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Abstract: The increasing number of structural collapses, slope failures and other natural 

disasters has lead to a demand for new sensors, sensor integration techniques and data 

processing strategies for deformation monitoring systems. In order to meet extraordinary 

accuracy requirements for displacement detection in recent deformation monitoring 

projects, research has been devoted to integrating Global Positioning System (GPS) as a 

monitoring sensor. Although GPS has been used for monitoring purposes worldwide, 

certain environments pose challenges where conventional processing techniques cannot 

provide the required accuracy with sufficient update frequency.  Described is the 

development of a fully automated, continuous, real-time monitoring system that employs 

GPS sensors and pseudolite technology to meet these requirements in such environments. 

Ethernet and/or serial port communication techniques are used to transfer data between 

GPS receivers at target points and a central processing computer. The data can be 

processed locally or remotely based upon client needs. A test was conducted that illustrated 

a 10 mm displacement was remotely detected at a target point using the designed system. 

This information could then be used to signal an alarm if conditions are deemed to be 

unsafe.  
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1. Introduction 

Disasters such as landslides, avalanches and structural failures do not occur without warning. 

Through strategic monitoring of the deformable object, abnormal behaviour can be detected and used 

to warn of imminent failure. The increasing number of structural collapses, slope failures and other 

natural disasters has lead to a demand for new sensors, sensor integration techniques and data 

processing strategies for deformation monitoring systems. 

The Canadian Centre for Geodetic Engineering (CCGE) at the University of New Brunswick (UNB) 

is involved in the development of new methods and techniques for integrated monitoring, integrated 

analysis, and prediction (deterministic modeling) of structural and ground deformations. Recent, large 

scale, deformation monitoring projects in open pit mines have placed extraordinary demands for 

displacement detection accuracy.  

In large open pit mines and in other steep embankment areas, the stability of steep walls is a major 

safety issue. In general, there is slow movement of the rock formation followed by acceleration before 

a failure occurs. With continuous monitoring of creep and acceleration of the rock movement, warning 

can be given to evacuate equipment and personnel in advance of a failure. In order to perform such 

tasks, monitoring accuracies of up to ± 5 mm with 95% confidence have been requested.  

These requirements can be extremely difficult to meet since the achievable precision of geodetic 

technologies can be severely limited by the characteristics of an open pit. It is not uncommon for the 

degradation in precision of geodetic technologies to be so large that the minimum detectable 

displacement exceeds the mine’s requirements. For this reason, large open pit mines may be considered 

one of the most challenging deformation monitoring scenarios.  

For example, in large scale projects where the pit diameter exceeds 1 km, refraction and pointing 

errors limit the effectiveness of direction measurements made by total station instruments and laser 

scanners [1]. The steep pit walls limit the effectiveness of space borne interferometric, synthetic 

aperture radar [2]. The steep pit walls also limit the effectiveness of satellite positioning technologies 

by diluting the geometric strength of solutions and reducing the frequency at which updates can be 

provided. Additionally, large height differences between master and rover stations can lead to 

significant height biases in baseline solutions [1].  

This research focuses on providing fully automated, continuous, high precision position updates 

using one of the above mentioned geodetic technologies: the Global Positioning System (GPS). 

Although GPS has been used for monitoring purposes worldwide, certain environments pose 

challenges where conventional processing techniques cannot provide the required accuracy with 

sufficient update frequency. Discussed are the challenges encountered in using GPS in harsh 

environments and the innovations that have been introduced in order to successfully integrate this 

technology for deformation monitoring in such scenarios. 
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2. Using GPS for Deformation Monitoring in Harsh Environments 
 

GPS (and in general, Global Navigation Satellite Systems (GNSS)) offers potential advantages over 

other geodetic technologies that allows for continuous and high accuracy displacement detection. 

These include: 

a) Line of sight is not required between stations; 

b) Updates can be provided at frequencies of 1 Hz and higher;  

c) 3 dimensional position information is provided; and 

d) Millimetre level position information is possible for baselines potentially up to 10 km in length. 

  

The major disadvantage of using GPS is the cost of a geodetic grade receiver and antenna. This will 

ultimately limit the number of units that can be afforded and dictate the spatial resolution of targets that 

can be monitored using this technology. In most cases it will be more economical to integrate GPS to 

monitor the stability of other sensors that can provide higher spatial resolution at a cheaper cost in 

localized areas (e.g., total stations, laser scanners). 

To determine if the above advantages of GPS could be realized in a harsh environment, GPS data 

were collected at 5 stations in a large open pit mine as illustrated in Figure 1. Stations 424 and 987 

were reference stations, while stations RTS1, RTS2 and RTS3 were monitored stations within the pit. 

Continuous data for 5 days or more were collected.   

 

 

Figure 1. Large Open Pit Mine Test (with station heights shown). 
 

Initial analyses of the GPS data were conducted using traditional batch processing methods in 

commercial and scientific software [1,3]. To illustrate, 3 hour, commercial software results are 

presented in Figure 2 showing the ‘up’ (height) component solutions (generally the poorest precision) 

for baseline 424 to RTS2. RTS2 represents the best case scenario of the monitored stations in terms of 
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satellite visibility and height differences with reference stations.  The results have been obtained using 

conventional double-differenced, L1 carrier phase processing methods. The height difference between 

master and rover stations is 361 meters. It can be seen that a peak-to-peak spread of over 4 cm exists. 

Since there is a large height difference, the unmodelled portion of the atmosphere between the stations 

causes biases in the height component as meteorological conditions vary from day to day. The RMS 

error for this sample is ± 9 mm. There are also 4 sessions for which a fixed position solution could not 

be obtained due to poor data quality. Results for stations RTS1 and RTS3 show larger biases in the 

height component and more solution outages. 

 

Commercial 'Up' Component Solutions (L1, DD Fixed)
424:RTS2 
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Figure 2. Commercial, 3 Hour, DD Fixed, ‘Up’ Component Solutions. 

 

Further investigation was conducted to determine if longer session lengths would improve the 

quality of the position of estimates [1]. Other commercial and scientific (UNB’s Differential 

Positioning Package- DIPOP, University of Bern’s Bernese) software were also tested. Although the 

precision of the results improved with longer session lengths, the delay between position updates 

(sometimes up to 24 hours) would not satisfy project requirements.  

From the above results, it is apparent that in order to use GPS to provide sub-centimetre 

displacement detection with 95% confidence, there are some major challenges that need to be 

addressed. Additional obstacles arise when attempting to provide fully automated updates for 

continuous monitoring of target points. The major challenges involved in using GPS for deformation 

monitoring in harsh deformation monitoring environments are: 

 

a) Mitigating residual troposheric delay biases: Residual tropospheric delay is the portion of 

tropospheric delay that remains after modeling. Due to large height differences between master 

and rover stations, residual tropospheric delay biases can contaminate the vertical component of 

GPS baseline solutions. Beutler et al. [4] have illustrated that neglecting the differential 

troposphere causes a 3-5 mm relative height error for every millimetre of difference in zenith 

delay between stations. Estimating residual tropospheric delay bias terms is the usual approach 



Sensors 2007, 7                            

 

 

1032

to improving accuracy in such situations. The strength of the bias estimates, however, depends 

upon low elevation satellites which are generally not visible [5]. In order to meet sub-

centimetre accuracy requirements in large open pit mines using GPS, a new methodology is 

required to mitigate this bias. 

 

b) Providing continuous updates with limited satellite visibility: The steep pit walls of open pit 

mines obstruct satellite visibility. This limits the reliability of the solutions as well as the 

frequency at which updates can be provided. In order to meet sub-centimetre accuracy 

requirements with sufficient update frequency, new technologies must be integrated with GPS. 

 

c) Connecting to stable reference points: As precise as the GPS software may be, the overall 

accuracy of the solution depends upon the validity of the assumption that each reference point 

is stable. Tremendous care must be taken in choosing suitable reference station locations. 

Additional sources of information regarding the properties of the rock mass must be utilized to 

make informed decisions. 

 

d) Developing a fully automated GPS processor: A fully automated GPS processor is required to 

provide continuous updates in real-time. Ideally, the results from the processor can be used to 

provide ‘on-time’ warnings of impending danger. The processor must be designed to be robust 

so that false alarms do not occur. Additionally, the precision of the solutions must satisfy sub-

centimetre displacement detection requirements with 95% confidence. Communication links 

must also be built into the software to allow for data transfer between GPS receivers located on 

site at target points and a central processing computer. 

3. Overcoming GPS Deformation Monitoring Challenges  

In order to capitalize on the benefits of GPS, the aforementioned challenges need to be addressed. 

Research has been devoted to answering each of these needs [6-8]. Discussed are the innovations 

introduced to overcome these obstacles. 

 

3.1. Mitigating Residual Tropospheric Delay 

 

A common technique of eliminating biases is through differencing of observations. For example, 

between-receivers differencing (SD: single difference) of GPS observations to the same satellite 

eliminates satellite clock biases and between-satellite differencing of GPS observations to the same 

receiver eliminates receiver clock biases. Further differencing between-receivers SDs and between-

satellite SDs results in a double-differenced (DD) observable free of both receiver clock and satellite 

clock biases.  

The devised methodology is based upon time differencing of successive DD observations and gives 

the triple-differenced (TD) observable [9]. The appeal of the TD observable to most users is its absence 

of the integer ambiguity term which cancels out through the time difference if a cycle slip has not 

occurred. Although the TD observable is not new, obtaining high precision results in environments 
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where the DD observable suffers from residual tropospheric delay biases presents another beneficial 

use. 

After removing the error terms for receiver clocks and satellite clocks (which should be eliminated 

through DD processing when observation simultaneity criteria are met), the TD, carrier-phase 

observable between times t1 and t2 can be written as:  

 

              

                                                         

(1) 

 

where: 

  
ij

∇  SD operator between satellites i and j 
      

AB
∆  SD operator between receivers A and B 

    δ  differentiator between times t1 and t2  

  φ carrier-phase observable (cycles) 

  N ambiguity (cycles) 

  M  multipath (cycles) 

  I ionospheric delay of the L1 carrier phase (m) 

  T tropospheric delay (m) 

  f  carrier wave frequency (Hz) 

  c speed of light in a vacuum (m/s) 

  tropε  residual tropospheric delay bias (present over large height differences) (cycles) 
  ϕe  random carrier-phase measurement noise 

   

For observation intervals less than a few seconds, the correlation in atmospheric parameters between 

times t1 and t2 is large and therefore biases originating from them are significantly reduced. Since the 

ambiguity term N cancels, Equation (1) can be rewritten as: 

 

           (2) 

   

where: 
  ϕδ ∇∆e  random noise error of a TD carrier-phase observation 

 

The TD observable may be considered as an integrated (radial) velocity measurement which is used 

to determine position. The measurement form is [10]: 
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In mathematical form, the measurement equation can be written as: 

 

(4) 

 

where Hk (= -Jk) is a directional cosine matrix. 

 

This form does not fit the general format for the usual Kalman filter equations due to the xk-1 term. 

The general Kalman filter equations must be modified to accommodate this term as well as any 

correlation in process and measurement noise. The modified version is known as the Delayed-State 

Kalman filter. The interested reader can find the Delayed-State equations in [6, 10]. 

Recently, the Precise Position Monitoring System software has been developed that employs a 

Delayed-State Kalman filter to process triple-differenced carrier phase observations [6]. Initial test 

results have been promising, showing that mm level precisions are attainable in horizontal and vertical 

position components without having to solve for the ambiguity term. The expense of using this 

technique is slow filter convergence time due to the nature of the TD observable (it reflects the change 

in satellite geometry from one epoch to the next). This is generally not a concern for long term 

deformation monitoring applications.  

Figure 3 presents the east, north and up components of the 424:RTS2 baseline processed using 

PPMS. There is a height change of a few mm that is detected after hour 50, which is not so easily 

identified in Figure 2. The peak-to-peak spread of the up component in Figure 3 is in the order of 1 

cm after the change in height, as opposed to 4 cm in Figure 2. This can be attributed to the effects of 

residual tropospheric delay being reduced by the TD approach. The improved precision combined with 

more continuous updates allows for a clearer picture of the deformation behavior of the target point. A 

comparison of DD batch processing with the TD Delayed-State Kalman filter approach is presented in 

Table 1.  

 

Figure 3. Continuous, TD, east, north, up solutions using PPMS. 

kkkkkk vxJxHz ++= −1
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Processing Strategy Advantages Disadvantages 
DD Batch Processing - High precision results 

- Lower level of differencing 

results in less observation 

noise 

 

- Results are not continuous 

- Height biases caused by residual 

tropospheric delay over large 

height differences when low 

elevation satellites are not 

visible 

TD Kalman Filter - High precision results  

- Results provided at sample 

rate 

- Significantly reduces 

atmospheric biases (residual 

tropospheric delay) over high 

sample rates 

- Less chance of false alarms 

caused by cycle slips 

 

- Slow convergence time 

- Increased observation noise 

caused by additional level of 

differencing 

Table 1. Comparison of DD Batch Processing with TD Kalman Filter Processing Methods. 

 

3.2. Improving Continuity in Solution Updates 

 
Analysis of the GPS data obtained from the previously described large open pit mine indicated that 

there were several periods during the day for which fewer than 4 satellites were visible. This leads to 

degradation in the precision of the solutions as well as a reduction in the frequency of updates. 

Consequently, the potential of augmenting GPS with pseudolites (PLs) has been investigated to 

improve the frequency and precision of solutions [7]. The devised approach incorporates the PL 

observations into the TD Delayed-State Kalman Filter. 

Being a ground-based signal transmitter, PL error sources must be handled differently than GPS 

signal error sources. PPMS was modified to address nuances in PL data processing which include cycle 

slip detection, PL location determination and PL observation modelling.  As before, after removing the 

error terms for receiver clocks and satellite clocks (which are eliminated through double-differencing 

over short baselines), the TD carrier phase observable for PLs can be written in the form of Equation  

 

               

                 (5) 

 

 

* There is not an ionospheric delay term for the PL observation since its signal does not travel through 
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The attractiveness of the TD PL observable is that it is a time difference of DD observations and 

consequently biases common to both observations will cancel. This strategy allows for smooth 

integration of PL data into the existing software infrastructure due to the following benefits: 

a) the user no longer needs to solve for the ambiguity term, which allows the system to be less 

susceptible to biases caused by cycle slips; 

b) for observation intervals less than a few seconds, the correlation between PL tropospheric delay 

parameters at times t1 and t2 will be large and biases originating from them will be significantly 

reduced; 

c) for observation intervals less than a few seconds, the correlation between low frequency 

multipath terms at times t1 and t2 will be large and biases originating from them will be 

significantly reduced. The high frequency component still remains; 

d) since the PL is stationary between times t1 to t2 and it is assumed that the receivers are 

stationary, the geometric distance terms involving the PL cancel so that the computed, 

geometric, TD is solely dependent upon the change in the geometry of the reference satellite. 

Consequently, the accuracy to which the PL coordinates must be known is very forgiving. 

Approximate coordinates are necessary simply for computing elevation angles to PLs if an 

elevation cut off constraint is imposed. 

 

Figure 4 illustrates the results of a baseline that was observed in a harsh environment (having a 35 

degree elevation cut-off) while using a PL. A slow, 10 mm displacement occurs in the horizontal plane 

beginning at hour 14 and ending at hour 18 as indicated by the green and red vertical lines respectively. 

It takes approximately 10 hours for the solution to converge. It can be seen that the combined GPS+PL 

system allows for more continuous solution updates and quicker displacement detection than 

standalone GPS.  

 

 

Figure 4. Detected Displacements with and without PL observations. 
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3.3. Predicting Station Behaviour using Deterministic Modelling 

 
Analysis of PPMS results of the GPS baselines observed in the open pit raised two important 

questions regarding station stability: a) is it reasonable to expect upward movements of the monitored 

stations located at discrete points along the pit walls as was detected by the software and b) are the 

reference stations stable? To answer these questions, research has been devoted to predicting 

deformation behaviour of the open pit and its surroundings using deterministic modelling [8]. 

Deterministic modelling takes into account the material properties and geometry of the deformable 

object, loading conditions and the physical laws governing the behaviour of the deformable object to 

predict displacement patterns. In most cases the closed form solution is difficult to obtain and therefore 

numerical methods are used. 

 Figure 5 illustrates the predicted displacement field in an open pit mine that occurs as a result of 

excavating a layer of rock along the left pit wall and pit floor. The results were obtained using the finite 

element method.  This displacement pattern is very useful for addressing the two questions raised. 

First, it can be used in delineating the zone of significant deformation so that locations for stable 

reference points can be recommended. Additionally, this information provides an indication of the 

expected magnitude and direction of the displacement vectors. These results validate that it is possible 

that a target point located along the pit walls can experience upward movement as was captured in 

Figure 3.  

 

 

Figure 5. Predicted Displacement Pattern as a Result of Excavating the Left Pit Wall and Pit Floor. 

 

3.4. Developing a Fully Automated, GPS Monitoring System 

 
To take full advantage of the capabilities of PPMS for deformation monitoring, a fully automated 

version has been created: the Precise Position Monitoring System plus Real-Time (PPMS+RT). 

Discussed are some of the practical issues involved in the development of the real-time version of the 

software. A displacement detection test is presented illustrating the potential of PPMS+RT in a 

deformation monitoring scenario. 
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3.4.1. Monitoring System Infrastructure 

 

PPMS+RT currently accepts two methods of data communication between GPS sensors and the 

central processing computer: (1) via Ethernet connection (either a Local Area Network (LAN) or 

Wireless LAN (WLAN)) and (2) via serial port (either directly or through radio modem). A monitoring 

system may be designed to include all Ethernet connections, all serial port connections or a 

combination of both. The network infrastructure to support each method of communication is 

illustrated in Figure 6 and Figure 7 respectively.  

 

 

Figure 6. Ethernet based design (based on [11]). 
 

 

Figure 7. Radio Modem based Design. 
 

In the first method, a serial-to-Ethernet device server (e.g., Sollae Systems EZL-400S) is used. 

Although the maximum data rate is limited here by the serial communication between the receiver and 

serial-to-Ethernet device server, new model GPS receivers (e.g., Novatel DL-V3, Trimble NetR7) offer 

direct Ethernet connection. Thus, this first method offers potentially higher data rates than the next to 

be discussed. Either LAN or WLAN can be used to communicate between the serial-to-Ethernet device 

server and the destination PC which will process the data. Local conditions and available broadband 

infrastructure will dictate which method is the most suitable to connect the GPS receiver to a wired 

network.  
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The second method’s design is similar to the first. An optional web based component is illustrated 

in Figure 7, which would allow for remote access of the data. A serial-to-Ethernet device server would 

be required to take advantage of this option so that the ‘receive’ radio modem could send its data 

online. Otherwise the data is directly streamed into the destination PC via serial port.   

 

3.4.2. PPMS Modifications 

 

In order to receive data packets in real-time from the GPS receiver, ‘listening’ threads are employed 

in the software to decode each receiver’s binary data packets. In the case of an Ethernet based system, 

advantage is taken of the ‘socket’ class offered in the .NET development environment [12]. Various 

options for sockets exist as illustrated in Figure 8. “Asynchronous” sockets listen for incoming data on 

a separate thread without blocking operations on the main thread. “Synchronous” sockets are used for 

applications that only require one thread during execution since they block operations on other threads 

until their operations have completed. For this application, an asynchronous socket is preferred so that 

all incoming data is received.  

 

 

Figure 8. Types of Sockets. 

Sockets can be further classified as “connection orientated” or “connectionless” depending upon the 

data transfer protocol. Connection orientated sockets can use Transmission Control Protocol (TCP) for 

transferring data. TCP requires a connection to be established with a remote endpoint and then uses 

that connection to send and receive data packets.  An advantage of using TCP is that it ensures that 

data packets are sent to an endpoint and that they assembled in the correct order when they arrive [13]. 

A disadvantage of this approach is that there may be delays in ensuring that the correct data packets are 

being sent. These delays may not be tolerated when high data rates are used and latency must be 

minimized. 

Connectionless sockets can use User Datagram Protocol (UDP) for transferring data. UDP offers the 

advantages of simplicity, quick data transfer and the ability to broadcast messages to multiple 

addresses at the same time. The disadvantage of this approach is that UDP datagrams are not 

Sockets 

Asynchronous 

Connection Orientated 

Synchronous 

Connectionless  

Connection Orientated 

Connectionless 
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guaranteed to arrive, nor are they guaranteed to arrive in the same sequence in which they were sent. 

Consequently, applications which use this protocol must be prepared to handle missing and out of 

sequence datagrams [14]. 

The concepts of TCP and UDP are illustrated in Figure 9 and Figure 10 respectively. It can be seen 

that prior to establishing a connection, all data sent by the GPS receiver are ignored in TCP mode. 

Once the connection is established, there is constant communication between the host GPS receiver 

and client PC.  

In UDP mode, two parameters are used by the serial-to-Ethernet device server to determine when to 

send the GPS receiver’s data: (1) a watermark value representing the maximum number of bytes that 

will be stored in its buffer before sending the data and (2) a timeout value that represents the length of 

time to wait after the first packet is received before sending the data. It does not matter whether or not 

there is a client listening. Once either one of these conditions is satisfied, the data stored in the serial-

to-Ethernet device server’s buffer are sent.  

For purposes of this application, UDP is the preferred method of communication due to: a) its 

ability to transfer data quickly and b) its simplicity, which makes it less susceptible to breakdowns in 

communication between client and host devices. The user must specify the IP address of the 

destination PC that will receive the data in the serial-to-Ethernet device server. The IP address of the 

serial-to-Ethernet device server must be specified in PPMS as illustrated in Figure 11. 

 

 

 

Figure 9. TCP Data Transfer Sequence (based upon [15]). 
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Figure 10. UDP Data Transfer Sequence (based upon [15]). 

An asynchronous approach is also used for receiving data via serial port. A separate listening thread 

is invoked so that other operations are not blocked on the processing PC. Serial port settings are 

specified in PPMS software as illustrated in Figure 11. 

 

 

Figure 11. Adding a New GPS Station with Ethernet or Serial Port Connection. 
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3.4.3. Real-time Implementation 

 

To demonstrate the capabilities of the system, a real-time displacement detection test was 

performed. Two Novatel DL-4 GPS receivers with GPS-600 Pinwheel antennas were used to monitor 

the stability of a target point located on a translation stage. The target point was moved horizontally 10 

mm. An IntegriNautics (now Novariant) IN200 pseudolite [16] was also used in this test to aid in 

quicker displacement detection [4]. The experiment configuration is illustrated in Figure 12. 

 

 

Figure 12. Displacement Detection Experiment Configuration (Top Left: Rover Antenna on 

Translation Stage, Bottom Left: IN200 Pseudolite, Right: Observed Baseline). 
 

Two Sollae Systems serial-to-Ethernet device servers (model EZL-400S) were used to provide 

Ethernet connections to the receivers. A notebook PC with Intel Celeron 2.20 GHz processor was used 

to run the software.  The network infrastructure and system configuration are illustrated in Figure 13. 

Initial tests of the monitoring system showed frequent gaps in the GPS data from each receiver and 

incomplete data packets being received. These problems were attributed to the watermark and timeout 

settings in the EZL-400S. If the watermark or timeout values were too small, the data would be sent to 

the remote PC as an incomplete data packet. The solution to this problem was to determine the 

maximum packet size that would be sent by the DL-4 receiver. The watermark value was then set to a 

value larger than the maximum packet size so that it would never trigger the data being sent.  
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Figure 13. Network Infrastructure and System Configuration for Data Transfer and Remote 

Processing. 

Based upon the baud rate of the DL-4 serial connection (57600 bps), the number of bits per packet 

(10: 1 start bit, 8 data bits and 1 stop bit) and the maximum data packet size (624 bytes) it was 

determined that approximately 5760 bytes / second could be sent or 5.76 bytes / millisecond. 

Accordingly, a timeout value of at least 110 ms was required. Since the timeout value of the EZL-400S 

has a precision of ± 10 ms [17], a timeout value of 120 ms was used.  

Because data is transmitted in UDP mode, the EZL-400S sends data regardless of whether or not the 

remote PC is listening. It is necessary to allow sufficient time for the PC to receive messages from each 

receiver. This is especially important in this case since the DL-4 receiver clocks are synchronized at 

microsecond level with GPS time (and therefore with each other). If the same timeout value is used for 

each receiver, it is possible that while the PC is busy receiving packets from one receiver it may miss 

packets sent by another receiver in UDP mode. It is therefore recommended to stagger the timeout 

values for each receiver. 

Figure 14 illustrates the output of PPMS software on the remote PC. The horizontal scale on the 

position plots represents GPS second of week. Prior to moving the translation stage, the coordinates of 

the target point are Easting: -14.075 m, Northing: 0.403 m and Up: 0.015 m. At ~303325 s the 10 mm 

displacement is introduced. Approximately 1 hour later (~307000 s) the displacement is reflected in the 

Easting and Northing solution plots. After 4 hours (~318000 s) the coordinates of the target point are 

Easting: -14.068 m, Northing: 0.393 m and Up: 0.018 m indicating a total horizontal displacement of ~ 

12 mm. This information can be used to signal an alarm if conditions are deemed to be unsafe. 
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Figure 14. PPMS Graphical Display of Target Position. 

4. Conclusions 
 

A fully automated, continuous, real-time monitoring system has been developed that employs GPS 

sensors. The system is capable of providing sub-centimeter precisions without having to solve for the 

integer ambiguity, making it suitable for many deformation monitoring applications. Four major 

obstacles have had to be addressed to develop such a system. First, the effects of residual tropospheric 

delay biases have had to be mitigated from the height component of the solutions. This was addressed 

through the use of the TD observable over a high sample rate. Second, it was necessary to improve the 

continuity of the updates. Pseudolite technology was incorporated into the software to provide more 

frequent solutions. Third, a method of predicting the stability of reference points was required. It was 

shown how the results of deterministic modeling (and, in particular, the finite element method) could 

be used to achieve this end. Last, a fully-automated system was needed for providing continuous GPS 

position updates and this has been developed. Two communication options are currently available 

between GPS receivers at target points and a central processing computer: Ethernet or serial port. Both 

approaches allow the data to be processed locally or remotely based upon project needs.  

The increasing number of catastrophes in recent years has lead to a demand for new sensors, sensor 

integration techniques and data processing strategies for improved deformation monitoring systems. 
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Further research is required to integrate this technology with other sensors to create more reliable and 

more adaptable monitoring systems. 
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