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Abstract: This paper provides a comprehensive review of the use of Synthetic Aperture 
Radar images (SAR) for detection of illegal discharges from ships. It summarizes the 
current state of the art, covering operational and research aspects of the application.  Oil 
spills are seriously affecting the marine ecosystem and cause political and scientific concern 
since they seriously effect fragile marine and coastal ecosystem. The amount of pollutant 
discharges and associated effects on the marine environment are important parameters in 
evaluating sea water quality. Satellite images can improve the possibilities for the detection 
of oil spills as they cover large areas and offer an economical and easier way of continuous 
coast areas patrolling. SAR images have been widely used for oil spill detection. The 
present paper gives an overview of the methodologies used to detect oil spills on the radar 
images. In particular we concentrate on the use of the manual and automatic approaches to 
distinguish oil spills from other natural phenomena. We discuss the most common 
techniques to detect dark formations on the SAR images, the features which are extracted 
from the detected dark formations and the most used classifiers. Finally we conclude with 
discussion of suggestions for further research. The references throughout the review can 
serve as starting point for more intensive studies on the subject.  
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1. Introduction  
 
This review is primarily targeted to readers new to the use of SAR imagery for oil spill detection 

and who want to gain an overview of the problem without getting into complex details. It assumes a 
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basic understanding of the principles of SAR and it benefits readers who wish to extend their general 
knowledge of SAR to the specific application. 

Among the different types of marine pollution, oil is a major threat to the sea ecosystems. The 
source of the oil pollution can be located on the mainland or directly at sea. Sea-based sources are 
discharges coming from ships or offshore platforms. Oil pollution from sea-based sources can be 
accidental or deliberate. Fortunately, the number of marine accidents and the volume of oil released 
accidentally are on the decline. On the other side, routine tanker operations can lead still to the release 
of oily ballast water and tank washing residues. Furthermore, fuel oil sludge, engine room wastes and 
foul bilge water produced by all type of ships, also end up in the sea. In the last decade maritime 
transportation has been growing steadily. More ships also increase the potential number of illegal oil 
discharges. Both oil tankers and other kinds of ships are among the suspected offenders of illegal 
discharges. 

The different tools to detect and monitor oil spills are vessels, airplanes, and satellites. Vessels, 
especially if equipped with specialised radars, can detect oil at sea but they can cover a very limited 
area. The vessel, however, remains necessary in case oil sampling is required. The main systems to 
monitor sea-based oil pollution are the use of airplanes and satellites equipped with Synthetic Aperture 
Radar (SAR). SAR is an active microwave sensor, which captures two dimensional images. The 
brightness of the captured image is a reflection of the properties of the target-surface. The possibility 
of detecting an oil spill in a SAR image relies on the fact that the oil film decreases the backscattering 
of the sea surface resulting in a dark formation that contrasts with the brightness of the surrounding 
spill-free sea. Spaceborne SAR sensors are extensively used for the detection of oil spills in the marine 
environment, as they are independent from sun light, they are not affected by cloudiness, they cover 
large areas and are more cost-effective than air patrolling.  

Radar backscatter values from oil spills are very similar to backscatter values from very calm sea 
areas and other ocean phenomena named "look-alikes" (e.g. currents, eddies). Figure 1 presents an 
example of a verified oil spill and a verified look-alike on a SAR image. Several studies aiming at oil 
spill detection have been conducted. The first comprehensive publications on the subject [1-5] 
concerned methodologies to distinguish oil spills from look-alikes. Solberg et al. [1] presented an 
automatic statistical approach while Del Frate et al. [2] used a neural network classifier. Espedal and 
Wahl [3] used wind history information to detect oil spills, Espedal et al. [4] focused on detection near 
offshore platforms and Fiscella et al. [5] used a probabilistic approach for detection and discrimination. 
The first reconnaissance study for the Mediterranean Sea using more that 1600 SAR images was given 
by Pavlakis et al. [6]. The second wave of interest on the subject came some years later, with new 
techniques and methodologies [7-14]. De Souza et al. [7] presented and intelligent system to extract 
features from oil slicks, Keramitsoglou et al. [8] an automatic system based on fuzzy logic, 
Karathanassi et al. [9] an object-oriented methodology, Mercier and Girard-Ardhuin [10] a 
classification method using kernel expansion and Ramalho - Medeiros [11] used boosting techniques. 
Topouzelis et al. [12] presented an updated study on discrimination using neural networks, Solberg 
and Brekke [13] summarized the detection techniques in Northern European waters while Serra-Sogas 
et al. [14] were focused in western Canadian waters. Finally, a detailed introduction to oil spill 
detection by satellite remote sensing is given by Brekke and Solberg [15]. 
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Figure 1. Two examples of dark formations: (a) Verified oil spill on a SAR image taken on 
6 September 2005 close to Ancona, Italy. (b) Verified look-alike on a SAR image taken on 
25 August 2005 close to Otranto, Italy (Adapted from Stathakis et al. [16]). 

  
 
Long term monitoring using SAR data was firstly performed by Pavlakis et al. [6, 17] for the 

Mediterranean basin and Gade and Alpers [18] for specific areas in Mediterranean Sea. The Joint 
Research Centre (JRC) continued these initiatives and monitored the European seas for the following 
years [19-23]. Bernardini et al. [19] focused on the Adriatic Sea, Ferraro et al. [20] on the French 
Environmental Zone, Ferraro et al. [21] presented an overview of the existing operational techniques 
in the Mediterranean Sea, Tarchi et al. [22] focused on the seas around Italy for the years 1999-2004 
and Topouzelis et al. [23] on the Mediterranean basin for the years 1999-2002.  

The Norwegian company Kongsberg Satellite Services (KSAT) in Tromsø, Norway, was one of the 
primary European providers of a satellite based oil spill detection service. Nowadays, the European 
Space Agency (ESA) through the Global Monitoring for Environment and Security (GMES) program 
has funded the MARCOAST project on Marine and Coastal surveillance to develop a harmonised 
service chain in Europe. Oil spill detection using spaceborne SAR data became operational in 
European waters form the middle of 2007 with the CLEANSEANET service of the European Maritime 
Safety Agency (EMSA). The service provides a range of detailed information including oil spill alerts 
to European Member States, rapid delivery of available satellite images and oil slick position. 
 
2. SAR remote sensing sensors for oil spill detection 

 
Several spaceborne SAR systems have been used for oil spill monitoring. They usually are 

characterized by their frequency (or band). The NASA’s SEASAT satellite, which was launched in 
1978, was the fist satellite designed to observe the sea surface with an L-band SAR system. Later, 
SAR systems were launched by the Russian Space Agency (RSA), the European Space Agency (ESA) 
and the Canadian Space Agency (CSA). The main satellites which were used or are in operational 
status for monitoring oil spills are presented in Table 1.  

A SAR sensor can be described by the frequency band, the polarisation which refers to the 
geometry of the tip of the electric vector, the incidence angle i.e. the angular relationship between the 
radar beam and the ground target, the swath width i.e. width of the imaged scene and the image 
resolution i.e. size of the smallest detail identifiable on an image. There is a trade-off between the 
image resolution and the swath coverage. Usually, for oil spill detection, large swath widths are chosen 
at the expense of lower resolution. This approach is adopted because it is in our interest to cover as 
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much area as possible even if very small oil spills can not be detected. Table 2 presents the satellite 
modes that are commonly used for sea monitoring above European waters. 

Table 1. Satellites carrying SAR instruments focusing in ocean observation. 

Satellite (sensor) Operative Owner Band 

SEASAT 1978 – 1978 NASA L 

ALMAZ 1991 – 1992 RSA S 

ERS-1 1991 – 1996 ESA C 

ERS-2 1995 – operating ESA C 

RADARSAT-1 1995 – operating CSA C 

RADARSAR-2 2007– operating CSA C 

ENVISAT (ASAR) 2002 – operating ESA C 

ALOS (PALSAR) 2006 – operating JAXA L 

TerraSAR-X 2007 – operating DLR X 

Cosmos Skymed-1/2 2007 – operating ASI X 

ASI – Italian Space Agency, DLR - German Aerospace Centre, ESA – European 
Space agency, JAXA - Japan Aerospace Exploration Agency, NASA - National 
Aeronautics and Space Administration (USA). 
 

Table 2. Examples of satellite modes (adapted from Brekke and Solberg [15]). 

SAR sensor Mode 
Resolution 

(m) 
Pixel 

Spacing (m)
Swath 

width (Km) 
Incidence 
angle (°)

ERS-2 PRI 30 x 26.3 12.5 x 12.5 100 20 -26 

ENVISAT IM 30 x 30 12.5 x 12.5 100 15 - 45 

RADARSAT-1 SCN 50 x 50 25 x 25 300 20 - 46 

RADARSAT-1 SCW 100 x 100 50 x 50 450 – 500 20 - 49 

ENVISAT WSM 150 x 150 75 x 75 400 16 - 44 

PRI – Presision Image Mode, IM – Image Mode, SCN – ScanSar Narrow, SCW - 
ScanSar Wide, WSM - Wide Swath Mode 

 
3. SAR imaging of oil spills 

 
Oil films decrease the backscattering of the sea surface resulting in a dark formation on SAR 

images. There are different mechanisms responsible for the sea surface radar backscattering, which 
strongly depend on the incidence angle of the radar sensor. In a quite large range of angles, 
approximately from 20º to 50º, the main agent of radar backscattering are the wind-generated short 
gravity-capillary waves. The oil film has a dampening effect on these waves locally decreasing the 
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backscattering. It is implicitly assumed that a light wind field exists in order to activate short gravity-
capillary waves. The minimum wind speed is in fact depending on the frequency of observation and 
the incidence angle. The most common radar sensors on board of operational satellites are using the C 
band. In this frequency range, a minimum wind field of 2–3 m/s creates sufficient brightness in the 
image and makes the oil film visible. On the other hand, when the wind speed is too high, it causes the 
spill to disappear. First, because the short waves receive enough energy to counterbalance the dumping 
effect of the oil film. Then, when the sea-state is fully developed, the turbulence of the upper sea layer 
may break and/or sink the spill or a part of it. 

Several man made and natural ocean phenomena damp the wind generated short gravity – capillary 
waves. For this reason, some areas appear dark on SAR imagery in contrast to the surrounding sea. 
Any area on an image which is sufficiently darker than the neighbouring area can be characterized as a 
dark formation. It is particularly hard to determine how much darker an area has to be and there is not 
a clear criterion in the literature. Even in a single image, the degree of darkness and contrast required 
for the dark areas characterisation is not constant. Dark formations can be [24-25]: oil spills, low wind 
areas, organic film, fronts, areas sheltered by land, rain cells, current shear zones, grease ice, internal 
waves, upwelling zones, downwelling zones and eddies. 
 
4. Methodologies for oil spill detection on SAR images 

 
Two main approaches exist for the oil spill detection on SAR images: the manual approach, where 

operators are trained to analyse images for detecting oil spills and the semi-automatic or fully 
automatic approaches, where automatizations are inserted. Any formation on the image which is 
darker than the surrounding area has a high probability of being an oil spill and needs further 
examination. Although this process seems to be simple for a human operator, it contains three main 
difficulties for semi-automated or automated methods. First, fresh oil spills are brighter than older 
spills. They have a weak backscattering contrast relative to their surroundings and thus cannot be 
easily discriminated. Second, dark areas can have various contrast values, depending on local sea state, 
oil spill type, image resolution and incidence angle. Third, look-alike phenomena are presented as dark 
areas too.  
 
4.1. Manual inspection 

 
Manual inspection is the most popular technique for oil spill detection as is it not very complex and 

under certain circumstances can be easily reproduced. Nevertheless, it is not very reliable as it depends 
on the experience of the interpreter. In this approach operators are trained to detect oil spills through 
photo-interpretation. At fist stage all the possible candidates being oil spills are detected on a SAR 
image. Then a discrimination process is performed to distinguish oil spills from look-alikes. Some 
look-alikes are quite easy to classify as they have characteristic shapes and configurations completely 
different from those of the oil spills, such as dark patches caused by internal wave areas, eddies, or rain 
cells. However, a first sight analysis is not sufficient in complicated cases. The discrimination is 
particularly difficult in presence of natural oil slicks or areas with low wind speeds. In these situations 
a more detailed analysis is necessary, where several factors have to be taken into account. The most 
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important are: the wind conditions, the period of the year, the shape analysis, the slick size and the 
general morphology of the observed area.  

The knowledge of wind conditions is crucial, as low wind speeds of 2-3 m/sec result in many dark 
formations while with wind speeds above 8-10 m/sec the oil can not be detected. The period of the 
year is useful to discriminate natural slicks (i.e. algae bloom) and grease ice on summer, while the 
slick size is consider to exclude low wind areas or even large natural slicks. The general morphology 
of the observed area is crucial to distinguish dark formations caused by suddenly changes of the wind 
conditions i.e. the passage form a region in which the wind is not present to another in which wind is 
blowing. In many cases the dark formations are the result of the sheltering action due to area 
topography (e.g. areas close to the land, high submarine mountains, oil platforms). More complicated 
are the areas containing fronts, which are boundaries between water masses with dissimilar properties, 
like two water masses of different densities (due to different temperatures or/and salinities). In these 
cases dark formations can have extremely high combinations of shapes and sizes.  

Shape analysis is very useful for discriminating oil spills from look-alikes, mainly natural 
phenomena, since the two categories have specific characteristics. Shape analysis takes into 
consideration the characteristics of the border, the tails and the roundness of the dark formations. The 
borders of man-made spills are usually very well defined, with a sharp step in the backscattering 
values between the spilled region and the surrounding region. On the contrary, natural phenomena 
usually have more structured borders. However, old spills present much more complex border 
structure that a fresh one. The tails can be thin, straight or slightly curved for oil spills, while look-
alikes present a “natural” behavior in the image with smoother turnings. Look-alikes can be some 
kilometers in length probably due to wind sheltering action and are usually connected with natural 
structures like eddies. Roundness of dark formations is essential for identifying fresh spills, elongated 
with or without curves. Usually man made spills are elongated, while many natural phenomena have 
round shape. Roundness can not really be measured, therefore is in generally based on the experience 
of the photo-interpreter. A very good categorization of the oil spills is given by Pavlakis et al. [6], 
where more than 1,600 oil spills are classified in five categories (Figure 2).  

In general it can be assumed that dark formations are usually classified by photo-interpreters as 
potential oil spills according to the following criteria: 

• Dark homogeneous spots in a uniform windy area;  
• Linear dark areas, not extremely large, with abrupt turns i.e. most likely abrupt turns due to 

wind directions change or surface current. Natural slicks in these conditions tend to disappear. 
Man made slicks have higher viscosity and tend to change their shape. 

Dark formations are usually classified by photo-interpreters as look-alikes according to the 
following criteria: 

• Low wind areas; 
• Coastal zones due to wind sheltering; 
• Elongated dark areas with smooth turnings in spiral shape.  

When oil spill detection service is provided with manual approach, usually an assignment of the 
possible oil spill is also provided. Mainly three categories are used representing slicks with high, 
medium or low probability of being oil. This assignment is mainly based on the experience of the 
photo-interpreters and is under discussion by the research community.  
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To this end the experience of the interpreter and especially its ability to apprehend the nature of the 
image manifestations, become a critical factor. As such experience is not widely available, efforts are 
made to develop systems, which will detect and identify dark formations as oil spills in an automatic or 
in a semi-automatic way. 

 
Figure 2. Classification of 1638 detected oil spills in terms of their shapes (adapted from 
Pavlakis et al. [6]). 

 
 

4.2. Semiautomatic and fully automatic methodologies 
 
Semiautomatic and fully automatic methodologies are not very popular for oil spill detection as 

they are complex, they can not be easily reproduced and require specific knowledge on image 
understanding, pattern recognition and classifications theories. The basic idea for such approaches is 
presented in figure 3 and can be summarized in four steps [1, 6]: 
1. Detection and isolation of all dark formations presented in the image. Mainly this step is a result of 

thresholding and segmentation processing.  
2. Extraction of statistical parameters of the dark formations, so called “features” for each oil spill 

candidate. These features are related with the geometry of the formation (e.g. area, perimeter) their 
physical behavior (e.g. mean backscatter value) and their context in the image (e.g. distance to 
ships).  

3. Test of the extracted values against predefined values, which characterize man-made oil spills and 
look-alike phenomena. These values are usually determined through phenomenological 
considerations and statistical assessments. 
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4. Classification of the dark formations to oil spills or look-alikes. Several classifiers have been used, 
i.e. statistical approach through computation of probabilities, neural networks, fuzzy logic, etc.  

Semi-automatic or fully automatic algorithms should operate under all wind conditions, including 
low winds where high number of look-alikes is expected. In these conditions the false alarm ratio (i.e. 
look-alikes that categorized as oil spills) is usually extremely high for the automatic algorithms.  

 
Figure 3. The basic functions of oil spill detection methodologies. 

 
 

4.2.1. Dark formation detection 
 
Dark formation detection is considered the fundamental step in oil spill detection systems and 

constitutes the first step in oil spill detection approaches. Several techniques have been presented in 
bibliography for detecting dark formations in SAR images. An overview of them is given in the 
following paragraphs. Once dark formations are detected, classification methods are applied to 
characterise them as oil spills or look-alike objects. If dark formations are not detected in this step they 
will never be classified. 

Dark formations can be located manually by cropping a broader area containing the dark formation, 
or an image window with fixed size can be used, in which threshold algorithms -adapted or not- can be 
applied. Simple thresholds have one value for the whole image e.g. the half of the average Normalized 
Radar Cross Section (NRCS) of the image [5], or NRSC minus the standard deviation [28]. In adaptive 
algorithms threshold is calculated locally, mainly on areas covered by a moving window. In Solberg  
et al. [1, 29] the threshold is set k dB below the mean value of the moving window and it is calculated 
using a multiscale pyramid approach and a clustering step. In Karathanassi et al. [9], the threshold is 
fully adaptive to local contrast and brightness of large image segments, therefore the image window 
does not have a fixed size but it varies according to brightness and contrast values of large areas in the 
image. Del Frate et al. [2], used an edge detection technique based on image histograms which were 
derived from areas with suspicious dark formations. Kannaa et al. [30] applied a hysteresis 
thresholding [31] where linear dark formations were successfully detected. Huang et al. [32] applied a 
partial differential equation (PDE) - based level set technique, which represents the slick surface as in 
implicit propagation interface.  
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All the above studies use statistical based techniques to locate dark formations. A different 
approach is given by Liu et al. [33], Wu and Liu [34] were the use of wavelets for oil spill detection 
was described. This study was performed for ocean feature detection on SAR data including oil spills. 
In later studies [35, 36] wavelets were used specific for the oil spill detection problem. Moreover, in 
Benelli and Garzelli [27], dark formations were detected using a fractal dimension estimation, where a 
multi resolution algorithm based on fractal geometry for texture analysis was applied. Later, Marghany 
et al. [37] presented a method for modification of the formula of the fractal box counting dimension. A 
different technique, based on texture analysis, was presented by Marghany [38, 39] where several 
textures (i.e. entropy, homogeneity, contrast, energy and correlation) were examined to detect dark 
formations. In Topouzelis et al. [40] an investigation of neural network capabilities and constraints to 
successfully detect dark formations using high resolution SAR images was performed.  

All the above mentioned techniques have one common goal. To detect dark formations on SAR 
images by means of their position and shape. The next step is to extract several features, which 
describe the black formation in order to use them as input to the classifier. 
 
4.2.2. Feature extraction 

 
Features are very important for the classification because they are used as inputs to the classifier. 

Therefore, the combination of features which discriminate better the oil spill from the look-alikes is of 
very high importance for the classifier and for the method’s accuracy. In general oil spill detection 
methodologies traditionally use arbitrary selected quantitative and qualitative statistical features for 
classifying dark objects on SAR images into oil spills or look-alike phenomena. 

The features which usually used for oil spill detection can be generally grouped in three major 
categories [9, 15, 16]. Features referring to the geometrical characteristics of oil spills (e.g. area, 
perimeter, complexity), features capturing the physical behavior of oil spills (e.g. mean or max 
backscatter value, standard deviation of the dark formation or a bigger surrounding area) and features 
referring to the oil spill context in the image (e.g. number of other dark formations in the image, 
presence of ships).  

The absence of a systematic research on features extracted as well as their contribution to the 
classification results force researchers to arbitrary select features as input to their systems. Solberg  
et al. [1] used 11 features, Fiscella et al. [5] used 14, in general different from the 11 used by Del Frate 
et al. [2]. Keramitzoglou et al. [8] used 14 and Karathanassi et al. [9] used 13 features many of them 
different from the previous studies.  

The lack of systematic research can be attributed to the fact that the existing methodologies for 
searching into a large number of different compilations have not been fully exploited. Stathakis et al. 
[16] and Topouzelis et al. [41] tried to bridge this chasm and to discover the most useful features of oil 
spill detection using a combination of genetic algorithms and neural networks.  

Several studies try to unify all the features used having similar characteristics [15, 42, 43]. Table 3 
presents a grouping of the 25 most commonly used features applied in the majority of research studies. 
The first six features (1-6) refer to the geometrical characteristics, the next sixteen features (7-22) refer 
to the physical characteristics and the last three (23-25) to the texture characteristics of the dark 
formations. Detailed description can be found at Stathakis et al. [16] and Topouzelis et al. [41]. 
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Table 3. Commonly features used (adapted from Stathakis et al. [16]). 

No Features Code 
1 Area A 
2 Perimeter P 
3 Perimeter to area ratio P/A 
4 Complexity C 
5 Shape factor I SP1 
6 Shape factor II SP2 
7 Object mean value OMe 
8 Object standard deviation OSd 
9 Object power to mean ratio Opm 
10 Background mean value BMe 
11 Background standard deviation BSd 
12 Background power to mean ratio Bpm 
13 Ratio of the power to mean ratios Opm/Bpm 
14 Mean contrast ConMe 
15 Max contrast ConMax 
16 Mean contrast ratio ConRaMe 
17 Standard deviation contrast ratio ConRaSd 
18 Local area contrast ratio ConLa 
19 Mean border gradient GMe 
20 Standard deviation border gradient GSd 
21 Max border gradient GMax 
22 Mean Difference to Neighbors NDm 
23 Spectral texture TSp 
24 Shape texture TSh 
25 Mean Haralick texture THm 

 
4.2.3. Classifiers 

 
The purpose of the classifier is to distinguish oil spills from look-alikes. How difficulty is the 

classification task depends on the variability of the oil spill and look-alike examples. Classifiers learn 
the patterns from examples (training step) and in a later stage are called to take a decision 
(classification step). The most known are the statistical classifiers, in which the classification decision 
is based on probability. Statistical classifiers are quite popular as they are rather simple, reliable and 
can be easily reproduced. Their classification reliability can be measured a priory, according to the 
database samples of oil spills and look-alikes.   

Solberg et al. [1] proposed a statistical modeling with a rule based approach. The probabilities 
assigned using Gaussian density function and derived from a signature database of 7,051 dark 
formations containing 71 oil spills and 6,980 look-alikes. These dark formations were extracted from 
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84 ERS SAR images, from which 36 did not contain any oil spills. The method correctly classified 
94% (67 out of 71) of oil spills and 99% (6,905 out of 6,980) of look-alikes using a leave-one-out 
approach. In a recent study [29] an updated version of the method was presented for Radarsat and 
Envisat images. Their training dataset consisted from 56 Envisat WS ASAR images and 71 Radarsat 
SAR images while the reported test set consisted of 27 Envisat images containing 37 oil spills and 
12110 look-alikes. The method had an accuracy of 78% in oil spill classification (29 out of 37) and of 
99% in look-alike classification (12,033 out of 12,110). 

A similar statistical classification methodology was presented by Fiscella et al. [5]. They applied a 
Mahalanobis and a compound probability classifier. Their training set was 80 oil spills and 43 look-
alikes and they measured the probability p of dark formations to be oil spill (a priory classification 
probability). They used three classification categories: oil spills, uncertain and look-alikes. The 
percentage of the total data correctly classified for the Mahalanobis classifier with p>2/3 (i.e. three 
classification categories) was 78% and with p>1/2 (i.e. only oil spills and look-alikes) was 83%. For 
compound probability classifier with p>2/3 was 79% and with p>1/2 was 82%. The test set contained 
21 dark formations of which 11 oil spills, 4 uncertain and 6 look-alikes. Mahalanobis classifier 
corresponded correctly at 71% of the cases and a compound probability classifier at 76% of the cases.  

Nirchio et al. [28] presented another statistical approach based on multi regression analysis (or 
Fisher discrimination approach). They used 13 features as inputs and tried to set up a relation between 
the predictor variables and the dependent variable on a dataset contained 153 verified oil spills and 237 
look-alikes. They reported an a priory percentage of correct classification higher than 90% on the 
training dataset. For the testing dataset they used 14 images, in which 31 oil spills were present. Their 
method detected correctly 23 of them i.e. 74% oil spill detection accuracy.  

A different classification methodology was presented by Del Frate et al. [2]. They used neural 
networks to classify the dark formations. Neural network classifiers are not very popular as they are 
rather complex and they require specific knowledge on the theory of neural systems. Their complexity 
relates with decisions on network family, network architecture, on the way the data are introduced 
during the training and the point where the training should stop. They considered reliable classifiers 
since they have the ability to learn during training. 

Del Frate et al. [2] applied the Multilayer Perceptron (MLP) network family with a topology of 11 
inputs (i.e. the calculated features describing the dark formations), one output and two hidden layers 
with 8 and 4 neurons respectively. Their data set was 600 ERS images in low resolution from which 
they extracted 139 dark formations 71 oil spills and 68 look-alikes. Using the leave-one-out approach 
the method misclassified 18% of the oil spills and 10% of the look-alikes. 

Neural networks were used also as classifiers for oil spill detection by Topouzelis et al. [12]. They 
used a MLP network with topology 10:51:2, i.e. 10 features as inputs, 51 neurons in the hidden layer 
and 2 output nodes. The topology and the input features were chosen using a genetic algorithm. The 
genetic algorithm had chosen the selected 10 from a base of 25 inputs and the proper topology after 
searching 100 generations using 7 bit chromosome. Detailed information regarding the selected 
topology and the feature selection is given by Stathakis et al. [16] and Topouzelis et al. [41]. Their 
dataset consisted of 24 high resolution SAR images containing 159 dark formations, 90 look-alikes 
and 69 oil spills. They randomly split the available data set into equally sized parts one for training and 
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one for testing. The oil spills accuracy reported on the test data was 91% (detected 31 oil spills out of 
34) and the look-alike 87% (detected 39 of out 45).  

Another classification methodology, based on fuzzy logic, was implemented by Keramitsoglou et al. 
[8] and by Karathanassi et al. [9]. Fuzzy classifiers work with ranges of values, solving problems in a 
way that more resembles human logic. The input variables in a fuzzy based methodology are mapped 
into by sets of membership functions. They require specific knowledge on the theory of fuzzy systems 
but they considered reliable classifiers since they try to resemble human logic and they can be 
reproduced easily. 

Keramitsoglou et al. [8] estimated the probability of a dark formation to be oil spill using an 
artificial intelligence fuzzy modeling system. Their method developed using 9 ERS-1/2 low resolution 
images and was tested on 26 images. Five features used as inputs, in general different from those used 
before. The method responded perfectly on 23 of 26 images, resulting in an overall performance of 
88%. 

Karathanassi et al. [9] also proposed a classification method based on fuzzy classification rules. 
Their methodology was based on an object oriented image classification technique, in which on the 
first step homogeneous image objects are extracted in any chosen resolution and in later stage are 
classified by means of fuzzy logic. They used 13 features as inputs on 12 ERS-1/2 high resolution 
images. They reported 99% overall performance. 

Comparison between the different classifiers in terms of classification accuracies is very difficult. 
Mainly because oil spill detection approaches use different data sets, have different dark formation 
detection techniques, extract arbitrary number of features and in the end use different classifiers. 
Therefore, the reported classification accuracies can not be directly compared. Table 4 presents the 
most used oil spill detection approaches and where available the number of the satellites images used, 
their resolution, the dark formation method, the number of the calculated features and finally their 
accuracies.  

Another issue with high importance for the detection methodologies is the computational time. 
Unfortunately, there are no sufficient data in the literature to compare the methodologies in terms of 
necessary time from image acquisition to final classification – report. This comparison should be made 
under the same data in order to check not only the time frame, but also the methods accuracy. 
Nevertheless, we can point out that as long as the methodologies have been developed, the most time 
consuming step for analyzing a new image is the dark formation detection step. Once the dark 
formations have been detected, the feature calculation step and the classification step need some 
seconds to complete their actions.  
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Table 4. Several oil spill detection approaches and their characteristics.  

# Method 
Images 
and/or 

resolution 
Preprocessing

Dark 
formation 
detection 
method 

Number 
of 

features 

Dark 
formations 

Results 
[method of 
evaluation] 

1. 

Probabilistic 
approach 
(statistical 
modeling 

with a rule 
based 

approach) 

ERS-1, 
84 images 

a) Calibration 

Adaptive 
threshold 

(multiscale 
pyramid 
approach 

and a 
clustering 

step) 

11 

7051 dark 
formations,  
71 oil spills, 

 6980 
lookalikes 

94% oil spills 
class. acc. 
 99% look-
alikes class. 

acc. 
[leave-one-out 

approach] 

2. 

Neural 
Network 

(MLP 
11:8:4:1) 

ERS, 600 
low 

resolution 
images 

a) Resampling, 
b) Radiometric 
range 
correction 
c) 
Georeference 

Adaptive 
threshold 

(Edge 
detection 
based on 

histogram of 
areas with 

dark 
formations)

11 

139 dark 
formations, 
71 oil spills,  

68 
lookalikes 

82% oil spills 
class. acc. 
90% look-

alikes class. 
acc. [leave-one-
out approach] 

3. 

Probabilistic 
approach 

(mahalanobis 
classifier, 
compound 
probability 
classifier) 

ERS, 
Low 

resolution 
for 

inspection 
and high in 

case of 
processing 

 

Simple 
threshold  
(image 

statistical 
value i.e. 
average 
intensity 
value) 

 

14 

Training 
set: 

123 dark 
formations, 
80 oil spills, 

43 look-
alikes 

 
Testing set: 

21 dark 
formations, 

 11 oil 
spills,  

4 uncertain,  
6 look-
alikes 

Mahalanobis: 
 82% oil spills 

class. acc. 
0% uncertain 

class. acc. 
100% look-

alikes class. acc
[test set] 

compound 
probability: 

91% oil spills 
class. acc. 

50% uncertain 
class. acc. 
67% look-

alikes class. 
acc. 

[test set] 
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Table 4. Cont. 

4. 

Probabilistic 
approach 

(multi 
regression 
analysis) 

ERS-1/2, 
high 

resolution.  
14 for 
testing 

a) Calibration 
b) Incidence 
angle 
correction 
c) Land 
masking 

Simple 
threshold 
(image 

statistical 
values i.e. 
average 
intensity 
value and 
standard 

deviation) 

13 

Training 
set:  

390 dark 
formations, 

153 oil 
spills 

237 look- 
alikes 

 
Testing set: 
 31 oil spills 

A priori 
percentage of 

correct 
classification 

90% on 
training set. 
74% oil spill 

class. acc. 
[test set] 

5. 
Fuzzy 

classification 

ERS-1/2, 
12 high 

resolution  

a) 8-bit 
transformation 
b) Filtering 

Adaptive 
threshold 

(local 
contrast and 
brightness of 
large image 
segments) 

13  
Overall 

performance 
99% 

6. 
Fuzzy 

classification 

ERS-1/2, 
low 

resolution. 
9 for 

training, 
26 for 
testing 

a) 
Georeference 
b) Land 
masking 
c) Filtering 

Adaptive 
threshold 

(local 
average 
intensity 
value and 

sTable 
factor) 

5  

Overall 
performance 

88% 
[test set] 

7. 

Neural 
Network 

(MLP 
10:51:1) 

ERS-2, 
24 high 

resolution 

a) 8-bit 
transformation 
b) Filtering 
c) 
Normalization 

Neural 
network  

(MLP 1:3:1)
10 

Training 
set: 

35 oil spills, 
45 look-

alikes 
 

Testing set: 
34 oil spills, 

45 look-
alikes 

91% oil spills 
class. acc. 87% 

look-alikes 
class. acc. 
[test set] 

8. 

Probabilistic 
approach 
(statistical 
modeling 

with a rule 
based 

approach) 

Training 
71 

Radarsat  
56 Envisat  
Testing: 

27 Envisat 

a) Land 
masking 
b) Calibration 

Adaptive 
threshold 

(multiscale 
pyramid 
approach 

and a 
clustering 

step) 

13 

Testing set: 
37 oil spills 

12110 
lookalikes 

78% oil spill 
class. acc. 

99% lookalike 
class. acc. 
[test set] 

1: Solberg et al. [1], 2: Del Frate et al. [2], 3: Fiscella et al. [5], 4. Nirchio et al. [28], 5: Karathanassi 
et al. [9], 6: Keramitsoglou et al. [8], 7. Topouzelis et al. [12], 8: Solberg et al. [29]. 
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5. Discussion and conclusions 
 
The capability of space-borne SAR sensors to detect oil spills over the sea surface is well known 

and proven. The possibility of using space radar imagery for long term monitoring of operational oil 
pollution at basin scale has also been demonstrated. Moreover, operational service on oil spill 
detection in European waters is provided by EMSA and new SAR sensors are scheduled to be 
launched in the following years. SAR is the most applicable sensor for operational oil spill detection as 
it covers wide areas and operates at all-weather, day and night.  

As the quantity of the SAR data increases rapidly there is a big need for semi or fully automatic 
methodologies to detect and identify dark formations as oil spills, fast and accurate. There are several 
methodologies proposed in the literature but their results are under discussion and they cannot really 
be compared. The main reason is that each study is using its available data set, which in most of the 
cases does not contain verified examples. It is worth mentioning that only one of the methodologies 
presented in Table 4 used verified data. Therefore, there is a need for a common database with verified 
oil spills and look-alikes which will be widely available in the scientific community. This database 
should contain a wide range of verified oil spills (in age, shape and brightness) and verified look-alikes, 
in different wind conditions, by several SAR sensors, polarizations and modes. Also, a categorization 
is needed for the verification means (e.g. airplane, vessel) and the time gap between the image 
acquisition and the verification. Only then the different methodologies will be comparable and their 
improvements measurable. Moreover, under this perspective the three main parts of the methodologies 
(i.e dark formation detection, feature extraction and classification) can also be examined and compared 
in terms of accuracy and processing time.  

The key issues for an effective oil spill methodology are given by Kubat et al. [26]. They refer to 
five critical factors which should be taken into account; the scarcity of the data in terms presence of oil 
spills, the imbalanced training set (there are more negative examples i.e. look-alikes that positive 
examples i.e. oil spills), the validity of the data selection (there is no guaranty that the examples used 
at the development phase are representatives of the examples that will arise after development), the 
feature selection procedure and the highly dynamic environment in terms of dataset, feature selection 
and classification algorithm. Another issue is the accuracy estimator, i.e. the performance of a method 
can be also added as a key factor. These issues have to be very carefully studied before designing a 
new methodology or applying a new dataset to existing methods. 

Semi automatic methods can be very helpful under certain circumstances but the manual approach 
will never be eliminated and more work is needed on the comparison versus semi and full automatic 
methods. In particular predefined automatic methods should be compared against photo-interpreters 
with different level of experience. This test will help to better understand the advantages and the 
limitation of the automatic methods. Last but not least, current automatic methodologies should put 
more effort to their weak points especially on detection at low wind situations and where natural films 
are present.  

Nowadays, Europe is using SAR data as a powerful tool to verify at different time and space scales 
the variations of the sea based pollution. These variations should result in specific actions and new 
measures to further extend and reinforce the level of protection of the marine environment against oil 
pollution. 
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