 5, and 7 would produce a satisfactory outcome. 
From Tables 7 and 8, overall accuracies produced by the above composite of image difference bands 3, 
5, and 7 using the unsupervised classifier and supervised classifier did not produce satisfactory 
accuracies (i.e., 70.83%, 78.33%) as expected. Both outputs (Figures 25 and 26) were similar to the 
outputs from the previous image difference bands. They also show a lower noise level in non-damaged 
areas and contain less damaged areas. 

The highest overall accuracy (98.33%) was produced by a composite of PC bands 3 and 4 using the 
object-oriented approach (Table 9). Producer’s accuracy of non-damaged areas and user’s accuracy of 
damaged areas reached 100%. User’s accuracy of non-damaged areas and producer’s accuracy of 
damaged areas also exceeds 95%. Errors in user’s accuracy of non-damaged areas and producer’s 
accuracy of damaged areas were due to the fact that 2 points fall on areas that were mistakenly 
identified as non-damaged areas in the output map that were supposed to be damaged areas. It can be 
observed from Figure 27 that there is no single pixel that was mistakenly classified as damaged areas 
in non-damaged areas. As mentioned earlier, we did not edit, manually correct, or filter any of the 
output maps produced in this study (Figures 19 to 27). The output map of the object-oriented approach 
from a composite of PC bands 3 and 4 is the original output generated by the nearest neighbor 
classifier. 
 
 

Table 7. Overall accuracy, producer’s accuracy, user’s accuracy, and Kappa coefficient 
produced by a composite image difference of the original reflectance bands 3, 5, and 7 
with an unsupervised classifier (i.e., ISODATA). 

 
 
 
 
 
 
 
 
 
 
 
 

                         Reference Producer's User's

Classified Non-Damaged Damaged Total Accuracy Accuracy

Non-Damaged 73 35 108 100.00% 67.59%

Damaged 0 12 12 25.53% 100.00%

Total 73 47 120

    Overall Accuracy = 70.83%

         Overall Kappa = 0.2944
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Table 8. Overall accuracy, producer’s accuracy, user’s accuracy, and Kappa coefficient 
produced by a composite image difference of the original reflectance bands 3, 5, and 7 
with a supervised classifier (i.e., maximumlikelihood). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 25. An output map of image difference bands 3, 5, and 7 using an unsupervised 
approach (i.e., ISODATA). Note: blue color represents non-damaged areas and red color 
represents damaged areas. 

                         Reference Producer's User's

Classified Non-Damaged Damaged Total Accuracy Accuracy

Non-Damaged 73 26 99 100.00% 73.74%

Damaged 0 21 21 44.68% 100.00%

Total 73 47 120

    Overall Accuracy = 78.33%

         Overall Kappa = 0.4956
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Figure 26. An output map of a image difference bands 3, 5, and 7 using a supervised 
approach (i.e., maximum likelihood). Note: blue color represents non-damaged areas and 
red color represents damaged areas. 

 
 
 
 

Table 9. Overall accuracy, producer’s accuracy, user’s accuracy, and Kappa coefficient 
produced by a composite image of PC bands 3 and 4 with an object-oriented approach. 

 
 
 
 
 
 
 
 
 
 

                         Reference Producer's User's

Classified Non-Damaged Damaged Total Accuracy Accuracy

Non-Damaged 73 2 75 100.00% 97.33%

Damaged 0 45 45 95.74% 100.00%

Total 73 47 120

    Overall Accuracy = 98.33%
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Figure 27. An output map of PC composite bands 3 and 4 using an object oriented 
approach. Note: The output image was not manually edited or filtered. 

6. Conclusion 

It was found that a composite image of PC bands 3 and 4 using a supervised approach (i.e., 
maximum likelihood) gave the highest overall accuracy among all the traditional classifiers with 
different composite bands. A composite image difference of the original reflectance bands 1, 2, 3, 4, 5, 
and 7 using the unsupervised classifier and supervised classifier were found to be the second most 
effective of all pre-classification change detection techniques. It can be observed from Figures 19 
through 26 that there is a significant signature confusion between other changed areas between the two 
time periods and damaged areas due to the 3 May 1999 tornado. A majority of other changed areas 
other than damaged areas between the two time periods (26 June 1998 and 12 May 1999) were found 
to be changes from active to non active agricultures and vice versa. To minimize this problem, two 
images selected before and after a disaster event should be within a short time frame whenever 
possible. For example, two images acquired within 10 days before and after a natural disaster can be 
expected to eliminate or at least minimize the signature confusion between damaged areas and other 
changed areas. 

A composite image of PC bands 3 and 4 using the object-oriented approach with a nearest neighbor 
classifier gave the highest accuracy (98.33%). It can be concluded that the object oriented approach 
outperforms the supervised and unsupervised approaches. The object-oriented approach allows 
additional selection or modification of new objects (training samples) each time after performing a 
nearest neighbor classification quickly until the satisfactory result is obtained. This is probably the key 
advantage of using the object-oriented approach. There are many possible combinations of different 
functions, parameters, features, and variables available. However, it should be noted that the exact 
computation and operation of many of the parameters and functions available with eCognition 
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software are not explicit. The successful use of eCognition largely relies on repeatedly modifying 
training objects, performing the classification, observing the output, and testing different combinations 
of functions as a trial-and-error approach. The availability of many different combinations of 
parameters, functions, features, and variables helped us identify damaged and non-damaged areas 
effectively. Nonetheless, we conclude that the object oriented approach is effective and reliable in 
identifying damaged areas due to a severe weather event. 
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