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Abstract: Hydrogels, polymers and various other composite materials may be used in 
sensing applications in which the swelling or de-swelling of the material in response to 
some analyte is converted via a transducer to a measurable signal. In this paper, we analyze 
models used to predict the swelling behavior of hydrogels that may be used in applications 
related to hydration monitoring in humans. Preliminary experimental data related to 
osmolality changes in fluids is presented to compare to the theoretical models. Overall, 
good experimental agreement with the models is achieved. 
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1. Introduction  

The swelling behavior (swelling or de-swelling) of hydrogels (gels) and polymers may be described 
using many different models. Understanding these models, and the situations in which they may apply, 
is important with regard to the use of these materials in sensors that make use of the swelling of the 
material to detect certain analytes. Sensors that currently use these materials as the active sensing 
element include coated microcantilever sensors [1], embedded piezoresistive microcantilever sensors 
[2,3], and chemiresistor sensors [4,5]. These sensors may be used in a variety of applications including 
sensing of volatile organic compounds [5,6], various gases [7,8], biological molecules [9-11], and 
other analytes. 
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Equilibrium hydrogel swelling refers to the steady-state, before and after conditions of the gel when 
a volume change has occurred as a result of exposure to a solvent (analyte). Equilibrium theory is 
based on a statistical mechanics treatment of the initial and final state of the gel. This type of 
equilibrium theory has been well described in the literature [12,13], and may be useful in certain 
situations in which the transient behavior of the gel does not need to be described. In most real-world 
sensing applications, however, we will need to describe the swelling behavior of the gel material in a 
more real-time fashion. This will require the use of dynamic hydrogel swelling theory. As with steady-
state theory, there is considerable literature published describing the dynamic swelling of various 
hydrogel materials. 

Most dynamic gel swelling models are based in some way on Fick’s laws of diffusion. For example, 
in one dimension, Fick’s second law of diffusion (Equation 1) may used to obtain the time-dependent 
concentration profile of a diffusing species (analyte) in a gel when the concentration of the diffusion 
species, c, and the diffusion coefficient D are known. 
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In many cases, Fick’s second law is adequate for a description of gel swelling owing to diffusion. 
For many gels, we must also consider the mass transport of solvent or analyte molecules via 
convection mechanisms as well. A modified form of Fick’s second law, in which there is an additive 
term to account for convection effects [14], is shown in Equation 2. 
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In this equation, v represents the “convective velocity” of the glassy/rubbery front of solvent and 
gel molecules progressing through the gel via convective means. In many systems that do not exhibit 
much swelling, where the relaxation time of the polymer is much shorter than the characteristic 
diffusion time for solvent transport, standard Fickian diffusion is generally observed [15]. Here, 
solvent transport is controlled by a simple concentration gradient, and solvent uptake by the material 
exhibits 1/√t dependence, with the resulting swelling exhibiting √t dependence (Equation 1). When gel 
relaxation is the predominant mechanism involved in solvent transport (convection), time-independent 
diffusion is observed [15], and the swelling would depend linearly with time t. In many cases, 
however, analyte uptake actually results in an intermediate type of transport mechanism, which is 
referred to as anomalous transport [16]. In this paper, we will look at numerical and closed-form 
solutions to anomalous diffusion models, and compare their predictions of gel swelling and de-
swelling to preliminary data we have taken on a PVA-based gel system with applications in hydration 
monitoring. 
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2. Anomalous Diffusion Models 

The solutions to Equation 2 generally fall into three categories: approximate methods, numerical 
methods, and closed-form solutions. For this paper, dealing with applications in hydration monitoring, 
we will focus primarily on the numerical and closed-form solutions. Approximate solutions to 
Equation 2 may also be useful in some cases, so a brief outline of these solutions is given. The final 
change in volume of a gel, ∆V, is usually approximated by a power law [15], for example: 

 

 ( , ) nV D x t tΔ =   (3) 

In Equation 3, n is treated as an adjustable parameter and D(x,t) as a function of position and time 
within the gel. Note that if D were to be constant and n=1/2, then we have pure Fickian diffusion, and 
if n=1 we would have pure convection dependent diffusion. Values of n lying between ½ and 1 result 
in anomalous diffusion. The function D(x,t) will depend on many structural and chemical factors of the 
gel. Many times, D(x,t) is modeled according to the function [17] 
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In this expression, ε(x,t) is the volume fraction of solvent in the gel, εr is the gel relaxation constant, 
and Do is the initial diffusion coefficient. As an illustrative example, we plot two extreme cases of gel 
volume changes as a function of time using the expression Equation 3 in Figure 1. In Figure 1 (top), 
using nominal values for D, and n=1/2, we see that the volume change as a function of time is purely 
Fickian. In Figure 1 (bottom), we use the value n=1 to illustrate the case when the volume change is 
due to convection only. 

In order to set up the numerical solutions to Equation 2, we need to define many parameters 
involved in a physical situation similar to that used in embedded piezoresistive microcantilever (EPM) 
sensors (refer to Figure 2) used in hydration monitoring applications [18]. Typically, these sensors 
involve a layer of gel (thickness L) deposited on a substrate. In an EPM sensor [2], the microcantilever 
would be partially embedded in this gel layer in order to measure gel volume changes. Further, let C 
be the solvent concentration in solution, and D be the Diffusion coefficient of solvent in gel (depends 
on crosslink density, solvent molecular size, etc.). The value of this parameter describes the relative 
influence of convection, or gel swelling on the total overall solvent uptake. Finally, let v be the 
velocity of glassy front (parameter that depends on solvent and gel properties), T be the total diffusion 
time, f(x) be the initial solvent profile in gel (may be zero if gel starts in dry state), and c(x,t) be the 
solvent concentration profile in the gel. We will assume that the diffusion into the gel has both a 
Fickian component and a convective component, taking into account gel relaxation or swelling. 
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Figure 1. (top) Purely Fickian volume change as a function of time (n=1/2),  

and volume change owing to convection (bottom) only (n=1). 
 
  

 

Figure 2. Schematic setup of EPM sensor with sensing gel layer on fixed substrate. 
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We will also assume some simple boundary conditions for the solution of Equation 2, again 
referring to Figure 2. We assume: 
 
c(x,0) = f(x) initial concentration profile of solvent in gel 
c(o,t) = C solvent concentration at solvent-gel interface 
c(L,t) = 0 solvent concentration at gel-substrate interface 
 

The last boundary condition is needed for the numerical solutions to converge. The solvent 
concentration at gel-substrate interface will not remain zero forever, however, instead rising as the gel 
swelling mechanism transitions from the “initial” to the “equilibrium” phases. As an initial calculation, 
we choose the following arbitrary values: D = 1, L = 1, C= 10, T = 1, v = 0.1, f(x) = 0. In Figure 3, we 
show the numerical solutions to Equation 2, giving the analyte concentration profile c(x) in the gel at 
time t=0.1 sec. (top), and the integral of this function s(t), giving the volume change of the gel as a 
function of time. Note that the appearance of this last plot (Figure 3 bottom) appears in form to be 
intermediate between the pure Fickian and pure convection gel swelling cases (Figure 1). 
 

 

Figure 3. (top) Numerical solution to Equation 2 showing analyte (or solvent) concentration in gel  
at time t=0.1 sec. (bottom) Resultant gel swelling as a function of time. 
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The diffusion equation may also be solved in certain circumstances in closed form [19]. Using 
Fourier transform methods, we may write the solution to Equation 2 in the form 
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These solutions apply to two distinct regions within the gel film. The top equation applies in the 
region “behind” the convective front, while the second equation, Equation 6, applies to the region in 
the gel “ahead” of the convective front. We may integrate these two expressions over the appropriate 
intervals in order to obtain an expression for the total swelling as a function of time 
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Here, L is the thickness of the gel film. In these expressions D is the Diffusion coefficient, v is the 
velocity of convective front, t is the time of diffusion experiment, and x = position in gel (x=0 
corresponds to gel-solvent interface). We note that since these expressions are valid for the dynamic 
diffusion region, we must set the total time (t) to some value less than the value of L/v. 

In the next figure (Figure 4), we use published experimentally measured data on crosslink density, 
diffusion coefficient, and convective front velocity to obtain the swelling profiles of two polymers 
using equation 7 [15]. In the first example (Figure 4 top), p(HEMA) was prepared with a crosslink 
density of 0.1 (ratio of crosslinked to non-crosslinked). This is considered to be fairly low 
crosslinking. The measured diffusion coefficient was 6 x 10-7 cm2/s, and the experimentally measured 
front velocity was 3.83 x 10-6 cm/s. A film thickness of 1 mm is used in the calculation (this is the 
actual experimental thickness used later), and a diffusion time of 1 second (again, typical for our 
experiments). This swelling profile is predominantly Fickian, with only a small convective component. 
In the second example (Figure 4 middle), a moderately crosslinked PVA-c was used. The diffusion 
coefficient for water in this material is 0.6 x 10-7 cm2/sec, and the frontal velocity was measured to be 
2.48 x 10-6 cm/s. Again, the gel thickness was 1 mm, and the diffusion time was 1 sec. This swelling 
profile is anomalous, with both Fickian and convective components. Finally (Figure 4 bottom), a 
highly crosslinked PVA-c was used. Here, D = 1 x 10-8 cm2/s, and v = 5 x 10-6 cm/s. In this case, the 
diffusion (swelling) profile is predominantly convection, with a small Fickian component. 
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Figure 4. Closed form models of Fickian (top), anomalous (middle),  
and convective (bottom) diffusion into a gel and the resultant gel swelling. 
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3. Hydration Monitoring and the Effects of Osmolality 

When we look specifically at hydration monitoring [18], it is not just the diffusion or convection of 
water molecules into the gel that matters, but the effects of the solution osmolality on that diffusion or 
convection of water molecules into the gel. When we look at the diffusion equation, the only 
adjustable parameters are the diffusion coefficient D, the convection front velocity v, and the boundary 
conditions used when the equation is solved. One reasonable assumption may be that the “diffusing 
species remains water, and water only, even in the more complex solutions used for the hydration 
monitor application. If this is the case, or nearly the case, then the diffusion coefficient D, and the front 
velocity v, remain unchanged. Therefore, using this approximation, the only “solvent” under 
consideration within the gel itself is individual water molecules. 

What then, is the effect of osmolality on the swelling? One major component of the solution to 
Equation 2 is the boundary condition at the solvent-gel interface (x=0 in the examples). Here, we set 
the value of the solvent concentration in solution, C. If the only solvent under consideration is single 
water molecules, then there will generally be two factors that change this boundary condition when the 
osmolality of the solution at the gel surface changes. They are: dissolved proteins and other large 
molecules – effectively reduce the solvent (water) concentration, and ions in solution when hydrated 
are no longer “single water molecules”. They become larger structures, in fact, ions surrounded by 
partially oriented water molecules. If these species are large compared to the open pore sizes in the 
gel, they will either not diffuse, or will diffuse slowly compared to the single water molecules. The 
effect of hydrated ions is thus to reduce the solvent concentration at the interface. 

Both of these factors will reduce swelling, depending on the relative degree of dissolved proteins 
and dissolved ions. Also, we would need experimental data to estimate the relative influence of each 
mechanism. For example, a series of experiments in which only the dissolved proteins, or only the 
dissolved ions is changed, and the resulting swelling profiles are measured. Once some effective 
parameters are calculated, then a predictive model may be used determine swelling based on any 
possible combination of dissolved proteins or ions. 

This same procedure, varying only the “solvent concentration” at the solution-gel interface may 
also be used to predict or model de-swelling. First, the solvent concentration in the gel is at some 
equilibrium or high value based upon exposure to a “large” solution solvent concentration, C. Then, 
the solvent concentration is reduced, either through an increase in dissolved ions, or dissolved 
proteins, or both. Now, the boundary conditions for the solution of Equation 2 become different. The 
initial solvent profile in the gel, f(x), is not zero, but some large value. The effect of these boundary 
changes alone is to now allow for diffusion of solvent molecules out of the gel, or de-swelling of the 
material. 

As an example of this, suppose we begin with a gel that has achieved an equilibrium solvent 
concentration profile of “1” throughout the gel. We then reduce the solvent concentration just outside 
the gel by some amount, say from 1 to 0.5. The result is the gel will de-swell over time. In this 
example, the same conditions are used as in the previous “anomalous” diffusion example (Figure 4 
middle). Instead of beginning at zero initial solvent concentration in the gel, we use a constant value of 
1, an indication that some equilibrium condition has been reached. The solvent concentration outside 
the gel is then reduced from 1 to 0.5, through an increase in dissolved ions or proteins. Figure 5 shows 
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the numerical solutions in this case, the solvent concentration profile in the gel at time T/4 (top), and 
the total de-swelling over the full time interval T (bottom). 

 

 

Figure 5. Solvent concentration (top) and volume change (bottom) as a result of  
gel de-swelling. Osmolality outside of gel has risen to a higher value after  

gel reached equilibrium with a lower osmolality solution. 
 

We can compare these various models to preliminary experimental data taken with an EPM sensor 
exposed to abrupt changes in solution osmolality and resultant gel de-swelling. An EPM sensor was 
first fabricated according to previously published techniques [2]. For this experiment the piezoresistive 
microcantilever was partially embedded in a layer moderately crosslinked PVA, or PVAc synthesized 
by Cantimer, Inc., Menlo Park, CA. After drying for 72 hours, the sensor was immersed in DI water 
and allowed to come to full, saturated equilibrium. The microcantilever resistance was then monitored 
using a simple Wheatstone bridge, and the voltage change across the bridge plotted vs. time. At the 
time indicated by the arrow in Figure 6, the sensor solution was abruptly changed from DI water to 
water containing 4% NaCl. This would correspond to a fairly small change in solution osmolality, only 
a few percent. We can see from Figure 6, the gel begins to de-swell almost immediately. The time 
dependence of the de-swelling shows a good fit to the theoretically modeled de-swelling shown in 
Figure 5. 
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PVAc De-Swelling Owing to Osmolality Change
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Figure 6. Experimental PVAc gel de-swelling swing to osmolality change. The sensor was moved 
abruptly from DI water to 4% NaCl solution at the time indicated by the arrow. 

 
We note that the voltage drop across the cantilever during the osmolality change is approximately 

0.3 V. For the current used through the cantilever in these experiments, this corresponds to a cantilever 
bending of 40 µm. For an initial gel thickness of 1mm, the percentage change in thickness of the gel is 
approximately 4%. Using the force constant of the cantilever, the contact area of the cantilever on the 
polymer, and the above deflection, we calculate the additional pressure exerted on the polymer just 
under the cantilever to be approximately 8 x 104 N/m2, or about 8/10 of 1 ATM. For the moderately 
crosslinked polymer used in these experiments, we feel that the effects of this additional pressure are 
very small when compared with the other swelling mechanisms involved. We have also previously 
studied the swelling/de-swelling reversibility of material as the solution osmolality is changed then 
brought back to original values [18]. This previous study indicated almost perfect reproducibility 
during these changes. 

4. Conclusions 

The swelling behavior of hydrogels has been studied extensively in the literature. Several models 
and mathematical approaches may be used to describe the swelling or de-swelling of these gels. For 
the type of gels used in EPM sensors, models of “anomalous” gel swelling most accurately take into 
account the mechanisms needed to accurately predict the gel swelling behavior. Using anomalous 
swelling theory, we can use numerical or closed-form solutions to obtain predictions for gel swelling 
as a function of time. Preliminary data taken with PVAc gel EPM sensors show good agreement with 
predictions during gel de-swelling in solutions in which there are changes in osmolality. 
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