Sensors 2008, 8(12), 8156-8180; doi:10.3390/s8128156
Review

Water Productivity Mapping (WPM) Using Landsat ETM+ Data for the Irrigated Croplands of the Syrdarya River Basin in Central Asia

1,10,* email, 2,* email, 3, 1, 1, 4, 5, 5, 6, 7, 1, 1, 8 and 9
Received: 23 October 2008; in revised form: 26 November 2008 / Accepted: 5 December 2008 / Published: 10 December 2008
(This article belongs to the Section Remote Sensors)
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract: The overarching goal of this paper was to espouse methods and protocols for water productivity mapping (WPM) using high spatial resolution Landsat remote sensing data. In a world where land and water for agriculture are becoming increasingly scarce, growing “more crop per drop” (increasing water productivity) becomes crucial for food security of future generations. The study used time-series Landsat ETM+ data to produce WPMs of irrigated crops, with emphasis on cotton in the Galaba study area in the Syrdarya river basin of Central Asia. The WPM methods and protocols using remote sensing data consisted of: (1) crop productivity (ton/ha) maps (CPMs) involvingcrop type classification, crop yield and biophysical modeling, and extrapolating yield models to larger areas using remotely sensed data; (2) crop water use (m3/ha) maps (WUMs) (or actual seasonal evapotranspiration or actual ET) developed through Simplified Surface Energy Balance (SSEB) model; and (3) water productivity (kg/m3) maps (WPMs) produced by dividing raster layers of CPMs by WUMs. The SSEB model calculated WUMs (actual ET) by multiplying the ET fractionby reference ET. The ETfraction was determined using Landsat thermal imagery by selecting the “hot” pixels (zero ET) and “cold” pixels (maximum ET). The grass reference ET was calculated by FAO Penman-Monteith method using meteorological data. The WPMs for the Galaba study area demonstrated a wide variations (0-0.54 kg/m3) in water productivity of cotton fields with overwhelming proportion (87%) of the area having WP less than 0.30 kg/m3, 11% of the area having WP in range of 0.30-0.36 kg/m3, and only 2% of the area with WP greater than 0.36 kg/m3. These results clearly imply that there are opportunities for significant WP increases in overwhelming proportion of the existing croplands. The areas of low WP are spatially pin-pointed and can be used as focus for WP improvements through better land and water management practices.
Keywords: Water productivity mapping; remote sensing; water use; crop productivity; crop yield modeling; simplified surface energy balance model; Central Asia; Syrdarya river basin
PDF Full-text Download PDF Full-Text [1614 KB, uploaded 21 June 2014 02:34 CEST]

Export to BibTeX |
EndNote


MDPI and ACS Style

Platonov, A.; Thenkabail, P.S.; Biradar, C.M.; Cai, X.; Gumma, M.; Dheeravath, V.; Cohen, Y.; Alchanatis, V.; Goldshlager, N.; Ben-Dor, E.; Vithanage, J.; Manthrithilake, H.; Kendjabaev, S.; Isaev, S. Water Productivity Mapping (WPM) Using Landsat ETM+ Data for the Irrigated Croplands of the Syrdarya River Basin in Central Asia. Sensors 2008, 8, 8156-8180.

AMA Style

Platonov A, Thenkabail PS, Biradar CM, Cai X, Gumma M, Dheeravath V, Cohen Y, Alchanatis V, Goldshlager N, Ben-Dor E, Vithanage J, Manthrithilake H, Kendjabaev S, Isaev S. Water Productivity Mapping (WPM) Using Landsat ETM+ Data for the Irrigated Croplands of the Syrdarya River Basin in Central Asia. Sensors. 2008; 8(12):8156-8180.

Chicago/Turabian Style

Platonov, Alexander; Thenkabail, Prasad S.; Biradar, Chandrashekhar M.; Cai, Xueliang; Gumma, Muralikrishna; Dheeravath, Venkateswarlu; Cohen, Yafit; Alchanatis, Victor; Goldshlager, Naftali; Ben-Dor, Eyal; Vithanage, Jagath; Manthrithilake, Herath; Kendjabaev, Shavkat; Isaev, Sabirjan. 2008. "Water Productivity Mapping (WPM) Using Landsat ETM+ Data for the Irrigated Croplands of the Syrdarya River Basin in Central Asia." Sensors 8, no. 12: 8156-8180.


Sensors EISSN 1424-8220 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert