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Abstract: This paper presents a nonlinear Bayesian regression algorithm for detecting and
estimating gas plume content from hyper-spectral data. Remote sensing data, by its very
nature, is collected under less controlled conditions than laboratory data. As a result, the
physics-based model that is used to describe the relationship between the observed remote-
sensing spectra, and the terrestrial (or atmospheric) parameters that are estimated is typically
littered with many unknown ”nuisance” parameters. Bayesian methods are well-suited for
this context as they automatically incorporate the uncertainties associated with all nuisance
parameters into the error estimates of the parameters of interest. The nonlinear Bayesian re-
gression methodology is illustrated on simulated data from a three-layer model for longwave
infrared (LWIR) measurements from a passive instrument. The generated LWIR scenes con-
tain plumes of varying intensities, and this allows estimation uncertainty and probability of
detection to be quantified. The results show that this approach should permit more accurate
estimation as well as a more reasonable description of estimate uncertainty. Specifically, the
methodology produces a standard error that is more realistic than that produced by matched
filter estimation.
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1. Introduction

Estimating the constituent concentrations of industrial gas plumes from hyper-spectral data has re-
ceived much attention in the recent years. See, e.g., [1–6] and their detailed overview. A typical issue
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when dealing with hyper-spectral data is that confounding factors such as Earth’s surface emission, atmo-
spheric absorbance, temperatures, and sensor noise must be accounted for. This results in physics-based
models that are over-parameterized, with most of the parameters being nuisance parameters.

Often the nuisance parameters are not completely unknown. Some information exists, usually from
previous measurements or from a generic mathematical model. Many remote sensing estimation tech-
niques leverage this external information by (1) estimating the nuisance parameters, (2) then plugging
the estimates into the physics-based formulas and (3) mathematically solving for the desired parameters.
An estimation technique for the nuisance parameters that has become popular consists in first identify-
ing a “best” scene from large look-up tables that may contain thousands or more real scenes, and then
deriving from this scene the necessary parameters [7–9]. Though promising, the plug-in approach does
not account for the uncertainties in the estimates of the nuisance parameters, and therefore has two de-
ficiencies; (1) the uncertainties calculated for the parameters of interest are too optimistic, and (2) the
estimator is not optimal [10].

Bayesian methods, on the other hand, are better suited for dealing with over-parameterized models.
They explicitly make use of the nuisance parameter uncertainties when constructing the estimates of the
parameters of interest. Moreover, under general conditions, Bayesian methods still provide consistent
estimates of parameters of interest even when the number of nuisance parameters grows with the sample
size [11], as is the case with the temperature-emissivity separation problem [12]. This advantage has
been recently recognized in hyper-spectral data problems [13, 14].

The typical radiance models used in hyper-spectral data analyses are nonlinear in nature. State-of-
the-art methods linearize these models using physics-based considerations such as focusing on optically
thin plumes, assuming a known ground emissivity, ignoring the down-welling sky radiance, ignoring the
nonlinear variation of ground emissivity, or/and linearizing the plume/background temperature differ-
ence.

This paper introduces efficient estimation methods that do not require such simplifications. First, a
computationally fast algorithm (comparable in speed to matched filter estimators) for point estimates is
described. This iterative procedure, called the Nonlinear Maximum Posterior Density (NLMPD) esti-
mator produces the traditional Bayesian point estimate, which is the maximum posterior density value.
This estimator, however, does not provide the full posterior, and, consequently, cannot always accurately
quantify uncertainty. In order to produce these uncertainties, Markov Chain Monte Carlo (MCMC) al-
gorithms are introduced [15, 16]. In order to handle (1) the typical high correlations observed between
parameters of the physics-based model and (2) the fact that solutions are often at or close to the bound-
ary of the parameter space, the standard MCMC methodology should be improved. A common solution
to the first problem is to thin the output of the MCMC simulations. However, the amount of thinning
required to sufficiently de-correlate the MCMC output is very significant. This paper investigates an
alternative solution which uses Hamiltonian paths in the MCMC algorithms to directly produce uncorre-
lated outputs [17, 18]. To resolve the boundary problem, legitimate physics-based bouncing algorithms
are added to the MCMC sequence. By “legitimate” we mean that the bounces conserve the equilibrium
property which is central to the MCMC methodology.

The rest of this paper is organized as follows. Section 2 describes the radiance model used to illustrate
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the Bayesian methodology presented in Section 3. Section 4 addresses the parameter estimation of the
nonlinear Bayesian regression model. Applications on realistic simulated data are shown in Section 5.

2. Radiance Model

A complete derivation of the radiative transfer model in the thermal hyper-spectral regime is compli-
cated, e.g., [19]. A model based on the simplified three-layer transmission model [20, 21] is sufficient
to illustrate the significant aspects of our nonlinear Bayesian regression methodology. The three-layer
transmission model provides a very good approximation when the temperature variation within the plume
is small with respect to the temperature difference between the plume and the background. The three
layers referred to are the ground, the plume and the atmosphere. The plume is the layer of atmosphere
closest to the ground that may contain the chemical effluents of interest. In the model, the IR radiation
originates from the ground, and while traveling through the other two layers, it is modified according
to the formulas presented below. The model we use also incorporates the down-welling radiance factor.
This allows one to separately estimate background emissivity from background temperature.

Let � represent the wavenumber ( �����	� ) of the electro-magnetic radiation, and let 
������� , 
������� , and
������� represent the spectrum leaving the ground, plume, and atmosphere. Then, the following formulas
relate the three to each other: 
������������������ �!"�$#&%'�(��)�+*-,.����"���&�+
�/�"���0# (1)
1��"�����32�������+
���"����)4 *5,62�������&���!"�$#&%$�7� (2)

and 
���������328�9"����
���"���1):
�;$���� (3)

where ��� represents the ground emissivity, %<� the ground temperature, and %�� the plume temperature. The
atmosphere is described by the transmissivity, 2=� , the up-welling radiance, 
�; , and the down-welling
radiance, 
�/ . Meteorological data can supply values for these atmospheric quantities, therefore, they
are assumed known. The expression, �!���#&%>� represents the Planck spectral radiance of a blackbody at
temperature % . Finally, the plume transmissivity, 2?� is related to the chemical effluent’s concentrations@9A

(ppm-M) by Beer’s law: 2���������CB0D$E FG , HIA&J � K A ���� @9A�LM (4)

where
K A "��� is the known absorbance spectra for effluent N , NO�P*9#(Q(Q(Q8#SR .

Finally instrument error adds noise, so that the observed spectra is given by
�T�UWV(������3
��9"���1):XY"��� (5)

where XY"��� is the instrument noise associated with the wavenumber � . It is assumed that the errors are
independent, unbiased (zero mean), and their variance is known.

As mentioned earlier, the three-layer model makes some simplifications:
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observations are taken at night, or (2) the contribution of solar radiation is insignificant for the IR
band being used.Z The atmospheric terms are known: The terms [(\ , ]�^ , and ]�_ are assumed to be known. This
simplification is invoked to allow us to study the dominant source of variability in this problem,
which is background clutter (i.e. variability in `ba and c�a ). The strategy is to include uncertainty in
these atmospheric terms at a later date.Z There are no correlations or biases in the instrument errors: A well-calibrated instrument may
approximate this assumption. However, periodic instrument calibrations can introduce correlations
into these errors.

The Bayesian algorithm introduced in the next section can be extended so that these restrictions can
be relaxed.

3. Nonlinear Bayesian Regression Model

3.1. Bayesian Methodology

Given the observed radiation, ]�d�eWf(g�h�i , the general Bayesian formulation of the remote sensing prob-
lem is the nonlinear regression model]�djeWfSg�h�i�k3lmg"honqp�rqs�ibt:umg�h�i (6)

where lvg�honqp�rqs�i describes a physics-based relationship between the observed radiation and the state
parameters that describe the observed system, and the noise, or error, uYg"h�i is assumed to come from a
Gaussian distribution with known variance wog�h�i . The errors are assumed independent, therefore, their
covariance matrix xzy is diagonal, i.e., xzy{k}|m~j�9�<g�wog"h���i�r(�(�(�8rqwog�h���i�i , where � denotes the number of
discrete wavenumbers that the instrument records. The Gaussian assumption is fairly reasonable; The
error in most IR instruments is dominated by Poisson shot noise, which is well approximated by a normal
distribution.

The above model is nonlinear in the sense that l is a nonlinear function of the state parameters.
These parameters are divided into two vectors, p and s , to distinguish between those that we want to
estimate, p , and the nuisance parameters, s , i.e., parameters of no direct interest, except for the way they
complicate the task of estimating the desired parameters.

Which parameters are nuisance parameters or parameters of interest depend on the particular applica-
tion. For the temperature/emissivity separation problem, p represents the background temperature and
emissivity. In the plume gas concentration estimation problem p denotes the chemical effluent burdens.

No matter what the application is, a typical problem of physics-based models for hyper-spectral data
is that the unknown parameters outnumber the spectral channels recorded, so if the model is used to for-
mulate a classic (non-Bayesian) regression model, it will represent an under-determined set of equations.
One could say that the spectrum is “under-sampled,” but it is important to note that the problem cannot
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be solved by increasing the sampling. The number of nuisance parameters increases as the sampling rate
increases [12].

“Under sampling” is usually solved by including additional information about the nuisance param-
eters into the problem formulation. The non-Bayesian way to do this is to plug in estimates for the
parameters, while the Bayesian formulation considers parameters as random variables and uses a prior
distribution to supply this information. The chief advantage a prior distribution has over the plug-in
approach is that estimate variabilities or uncertainties can be automatically included.

A secondary advantage is that a prior distribution provides a richer framework for describing what is
known about the parameters. In the plume gas concentration estimation problem, the component of the
prior that describes the temperatures and the ground emissivity, (representing the nuisance parameters)
may include all information known about these parameters; For example, background emissivity must
be constrained to the interval [0,1] and also be smooth across energy channels; This information can
easily be built into the model prior. Also, the background typically has a strong spatial structure, and it
might be very useful to include this information into the prior.

The parameters of interest must also be given a prior. If nothing is known about them, one would
apply a non-informative or weakly informative prior to these parameters. However, if some information
concerning them is available, their priors can be modified to include such information. For example, it
is obvious that the effluent burdens reside within an interval with lower bound 0 and some maximum
plausible burden.

3.2. Derivation of the Prior Information

Let ���W���&��� denote the prior distribution of the model parameters. Without loss of generality, the
nuisance parameters can be assumed to be independent from the parameters of interest:���W���q���������������W�����W��� (7)

where �������o���&�$�9�?���S� and ���C�������'�0�( ( ( 8���	¡9� .
The generalized Beta distribution and the truncated Gaussian distribution with large variance are

commonly used to defined weakly informative priors on large intervals [15, 16]. Using the second
approach, a weak or diffuse prior for the concentrations can be formulated as follows:���	�W������¢z£.¤¥ ¡¦§�¨ �9© ��� §«ª.¬® ��¯ §q° �j±²´³o¡µ�����&¶o·���¸�·�� (8)

where ¢z£ is a normalization constant so that �	� is a true distribution, © ��� §¹ª�¬º �?¯ §q° � is 1 if O» �b¼ » ¯ § ,
and 0 otherwise, and ³b¡µ�+½¾�&¶���¸µ� denotes the ¿ -dimensional Gaussian distribution with mean ¶ and
covariance ¸ . Note that the normalization constant ¢5£ does not need to be known for the Bayesian
estimation of the state parameters. By choosing ¯ § and ¸À· large, and ¶<·��  , ��� slightly favors small
concentration values, because most gases are likely to have zero or near zero concentration.

External information regarding the nuisance parameters is often available. For example, �'� is typi-
cally within 2 to 3K degrees of the the atmosphere, which is known from meteorological data. A prior
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for the background temperature Á<Â can be developed from scene brightness temperature, i.e., the con-
version to brightness temperature from radiance using the inverse of Planck’s function, and with use
of the Nonconventional Exploitation Factors Data System (NEFDS), a government database of surface
reflection parameters, e.g., [22] and the National Geospatial-Intelligence Agency (NGA).

Defining priors for the background emissivity is more challenging. The ground emissivity has two
important properties that need to be considered in the model and the prior: smoothness and constraint to
be in the interval ÃºÄ�ÅSÆSÇ . On the other hand, there is a lot of available information on ground emissivity.
For example, the NEFDS database contains pre-measured surface reflection parameters for over 400
materials corresponding to a wide variety of objects ranging from camouflage to white paint. This
context motivates the following approach for building a prior distribution for the ground emissivity: (1)
Model the emissivity as a smooth function of the wavenumber using for example a spline function [23],
(2) choose a Gaussian prior for the spline coefficients, with mean and covariance determined from the
mean and covariance from the NEFDS library, and (3) map the spline function to the ÃºÄ�ÅSÆSÇ interval via a
nonlinear transformation such as the logistic function: È�É=Ê�ËÍÌSÎ ËjÏ�ÐWÑoÒ�Ó�Ð ÆÀÔ�Õ0Ö$×�Ð Ø5ÑoÒ�Ò8Ù	Ú .

A simpler use of the NEFDS library for defining a prior on Û?Â is as follows. First, consider a sample
of Ü emissivities corresponding to a subset of Ü materials in the NEFDS library. Compute the mean ÝÞ
of this sample. Compute the singular value decomposition of the sample of centered emissivities. Letß Þ-à

denote the á -th eigenvector. Then, one can model Û?Â as follows:Û�Â-Ó ÝÞ Ôãâ-ä Ù	Úåà?æ Ú ß Þ5àSç�à
(9)

where
ç Ó�Ð ç Ú Å(è(è(è8Å ç ä Ù	Ú Ò has a Gaussian distribution with mean 0 and covariance equal to the square of

the diagonal matrix of eigenvalues resulting from the singular value decomposition, and â is a constant
we set to 4 in order to generate a diffuse prior. For our experiments we used Ü Ó é emissivities.
These emissivities were chosen to be extreme representatives of the NEFDS library, and are displayed in
Figure 1.

4. Parameter Inference

Bayesian inference about the model parameters relies on their posterior distribution. Given the data
model (6) and the parameter prior distribution (7), the posterior distribution ê�Ð�ë�Åqì1íïîñðjòWó+Ò of these param-
eters is given by ê�Ð�ë�Åqì1íïî�ðjòWó+Ò�Ó�ô Ú Õ0Ö$×öõ�Ø Æ÷}øåù æ Ú Ð"î�ðjòWóSÐ�ú ù Ò�Ø.ûmÐ"ú ù�ü ë�Åqì�Ò�Òjýþ Ð"ú ù Ò ÿ�� ÐWë�Åqì�Ò (10)

where ô Ú is a normalization constant. Two approaches are commonly used to construct parameter esti-
mates and their associated uncertainties. One can either use the posterior mean and posterior covariance,
or the posterior mode and highest posterior density interval.

4.1. NLMPD Algorithm

In order to produce the mode of the posterior (10), we chose a constrained version of a Levenburg-
Marquardt iterative algorithm [24] we coined NLMPD for Nonlinear Maximum Posterior Density. Since
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Figure 1. Emissivities of materials used in the simulations.

the priors we used are bounded, the maximization algorithm must deal with these constraints. NLMPD
is very efficient for nonlinear least-squares problems and usually converged in a few steps (3 to 10) for
our problems. Thus this algorithm requires roughly 3 to 10 times the computation that a matched filter
estimator would, and we can consider that they are comparable in speed. NLMPD also requires the first
derivatives of the minimizing function to be known. Consequently, one can approximate, at no cost,
the uncertainties associated with the mode estimate with an approximation of the posterior covariance
matrix given by � �����	��
� ��������	������������� ������ ���! ��� (11)

where
� �"�#����� is the covariance matrix of the prior distribution, and ��� is the multivariate derivative of�%$'&)(�*,+�-/. with respect to the parameters $0*,+�-1. . This approximation will produce good results when the

posterior distribution is close to normal and the gas burden estimates are not highly correlated. However,
when the gas burdens are highly correlated (in the posterior, not prior), the covariance approximation
can be too large.

4.2. Markov Chain Monte Carlo Algorithm

Let 2 denote the model parameters. MCMC generates sequences of random variables 243 + 2 � + 265 +879787
that form, after a sufficiently long burn-in of say : iterations, dependent random samples of the posterior
distribution ; $ 2 . . Thus, any feature of the posterior distribution, including the distribution itself, can be
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approximated from the dependent sample [16].
The simplest MCMC is the Metropolis-Hastings algorithm [25], which, at each time < , chose the next

state =?>A@CB by first sampling a candidate point D from a proposal distribution E1FHG0I =J>0K . The candidate
point D is then accepted with probabilityLNMPO6Q#RTS�UWV�X FYDZKHE1F[=?>\I�DZKX F]=6>YK^E/F0D_I =6>[Ka`cb (12)

If the candidate point is accepted, the next state become =d>A@CB M D , otherwise the chain does not move,
i.e., =?>A@CB M =6> . In particular, note that this algorithm does not require computation of the normaliza-
tion constant efB in (10). In most applications, e�B cannot be reliably computed as it requires a high-
dimensional integration.

Remarkably, the proposal distribution E can have any form. It may also depend on the current point=?> . However, the rate of convergence of the chain to the posterior distribution, as quantified by the
effective sample size of the generated sequence and its mixing will depend on how close E is to X . The
effective sample size is given by the length of the sequence minus the number of rejections in (12)
while the quality of the mixing is measured by the auto-correlations found in the sequence. Low auto-
correlations (i.e., large mixing) produce faster convergence for the posterior estimates. We have found
that an efficient proposal E for our problem is a multivariate Gaussian, centered at the current point in
the sequence and with covariance equal to the covariance estimate provided by NLMPD divided by 4.

Due to the typical high-correlations observed between the effluent concentrations within the plume,
the mixing remains in many cases very low. This forces us to generate very long MCMC sequences and
thin them. Thinning consists of subsampling from the sequences by selecting every g -th observation. In
other words, in order to produce a reliable sample of size say 5000, one need to generate first an MCMC
sequence of length hjikikiTlmg and then extract every g -th observation. As typical values of g in our
context is in the order of 100, generating such MCMC becomes costly.

Recently, Hamiltonian paths have been proposed to both increase the mixing in the MCMC sequence
and reduce the number of rejections [17]. The Hamiltonian MCMC is built upon the basic principle of
Hamiltonian mechanics. Let the function n be such that X F]=oKqpsrutwvxFHyzn{F[=oK|K . The model parameters= can be regarded as a position vector and n{F[=oK the potential energy function. Introducing a fictitious
momentum vector } M F�~�B V b8b9b V ~��uK and mass vector � M F0��B V b8b8b V �T�uK , where � denotes the number of
model parameters, one can define the kinetic energy function ��F0}ZK M B��� ���� B ~ ��u� � � . The total energy
is then � F]= V }�K M n{F[=�Kx����FY}�K b (13)

Consequently, if one can sample F]= V }�K from the distribution X F[= V }�Kdp�rutwvxF^y � F]= V }�K"K , then the
marginal distribution of = is exactly the target distribution X F[=�K .

Hamiltonian dynamics allows one to move along trajectories of constant
�

, taking large jumps in
the parameter space. The Hamiltonian algorithm alternates between picking a new momentum vector
and following such trajectories. Each iteration starts with a generation of a new momentum according
to a multivariate uncorrelated Gaussian distribution with (diagonal) covariance � . Then a trajectory
that maintains a constant

�
is approximated by a discretized version, called leapfrog technique, which
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consists of iterating the following steps � times:�%�[�����j�k�k��� �%�[�|��� ��¡ £¢ �¤¦¥¥¥¥¥ §q¨ª©A«
(14)

¤ �]�¬���W�� ¤ �[�|�¬� �® �%�[�£���W�k�W�
(15)�J�]�¬���W�� �%�[�����j�k�k�x� ��  £¢ �¤ ¥¥¥¥¥ §q¨ª©A¯/°±«
(16)

where
�

denotes the
�
-th iteration of Hamiltonian MCMC, ¤ �[�|�f� ¤ © ,

�%�[�|�
denotes the momentum at

the beginning of the leapfrog step, and
�

represents a small increment.
Because the leapfrog technique is only an approximation, ² may vary along these paths. A Metropo-

lis step is then use to re-establish the equilibrium. The state at the end of the Hamiltonian path ¤ ©A¯C³
�

¤ �[�j� � �W� is accepted with probability ´ �Pµ6¶#·£�H¸W¹�ºu»w¼x�H� ² � ¤ ©A¯C³
¹\�
©A¯C³
�W� ² � ¤ ©

¹\�
©
�|�

where
�
©
�½�%�[�|�

and
�
©A¯C³

�¡�J�]�¬� � �W� .
The efficiency of the Hamiltonian algorithm depends on the choices for the

�
, � ,

®
, and ¾ .

�
must

be small enough to ensure that ² does not change much on the approximated paths (to minimize the
rejections in the Metropolis step), but it must be large enough to not slow down too much the computa-
tional time. ¿ � � � must be large enough to ensure good mixing.

®
and ¾ must be chosen to ensure

that the Hamiltonian MCMC samples adequately cover the target distribution À . For our problems, we
found that ¿ �sÁwÂÃÁÅÄ

, � �sÄWÁ
,
®

equal to the inverse of the diagonal elements of the covariance matrix
estimate given by NLMPD, and ¾ � ¾JÆ±ÇkÈ �'®½É"Ê Ëu�

produce the desired sequences.
Finally, in our context one can often expect to find parameter estimates on the distribution boundaries.

For example, some gases that are part of the model are not present in the plume or are in very small
concentrations. MCMC techniques, Metropolis and Hamiltonian, have difficulties generating legitimate
candidates that are within the boundaries of the parameter space, leading to many rejections before
a suitable candidate can be proposed. To solve this problem, we present a bouncing algorithm that
conserves the equilibrium property central to the MCMC algorithm.

Let Ì and Í denote the current and next states in the MCMC sequence. For the standard MCMC
algorithm, Ì � ¤ © and Í � Î

, while for the Hamiltonian MCMC, Ì � ¤ �[�Ï� È �j� and Í �
¤ �[�Ð�P� È �¡¸a�H�W�|�

with ÈTÑÒ� . Note that one can write Í � Ì � ¿6Ì , The idea is that if Í lies outside
the distribution boundaries, we replace it with a legitimate candidate ÍÔÓ in the same direction as Í ,
i.e., Í Ó � Ì �mÕ ¿6Ì . The algorithm mimics the physics of a ball leaving the position given by Ì in the
direction of Í , bouncing back on its path whenever it hits the boundary wall and stopping when it has
traveled the distance ¿6Ì . Note that given the boundary locations, the ending point may be between the
points Ì and Í or somewhere in the opposite direction of Í , i.e.,

Õ
may be negative.

The bouncing algorithm determines
Õ

as follows. Let Ö£× � Ø ¿6Ì Ø be the norm of ¿%Ì , and Ù �¿6Ì � Ö£× . Let ¢ and Ú denote the upper and lower bounds of the parameter space. Compute the following
quantities:

1. ÇÅÛzÜ � ¢ � Ì �|� Ù and ÇÅÝ�Ü � Ú � Ì �|� Ù .

2. Þ ³ Ü
µ%ßà»)á\â�µ%¶	·)á ÇÅÝ ¹ ÇkÛÅãÅã
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3. ä�åçæ è6é#ê)ë\ì�èJíàî�ëàïÅð[ñ\ïkòÅóÅó
4. äÏæ ä\åõôöä9÷
5. øùæ ú0û£ü�ôöä9÷"ý modulo þWä
6. if øJÿ ä then ø{æ þWäõôöø
7. øùæ ú0ø � ä9÷"ý��jûCü

where ì�èJíaî�ëàï�ñ�ä ó denotes the maximum taken on the vector components (ì�è%íàî�ëàï�ñ\ä8ó����¡è%íàî)ëàï��'ñ\ä	�'ó ),
while ì�è6é#ê�ëàï�ñ�ä ó denotes the minimum.

5. Applications

5.1. NLBR vs. Matched Filter

To test the methodology, we simulated spectra with known gas burdens and compared the NLBR ap-
proach with a matched filter, perhaps the most popular algorithm currently in use for gas plume detection.
We considered the case of a plume with 3 non-correlated gases — NH3, Ethylene and Butyl Acetate —
at various concentration levels: 0, 10, 20, 30, 50, 70, 90, and 110 ppm-M. For each level of concentra-
tion, 100 spectra were generated. For each simulation, the background emissivity was randomly selected
from the 6 emissivities shown in Figure 1.

Figure 2 compares estimates of NH3 obtained with NLMPD and the matched filter. The figure plots
the true burden of NH3 (horizontal axis) versus the estimates (vertical axis). Consequently, a plot for a
perfect algorithm would have all the estimates on the identity line. One can see that the matched filter
estimator displays much more variability than the NLBR estimator (except when the gas burden is 0).
In fact, the matched-filter plot contains points that look like outliers. These “outliers” are associated
with the simulations that picked an atypical background emissivity (the bottom one in Figure 1). In the
linearization that the matched filter algorithm uses, an average emissivity is plugged in, which results the
observed “outliers.” In the NLMPD algorithm the variability in emissivity seen in Figure 1 is accounted
for in the prior.

Because of this problem, the matched-filter estimates are biased, and the actual error in the estimates
(matched-filter Root Mean Squared Error RMSE=36ppm-M) is much greater than the error predicted by
the algorithm (matched-filter predicted standard error=1ppm-M). On the other hand, these problems are
absent from the NLBR estimator; It has no detectable bias, and the observed and predicted estimation
error, given by (11), are the same (RMSE=2ppm-M, average predicted standard error=2ppm-M).

5.2. Gas Detection

The fact that the NLBR algorithm produces realistic standard errors has great benefit when the esti-
mates are used for detection. The usual statistic to test the presence or absence (0 ppm-M) of a gas is the
t-statistic, i.e., the algorithm estimate divided by the algorithm predicted standard error given by (11).
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(a) Matched Filter Results, NH3
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(b) NLMPD Results, NH3
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Figure 2. Matched-Filter Estimator Compared to NLBR Estimator.

Under the “null” hypothesis of no gas burden, the t-statistic should approximately follow a truncated
Gaussian distribution (truncated because burdens are constrained to be non-negative).

Figure 3 presents the distributions of the t-statistic for NH3 and Ethylene, calculated from 1000
spectra simulated as in the previous example at concentration level 0 ppm-M. The distributions are
presented in the form of Q-normal plots, and therefore, the t-statistic values should ideally line up on a
straight line except for the truncated values. As one can see from the plots, the null distributions conform
closely to the theoretical ideal.

This means that detection thresholds for NLBR estimates and the associated false call rate can be
theoretically calculated and results will correspond to theory. Figure 4 presents probability of detection
(POD) curves calculated from 2000 spectra, the above 1000 spectra and 200 spectra for each of the
concentration levels 50, 100, 150, 200 and 250 ppm-M. Detection occurs when the t-statistic is larger
than 3, a threshold that should give about a one in a thousand chance of a false call. In the figure, POD
is plotted as a function of true gas concentration, so POD(0) is the false call rate. For NH3, the observed
false call rate is in fact 1/1000, for Ethylene the false call rate is 3/1000, very good agreement with
theory.

Fits of the NLBR model to actual hyperspectral cubes have shown that the performance shown in
Figure 4 is more optomistic than that experienced on real data. For example, the residuals from real data
fits are typically from 2 to 5 times larger than theory would predict, indicating that un-modeled sources
of variability exist in the data. One obvious source is the atmospheric terms in the model, which are
currently assumed to be perfectly known. The next step in our modeling strategy will be to construct a
prior that adequately reflects variability in these terms.



Sensors 2007, 7 916

•

• • • •

•

•

•

•••••••

•

•

•

••

•

•

•

•
•

•

•

•

••

•

• •

•

••••

•

•

••••

•
•

• •

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

••

•

•

••••

•

•

•

•

•
•

•

•

•

••

••

••••

•

•

•

•

••••

•
•

•

••••
•

•

••

•

••••••
•

•

•

•

•

•

•••

•

•

•

•

•

•

•

•

•

•
•••

•

•

••

•

•

•••

•

• •••

•

•

•

•

••

•••

•

• •

•

•

•

•••

•

••••

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

••
•

•••

•

•

•

•••••

•

•
•

•

•

•

•

•

•

••••

•

• •••

•

••

•

•

••

•

•

•

•

•

•

••••••••

•

••

•

•

•

•

•

•••

•

•••

•

•

•

•
•

••••
•

•••

•

•

•

•

•

•••

•
•

•

•
•

•
•

••
•

•

•

•

•

•

•

••

•

•

•

•

•
•

•

••
•

••

•

•

•

•

•

•
•

•

•

•

•

••••

•

•
•

•
••

•

•

•

••

••

••

••

••

•

•

•

••••

•

•

•••••• •••

•

•

•

•••

•

•••

•

•

•

•

••

•

•

•

•

•

•

•

•

••
•

•

•

••

•

•

•
•

•

•

•

•

•
•

•

•

•••

•

•

••••••

•

•

•

••

•

•

•••

•

•

•
•

• ••

•

•

•

•

•

•

• ••
•

•

•

•••

•

•

•

••••

•

•••

•

••

•

•

•

•

•

•

•

•

•

•

•••

•

•••

•

•

•••

•

••

•

•
•

•

•

•

•

•

•

••

•

•
•

•

••

•
•

••

•

•

•

•

•

•

•

•

•

•

•••

•

•••

•

•

•

•

••

•

•••
•

•

•

•

•

•

•

••••

•

•••

•

•

•

•

•

••

•

•

•
•

•

•

•

••

•

•

•

•

•

••••

•

•

•

•

•

•

•

•

••

•

•

•

•

•
•

••

•

•

•

•

•

•

••
•

•••

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•
•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
••

•

••

•

••

•

•

•

•••

•

•

•

•
•

•

•
•

•••

••

•
•

•

•

•

•

•

•

•••
•

•

•

•

•

•

•

•

•••

•

••

•

•
•

•

••
•

•
•
•

•

•

•

••• •

•

•

•

•

••

•

•

•

•

•

•

•

•

•

••
•

•
••••

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•
•

••

•

••

•••

•

•

••
•

•
•

••

•

•

•

•••

•

•

•

•

•

•

• ••••

•

•

•

•

•

••

•

•

•

•

•

•

••

•

••

•

•

•

•

•

•

••

•

•
•

•••

•

•
•

•

•

••

•

••

•

•

••

•

•

•
•

•

•

•
•

••

•

•

•

•

•

••

•

•

•

•••

•

•

••
•

• •

•

•

•
•

•

•
•

•

•

•

•
•

•

•

•

••

••

•

•

•

•

•
•

•

•

•

•

•

••
•

•

••

•

•

•

•

•
•

•

•

•

•

•

• •••

•

•

•

•

•

• •

•

•

•

•

••

•

••
•

•

•

•

•

•

•

•

• ••

•

•
•• ••

•

••

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

• ••

•

•

•

•

•

•

•

•

•

•

• •••

••

•

•

•

•
•

•

•

•

•
•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•••

•

•

•

•

•

•

•

•

•
•

•

•

•

•

••

•

•

•

•

•

••

•

••

•

•

• •••

•

•
•

••

•

••

•

•

•

••

•

••

•

•

•

•

•

•

•
•

•
•

•

•••
•

•

•

•

•
•

•

•

•
•

•

•
•

•

•• ••

•
•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

••
•

•

•
•

•

•

•

•

• •
•

•
•

•

•

•

••
•

••

•

•

•••

•

•

••
•

•

•

•

•

•••

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

••

•
•

•

•

•

•

••

•

•

•
•

••

•

•

•

••

•

•••

•

•

•

••

•

•••

•

•
•

•

•
••

• ••

•

•

•
•

••
•

•

•

•

•

••

•

••

•

•

•

•
••

•

•

••

••

•

•

•

•
•

•

•

•
•

•
•

••

•

••
•

•

•

• •

•

•

•

•

•

•

••

•

••

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

••

•
•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•••

•

••

•

•

•

•

•
••

•

••

•
•

••• •••

•

•

•

••

•

•

••

••

•

•

•

•

•

•

•

••

•

••

• •••

•

•

•

•
•

•

•

•
•

•
••

•

•• •

•

•

•

•

• •••

•

•

•

•

•

•

•

•

•••

•
••

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•• •

•

•

•

••

•

•

•

•

•
•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•• •

•

••

•

••

••

•

•

••

•

•

•

•

•

•

•

•

••

•

•••

•

•

•

•

•

•

••

•
•

•
•

•••

•

• ••

•

•

•

••

•

••
•

•

•
•

•

••
•

• ••

•

•

•

•

•

•

••

•

•

•
••

•

•

•

•

•

•

•

•

••
•

•

•

•

•

•

•

••

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

••
•

•
•

•

•

•

•

•

•• ••

•

••

•

•
•

•
••

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

••

•

•

•

•
•

•

•

•

•
•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

• ••••

•

•
•

•

•

•

•

•

•

•

•

•

•
•

• •••

•
•

•

•

•

•

•

••
•

•

•

••

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•
•

••

•

•

•

•
•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•
•

•
••

•

•

•

•

••

•

•

•

•
•

•

•

••

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

• •

•

•

••

••

••

•

•

•

••

•

•

•

••

•

•••

••

•

•

•

•

•

•

•

•

••

•

•

•
•

•

•

•

••••

•

•

•

•

•

•

•••

•

•

•

•••
•

••

•

•

•

•

•

••

•

•
•

•••

•

•

••

•

•

•

•

•

•
•

••

•

•

•

•

••

•

•

•

•

•

•

•

••

•

•••

•

•

•

•

•

••

•

•

•

•

•

•

•

•

••

(a) NH3

True Burden=0

Normal-Quantile

t-
s
ta

ti
s
ti
c

-2 0 2

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

•

•

•

••
• • •••

•

•• •••

•
•

••

•

•
•

••

•

•

•••••••

•

•

•

•
•

•••••••
•

•
•

•
•

•

•

•• •••
•

•

•
•••••••

•
••••••

•

•••

•

•

•••

•

••

•
••

•

••••

•

•

•

••••

•
•

•

•

••

••

•

•

•

•
••

••••• ••

••

••••

•

••

•

•

••

•

•

•

•

•
•

•

•

•••

•
•

•

• •

•

••

•

•
•

••

•

•••

•

•

•

•

•

•

•
•

•
•

•

•••

••

•

•

•

•

•••••••••

•

•

•

•

•

•

•

•

•

•

•

•

•

••••

••

•••••

•

••

•

•

•

•

•

•

•

••

•

•

•

•

•
•••

••

•••

•

•

•••

•

••

•

•

•

•

••••

•

••••••

•

•

•

•

•

•

••

•

•

•

•

•

• •

•

••

•

•

•
•

•

•

••••

•

•

•

•

•

••

•

••

••

•

••

••

•••••

•

•
•

•

•

••

•

•
••

•

••

•

•

•

•

•

•

••

•
•

•

•

•

•

••

•

•••

•

••

••

•

•

•

•

•

• ••

•

•••

•

•

•

••••

•

•• •

•
•

•

•

•

•

•

••

•
•

•
••

••

•

•

••••

•

•

•

•

••

•
••

•
•

•

•

•

•

••
•

•
••

•

•
•

•••

••

•

•

•••

•

•

•

•

•

••

•

•••

•

•

••

•

•••

•

•

•••
•

••

••

•
•

•••

•

•

•

•••

•

•••

•

••

•

•

•

•

•

•• ••

•

•••

•

•
•

•
•

•

••

•

••

•

•

•

••

•

•

•

•

•

•

• ••••••

•

•••
••

•

•

•
•

•

•

••

•

••
•

•

•

•
•

•

•

••

•

•
•

•

•

•

••• •

•

•

•
••

•

•

•

••

•

•

••
•

•

•

•

•

•

•

• •••

•

••••

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

••

•

•

•••

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

••

•

•
•

•

•
•

•

•

•

•

•

•

•

•

••

•

•

••

•

•

•

•

•

•

•
•

•

••

•

••

• •

•

••
•

•

•
•

•• ••

•

•

•

•

••

•

•

•

•
•

•

•

•

••

•

•
••

•

•

•

•

•
•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•
•

•

•

•

••••

•

• •

•

•
•

•

•

•

• •

•

•••

•

•

•

•

•••

•

••

•

••

•

•
•

•

•

•

•

••

•

••

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

••

••

•

•

•

•

•

•••

•

•

••

•

•

•

•

•

•••

•

•

•

•

••

•
•

•

•

•

• ••

•

••

•

•
•

•

••

•

•••

••

•

•

•

•

••

•

•

••

•

•

•

•

•

•••

•
•

•
•

•

•

•

•

•

•••

•

•

••

•

•

••

•

•• ••

•

•

•
•

•

•

•••

•

•

•

•

•

••• ••

•

•

•

•

•
•

••
•

•

••

•

•

•

•

•

••

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•
•

•

•

•
•

•

••

•

•
•

•

•

•

•

•

•

•

•

••

•

••

••
•

••

•

•

•

•

•

•
•

•

•

•

•

••

•
•

•• ••

•

•

•
•

•

•

•

•

•

•

•

•

•

•

••

•

•

••

•

•

•
•

•

•

•

••

•

•

•

•

•

•

•
••

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

••

•

•
•

••

•
•

•

•

•

•

•

•
•

••

•

•

•

••

•

•

••
•

••

•

•

•

•

•
•

••

•

•

•

•

••

•

•

•

•
•

•

••

•

• ••

•

•
•

••

•

•••

•

•

•
•

••

•

••

•

•

•

•

•

•

•

•
•

••

•

••

•

•

•

•

•

•

•
• •

•
•

•

••

•

•

•••

•

••

•

•

•

•
••

•••

•

••

•

••

•

•

•

••

•

•

•

••

•

•
••

•

•

•••

•

•

••

•

•

•

•
••

•

•

•

•

••
•

•

••

•

•

••

•

••

•

•• ••
•

•

•

•

•

•

••

••

•

•

•

•

•

•

••

••

•

••

•

•
•

•

•• •

•

•

•

•
••

•

•

•

•
•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

• •

•

•

• ••

•

•

•

••

•

••

•

••

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•••

•

••

•

•

•

•

•

••

•

•

•••

•

•
•

•

•

•

•

•

•

••

•

•

•

•

•

•••

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•••

•

••• ••

•

••

••

•

•

••

•
•

•
•

•

•

•

•••

•

•••

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•• ••• •

•

•

••

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•
•

•

•

•
• ••

•

•

•

•

•

•

•

•

•

•

•

•

•
•

••

•

••

•

•

•

•

•

•

•

•
•

•

•

•

••

•

•

•

•

•
•

•

•

•

•

•

•

•
•

•
•

•

•

•••

•

•

•

•••

••

•

•
••

••
•

•

•

•••

•

•

•

•

••

•

•

•
•

••

•
•

•

•

•

•

•

••

•

•

•

•
•

•

•

•

•

•

••

•

••

•

•

••

•

•

••

•

•

•

•

•

•

••

•

• ••

•

•

•

•
•

•

•

•

•

•

•

•••

•

•
•

•

•

•
••

•••

•

•

•

•

•

•

•

•

•

•
•

•

••
•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

••

•

•

•

•

• •
•

••

•

•

••••

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

••

•

•

•
•

••

••
•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•
•

•

•

•

•••

•

•

•

•

••

•

•

•

••

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

••

•

•

••

•

••

•
•

•

••

•

• ••

•

•

•

•

•

•

•

•

•

••••

•

•

•

•

•

•

•

••

•
•

•

•

••

•

••

•

••
•

•

•

•

•

•

•

•

•

•

••

•

••

•

•

•

•

•••

••

•

•

•••

•

•

•
•

•

••
•

•

••

•

• •
•

•

•

•

•••

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
••

•

•

•

••

•

•••

•

•

•

•

•••

•

•

(b) Ethylene

True Burden=0

Normal-Quantile

t-
s
ta

ti
s
ti
c

-2 0 2
0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

Figure 3. Q-normal Plots of the T-statistic for NH3 and Ethylene, When the True Gas Burden is 0.

5.3. Highly Correlated Gases

The results presented up to this point utilize the “quick” Bayesian solution provided by the NLMPD
approach. Figure 5 presents a case for which the complete posterior, as provided by MCMC algorithm is
very useful. For this example, 11 highly correlated gases were placed in the plume. The gas correlations
are so large that gas burden estimation would be an ill-conditioned problem, if an unconstrained linear
regression model were employed. (The principal constraint that makes this problem solvable is that all
gas burdens must be non-negative). With the aid of this constraint, the Bayesian regression algorithm
transforms an ill-conditioned problem to one with a very informative solution. Unfortunately, the poste-
rior distribution for this problem is poorly approximated by a normal, and the NLMPD approach cannot
provide reliable estimates. On the other hand, the MCMC algorithm can calculate the full posterior and
provide critical insight on what is happening.

The two histograms in Figure 5 represent the posterior distribution for Butyl Acetate, one of the gases
in the 11-gas plume. The first posterior distribution represents the estimated burden of Butyl Acetate
when the true burden for each of the 11 gases is 0 ppm-M. For this case, the MCMC algorithm estimates
the true burden with great accuracy even though large correlations exist between gases. In fact, a 95%
highest probability density interval is (0,4.5) ppm-M, quite a small interval. Furthermore, the MCMC
output reveals that the posterior for Butyl Acetate has an exponential shape with a modal value of 0,
which is far from normal.

The second posterior distribution illustrates the problem that occurs when the plume contains a large
amount of the gases (100 ppm-M for each gas). In this case, the shape of the distribution is dramatically
different; between 0 and 100 ppm-M it is roughly uniform, and becomes roughly normal above 100
ppm-M (or more appropriately half-normal). The uniform portion below 100 ppm-M is produced by the
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Figure 4. POD Curves for NH3 and Ethylene.
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Figure 5. MCMC Derived Posterior for a Plume with 11 Highly Correlated Gases.

fact that the Butyl Acetate signal is equivalent to a linear combination of other gases. The normal half
of the distribution is caused by the constraints on the linear combinations (burdens are non-negative),
which become active at higher-burdens. Note that the exact nature of the correlations in the plume gases
can create posteriors with quite a complex shape; It is possible to have several modes in the posterior.
As one can see, the MCMC can be very valuable for evaluating plumes that may contain several gases.

The above histograms were constructed from a sample of 5000 data points generated by the Hamilto-
nian MCMC, after a burn-in phase of size 1000. Similar outputs could be obtained with the “traditional”
MCMC algorithm described in Section 4.2, using a thinning of size 
������� . In other words, the second
MCMC algorithm had to generate first a sequence of length 600,000, the first 100,000 being used for the
burn-in phase, and then extract each ���������� observation to build the final sample. Because of this very
high thinning, the “slow” Hamiltonian MCMC turned out to be faster by a factor of 2 than the traditional
MCMC algorithm. Note that in less correlated experiments as the examples discussed earlier, the two
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algorithms were found to be comparable in speed.

6. Summary and Conclusions

The nonlinear Bayesian regression shows definite promise for producing better estimates from hyper-
spectral data. To be most useful, NLBR should not be considered to be a specific algorithm, derived from
a specific model, but a general framework for producing estimates that can be tailored to the problem at
hand.

The effectiveness of these regression models depends heavily on the prior information supplied to
them. The methodology does require that realistic prior distributions be constructed on the nuisance
parameters. However, the fact that uncertainties can be incorporated into the prior distributions in a
straightforward manner means that the Bayesian methodology incorporates these uncertainties in a fairly
automatic way. In fact, one of the strongest motivations for using a Bayesian models may be because its
statements of estimate uncertainty are more believable than those from other methodologies.

Our simulations involving NLBR have produced results that correspond with theory. The application
of the present NLBR model to real hyper-spectral data have produced less optimal performance; It is
obvious that real hyper-spectral data contains more variability than our NLBR currently describes, most
prominently, atmospheric variability [26]. However, the flexibility of the NLBR framework should allow
us to include these other sources of variability without any dramatic change in the general approach.
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