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Abstract: The effectiveness of wireless sensor networks (WSipends on the
coverage and target detection probability provithyddynamic deployment, which is
usually supported by the virtual force (VF) algont. However, in the VF algorithm, the
virtual force exerted by stationary sensor nodel mmnder the movement of mobile
sensor nodes. Particle swarm optimization (PSOintioduced as another dynamic
deployment algorithm, but in this case the companaime required is the big bottleneck.
This paper proposes a dynamic deployment algorivimch is named *“virtual force
directed co-evolutionary particle swarm optimizatiqVFCPSO), since this algorithm
combines the co-evolutionary particle swarm optatian (CPSO) with the VF algorithm,
whereby the CPSO uses multiple swarms to optimiierent components of the
solution vectors for dynamic deployment cooperdyiamd the velocity of each particle is
updated according to not only the historical logadl global optimal solutions, but also
the virtual forces of sensor nodes. Simulation ltesdemonstrate that the proposed
VFCPSO is competent for dynamic deployment in W3Nd has better performance
with respect to computation time and effectivendsan the VF, PSO and VFPSO
algorithms.

Keywords: Wireless sensor networks, dynamic deployment, abuéionary particle
swarm optimization, virtual force.
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1. Introduction

Wireless sensor networks (WSNs) has been succlsaflbpted in many strategic applications
such as target tracking, surveillance and clasgifio [1]. Coverage and target detection probabilit
are the two most significant factors for the perfance of WSNs [2], which are determined by
dynamic deployment algorithms [3]. In initial deptoent, randomness is often adopted which,
however, always does not lead to effective coverBgeently, much research effort has been dedicated
to dynamic deployment algorithms [3,4,5]. Amongsia¢he virtual force (VF) algorithm [6] emerges
as one of main approaches for dynamic deploymdsting outstanding performance for improving
the coverage of WSNSs.

Many applications demonstrate that the VF algorigenforms well for self-organizing dynamic
deployment [6,7,8]. But these experiments arenaiiéemented in the WSNs consisting only of mobile
sensor nodes, but WSNs in practice consist of racd@insor nodes and stationary sensor nodes to
reduce the cost and energy consumption [9]. Inditigtion, the performance of the VF algorithml wil
be deteriorated because the force exerted by s#myicsensor nodes will hinder the movements of
mobile sensor nodes. To solve this problem, War@j ptoposed a deployment strategy based on
parallel particle swarm optimization (PPSO) usimg teffective coverage performance taken as
criterion, where the parallel mechanism is useddaving computation time. However, since the
computation complexity of particle swarm optimipati (PSO) will increase exponentially as the
dimensionality of the search space increases,dimpatation time is a big bottleneck in PSO.

This paper proposes an improved algorithm, theadleadt VFCPSO, combining the VF algorithm
with co-evolutionary particle swarm optimizationHEO) for improving the performance of dynamic
deployment optimization. The CPSO algorithm is arprioved PSO algorithm inspired by the co-
evolution of populations [11], which uses multi&arms to optimize different components of the
solution vectors [12]. In the proposed algorithime tCPSO is introduced to achieve the dynamic
deployment with an improved global searching argioreal convergence abilities, while the virtual
force is introduced to direct the particles flightthe optimal solutions and enhance the performainc
CPSO, i.e., under the guidance of virtual forceSORcan converge more rapidly and accurately to the
optimal results. The organization of the papersisalows. Section 2 introduces the detection medel
anda priori assumptions required by dynamic deployment in WSéstion 3 introduces the details of
the VFCPSO algorithm. Simulation experiments inesaltypical scenarios have been carried out and
are described in Section 4. Finally, Section 5 tades this paper.

2. Sensor Detection Model and Priori Assumptions

Wireless sensor networks always consist of marnijostry sensor nodes and mobile sensor nodes.
Because there is ropriori knowledge of terrain or obstacles in the areantdrest, all sensor nodes
are randomly scattered in the sensing field whil&allizing. Let us assume that there &esensors
deployed in the random deployment stage, which tiaesame detection rangeConsidering a sensor
s deployed at poinfx,y.), for pointP at (x y), we denote the Euclidean distance betwgendP
asd(s,P). There are two detection models in WSNs: the pidatection model and the probabilistic
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detection model [6]. Because the detection proltglil always uncertain because of the obstaclés an
noise, the probabilistic detection model is adopted, which can be present as follows [8]:

0 if r +r,<d(s,P)
cy(s)= ottt e r<d(s,P)<r-+r, (1)
1 ifd(s,P)<r-r,

where r(r,<r) is the measure of uncertainty in detectiom,=r,~r+d(s,P) and
A, =r,+r-d(s,P);a,, a,, B, and B, are the detection probability parameters. It nhestnoted that
this model reflects the behavior of range sensiengodgs. The values af,, a,, 8, andgB, depend on
the characteristics of various types of physicakses.

In the probabilistic detection model, the detectpyabability of the sensor field covered by only
one sensor node may be less than unity. This mibanst is necessary to overlap sensor detection
areas in order to compensate for the potentialdetection probability in the area which is far fram
sensor node. Considering a grid point with coordisgx,y) lying in the overlap region of a set of
sensorsS , the detection probability of the point that cam duccessfully detected by at least one

ov?

sensor node is presented@g(s,, ) . It can be carried out as follows:
CX, SOV = 1_ 1_ CX, S (2)
v (Sw) Jal( (s))

wherec, (5) is the detection probability of sensgrat poinx,y). Then the poin{x,y) can be
effectively covered if

min{c,, (s )} 2, (3)

wherec, is the predefined threshold of coverage probabilit

Wireless sensor nodes are always randomly scattbredghout the sensor field. For evaluating
the performance of dynamic deployment, the seneltt €an be expressed as a two-dimensional grid.
The granularity of the grid, i.e. the distance kedw grid points, can be adjusted to trade off the
computation time with the effectiveness. Simulati@sults verify that the error of the coverage
measure is between 0.5% and 0.1% when the gratyularbetween 4% and 0.25% [10]. During
initialization, the area covered by stationary semodes should be analyzed. The points which ean b
effectively covered by stationary sensor nodeshmaignored during the further analysis to reduee th
computation time.

Without loss of generality, we assume that: (1) V¥SMnsist of a super node which acts as the
sink node and processing center for implementirgMRCPSO [13]; (2) mobile sensor nodes can
move to the scheduled position exactly; (3) eacis@eknows its location by some mechanism such as
Global Positioning System (GPS).

3. The Principle of Virtual Force-Directed CPSO
3.1. TheBasisof Virtual Force

The virtual force algorithm is a self-organizingg@alithm which considers that the objects,
including sensor nodes, obstacles and areas adrprefal coverage area which need greater certainty
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[6], will exert virtual attractive and repulsiveré@s on each other. It is inspired by disk packivepry
[14] and the virtual force field concept from roiest[15].

Here, let the total force acted on sensdoe denoted by vectdt , and the force exerted an by
sensors, be denoted by, . Let F, be the attractive force os due to preferential coverage arag,
and letFir, be the repulsive force amdue to obstacl® . The total forceF; on s can be expressed

as
. k

M N
Fi= Z Fij +ZEiRn +Z:Ei/s,1 4)
j=1,j#i m=1 n=1
wherek, M and N are the number of wireless sensor nodes, obstacldspreferential coverage
areas.

It's assumed that senser may exert an attractive or repulsive force on segsaccording to the

distanced; and a predefined threshodfj :

0 if d, >C
(WA(du —dm),aij) if C>d, >d,
Eij = 0 if d;, =d, 5)

1 1 .
W,| ——-——|,a, +m7 ifd. <d
{ R(dij dthJ ij J ij th

where C is the communication range, is the orientation of a line segment franto s, , and
w, (w;) is a measure of the attractive (repulsive) foraerted by sensor nodes.

The obstacles will exert repulsive (negative) feram a sensor. The virtual force of sensor
exerted by obstacl&, can be presented as follows [8]:

0 if d —r

l_:.iRn = WR,Db pRﬂ
de -

R 2T+,

(6)

N2 +7TJ ifdp —re <r+r,

R R

wherer, and p. are the radius and importance level parametehebbstacler,, w, is a measure
of the repulsive forces exerted by obstaclgs, is the distance betwees and R, a. is the
orientation of a line segment fromto R, .

The areas of preferential coverage are considerezkert attractive (positive) forces on sensors.

The virtual force of sensag exerted by area of preferential coveragecan be presented as follows

[8]:

0 ifd, —r, 2C
_ (wAprepAn,aiAn) ifr+r,<d, -r, <C
FiAh = ] (7)
(WAprepA“(diAn—rA“),aiAn) ifr—r,<d, —r, <r+r,
0 ifd, —r, <r-r,

wherer, and p, are the radius and importance level parametehefatea of preferential coverage
A., W, is a measure of the attractive forces exertedisyatlesd, is the distance betweenand
A., a, Iisthe orientation of a line segment frato A .
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Then the new location of sensgris calculated according to the orientation and mitage of the
total forceF,, exerted on it as follows [8]:

-1

Xoen = X +§ x MaxStepx €™ (8)
xy
F 1
ynew = yold +F—y)< Maxaereny (9)
Xy

where,Max3ep is the predefined single maximum moving distarg,F, are x- and y-coordinate
forces respectively.

Figure 1. An example of VF based dynamic deployment in WSBsinitialization and
(b) dynamic deployment result after 1000 iterationdiere the arrows present the
orientations and magnitudes of virtual forces betweireless sensor nodes.
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Although the VF algorithm is proven to perform willWSNs with only mobile sensor nodes [6,
7, 8], its performance may be deteriorated in thetext of WSNs with stationary sensor nodes and
mobile sensor nodes. Figure 1 illustrates an examapldynamic deployment after 1000 iterations of
the VF algorithm, where the arrows present thentatgons and magnitudes of virtual forces between
wireless sensor nodes. Obviously, most of the rea®hsor nodes are badly confined in the boundary
of stationary sensor nodes, which imply that théuai force exerted by stationary sensor nodes will
confine the movement of mobile sensor nodes.

Furthermore, the performance of the VF algorithngety depends on the threshold distadge
but it is difficult to find out the proper value df because of the various situations and requirements
which are only experientially determined in therent algorithms. Unlike the VF algorithm, the PSO
algorithm searches the optimal results globally aiidnot be impacted by the stationary sensor sode
Hence, PSO must perform better than the virtuatefaslgorithm in self-adaptiveness and global
searching. The details of PSO are introduced iffidh@wing section.

3.2. Principle of Dynamic Deployment Based on Virtual Force Directed PSO

PSO is a swarm-intelligence-based evolutionaryrélyo [16]. Each particle represents a potential
solution to the optimization task. The particlgstiirough the search space to find the optimaltswiu
[17]. Let s denote the swarm size. For particl¢l<i<s), lety, denote its own local best position,
and x; denote its current position. The global best pmsifound by any particle during all previous
steps is presented &s During optimization, each particle updates iteeut velocityv, towardy, and
y with the bounded random acceleratignandy are updated as follows:

Y (t) if f (Xi (t +1)) 2 f (Yi (t))
v (+2) ‘{Xi (t+1) if £(x (t+1)<  (y, (1)) (10)
§/(t+1)=argr;1inf(yi (t+3), xiss (11)

Then velocity and position of particle are updasdollows:

v, (t+1) =a(t)x v, (t) +cr, (t) (yij (t) - x; (t)) +C,f () (9 (t) - x; (t)) (12)
K (141 =x, () v, t+3 (13

wherec, andc, are acceleration constants(t) andr, (t) are two separate random functions in the
range [0,1],x; (t) andv; (t) represent the position and velocityitf particle injth dimension at time
t, y; (t) is the local best position @th particle injth dimension, and (t) is the global best position.

Variable a(t) is the inertia weight used to balance global @edllsearch, which is always set to
w(t) = 0.9-— L %05 (14)
MaxNumber
whereMaxNumber is the number of maximum iterations.

The elements in the position vect)érz(>¢1,>{“1,>¢2,>g22,--->gﬁ,>g§) present coordinates of all mobile
nodes, wheren is the number of mobile sensor nodespresents the x-coordinate ofh mobile
sensor node ang presents the y-coordinate oth mobile sensor node. The fitness of the position
vector is presented by the effective coverage &adng global searching, granularity should deseeca

gradually for the tradeoff between speed and pmetiAfter adjusting granularity, we should renew
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the velocities of particles randomly and re-analylze fithess associated with new granularity for
keeping the validity. The process of optimizatisras follows:

Figure 2. Pseudocode for the PSO based dynamic deploymenithlg for WSNSs.

Create and initialize am-dimensional PSOP
Analyze the effective coverage area formed byatatly nodes
repeat:
for each particle O[1...s| :
Evaluate the effective coverage af¢R.x; )

if f(Px)<f(Py,)

then Py, = Px;
if f(Py,)<f(Py)
then Py =Py,
Endfor

Perform PSO updates énusing equations (12) and (13)
if Py is not evolved in recent 10 iterations

then renewyv, and f (Px;) for each particle O[L...s]
Endfor

until stopping condition is satisfied (usually a su#idly small granularity, a sufficiently good fitrses
or a maximum number of iterations.)

Although PSO is suitable for solving multi-dimensib function optimization in continuous space
and the parallel computing mechanism is adoptddi8h the execution time is still a big bottleneuk
PSO, especially for large scale wireless sensevar&s which consist of lots of mobile sensor nodes.

According to Eq. (12), the velocities of particlaee updated according to their corresponding
experience and the experience of their companiongdlling each particle toward local best and
global best positions in PSO. However, becauseénitialized positions and velocities of particleg a
generated by a random term, the convergence spequhriially determined by the initialized
parameters of particles. Moreover, the local best global best positions may not be the optimal
results, especially in the forepart of optimizati@rhich will impact the convergence of optimization
Hence, if some other appropriate factors can bedoted to direct the particles flight to the omim
positions, the convergence speed and searchingyatfilPSO can be improved. It is also the key
motivation for importing the virtual force algorith Here, an improved PSO algorithm is proposed,
the so-called virtual force directed particle swasptimization (VFPSO), where the virtual force is
adopted into the update of velocities of partidl@sincreasing the speed of regional convergence in
PSO algorithm.

Different from PSO algorithm, the velocity of eapérticle is updated according to not only the
historical optimal solutions, but also the virtf@ices of sensor nodes in the VFPSO algorithm:

\& (t +1) = w(t)x Vii (t) TQry (t)(yij (t) = Xjj (t)) Coly (t)(y(t) =X (t)) tCJIy (t) 9; (t) (15)
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wherec , c,, r(t), ra(t), xi(t), vi(t), y;, ¥(t), ot) are as same as Eq.(18),is acceleration
constant,r, (t) is also a random function in the range [0,1] whighindependent to, (t) andr, (t),
g; (t) is the prolepsis motion suggested by virtual fooféth particle injth dimension, which is
computed by

(j+ -1
F[I’(l %j F["(H%)
—X——xMaxSepxe™ j=1,35--Ah-1
(A
F
9; (t)=1"" . o (16)
2l ny:
——xMaxSepx e j=2,4,6-- D
e |
xy

where the superscript of each parameter preseniadiex of particles and the index of wireless sens
nodes which the virtual force exerts on, the supsgresents the coordinate of the virtual forcke T
correlative virtual forces are carried out by EQ. @After modifying the velocities of particles Wwithe
virtual forces, the VFPSO algorithm also implemethis optimization by using PSO according to the
flowchart described in the previous section.

3.3. Further Improved VFPSO with Co-evolutionary Manner

Because the traditional PSO algorithm uses a paiticrepresent a complete solution vector, the
search space will be enlarged exponentially aglimensionality of solution vector. It is signifidin
harder to find the global optimum of a high-dimemsil problem, compared with a low-dimensional
problem with similar topology. It will also impattte performance of the VFPSO algorithm. Moreover,
the overall evolution of complete solution vectorRSO algorithm has the disadvantage that, during
evolution, some components in the vector move cltséhe solution, while others may actually move
away from the solution. This undesirable behawsaralled two steps forward, one step back” [12].

Co-evolutionary algorithms based on modelling pmeaoa of coexistence of several species have
emerged as a very promising area of evolutionanypedging methods [19], such as genetic algorithms
[20, 21]. For improving the searching ability of ®$n high-dimensional problem, the search space
can be partitioned into lower dimensional subspdnesplitting the solution vectors into smaller
vectors [18]. This is the key motivation for co-awmnary particle swarm optimization (CPSO) [12].
It must be noticed that there is no explicit resimn on the type of PSO algorithm that should bedu
in the VFPSO algorithm. So, the CPSO can be alsal iis VFPSO algorithm for improving the
performance of dynamic deployment.

Instead of adopting one swarm to find the optimalimensional vector, in CPSO, the vector is
split into its components so that each swarm attertgopoptimize a single component of the solution
vector, essentially a 1-D optimization problem. Hweer, the function being optimized still requires a
n dimensional vector to evaluate. The simplest sehmnconstructing such a context vector is to take
the global best particle from each of the swarnt @ncatenate them to form suchradimensional
vector. To calculate the fitness for all particlesswarmj, the othem-1 components in the context
vector are kept constant (with their values sdh&global best particles from the otmet swarms),
while thekth component of the context vector is replacediin by each particle from tHeh swarm.
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The pseudocode for the CPSO algorithm is shownigurgé 3, whereR x, presents the current
position of particlel of swarmk, which can therefore be substituted into ke component of the
context vector when neede#,y, is the local best position of particieof swarmk and Ry is the
global best solution of swartk The functionb(k,z) returns ann-dimensional vector formed by
concatenating all the global best vectors acrossvedrms, except for theth component, which is
replaced withe, wherez represents the position of any particle from sw&mThen the current “best”
context vector will be denotelo(1,R §) , which is composed of the global best partideg of each of
the swarms.

Figure 3. Pseudocode for the CPSO algorithm.

define
b(k.2)=(RY.P.. R.¥zRnY i RY)
Create and initialize one-dimensional PSO®, .k O[L..n|
repeat:
for each swarnkO[L..n]:
for each particle O[1...s] :
if f(b(kRx))<f(b(kRy,))
then Ry, =R, X,
if f(b(k,Ry))<f(b(k,RY))
then By =Ry,
endfor
Perform PSO updates &nusing equations (12) and (13)

endfor
until stopping condition is satisfied

The cooperation between different swarms is prothbiethe process of cross-updating in CPSO
algorithm. Because the fitness of the context wastmmeasured when only one component is modified
at a time, a significant increase in the solutiorersity is advanced in the CPSO algorithm. Althloug
the CPSO algorithm has faster convergent abilitynay become trapped in suboptimal locations in
search space [12]. So a hybrid CPSO algorithmapgsed, which can exploit both of these properties.
In the hybrid CPSO, an alternative is to interlethwe two algorithms, so that the CPSO algorithm is
executed for one iteration, followed by one itematiof the PSO algorithm. Then an information
exchange between the two algorithms is implemebyeeplacing some of the particles in one half of
the algorithm with the best solution discoverediaoby the other half of the algorithm. Because the
diversity of particles will decrease significanbgcause of too-frequent information exchange [&2],
simple mechanism to prevent the swarms from actaflgrreducing the diversity is implemented by
limiting the number of particles that can activp8rticipate in the information exchange.

Similar to the VFPSO algorithm, the virtual forcéredted co-evolutionary particle swarm
optimization (VFCPSO) algorithm combines the hyb@®8SO with VF for dynamic deployment in
WSNs. In VFCPSO, the global search of optimal dgplent is achieved by the hybrid CPSO
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algorithm in a co-evolutionary manner for improvirlge solution quality and robustness. The
pseudocode for VFCPSO is illustrated in Figure AereQ is a normaln-dimensional swarmQ.x,
presents its current position of parti&leQy, is the local best position of partidte Q.y is the global
best solution of swarr@.

Because CPSO can perform better than PSO as thensiomality of the problem increases [12],
the performance of VFCPSO can be improved accoldi@pmpared to the VF, PSO and VFPSO
algorithms, the VFCPSO algorithm has better glaearching and regional convergence abilities and
can also be competent for the dynamic deploymenthef WSNs with mobile sensor nodes and
stationary sensor nodes. The comparisons of tleetefé coverage area and computation time between
VF, PSO and VFPSO and VFCPSO algorithms are caaigdn the next section, which verify the
outstanding performance of VFCPSO algorithm.

Figure 4. Pseudocode for VFCPSO algorithm.

Define
b(k.2)=(RY.R.Y . R.¥ ZR.Y s RY)
Create and initialize one-dimensional PSO®, .k O[L..n|

Initialise ann-dimensional PSOQ
Analyze the effective coverage area formed bymtaty nodes
repeat:

for each swarnkO[L..n]:

for each particle O[1...s] :
Evaluate the effective coverage areb(k, R x;))

it £(b(i.Rx))<f(b(i.Ry,))

then Py, =P, X,
if £(b(i.Ry))<f(b(i.F9))
then Py=Py,
endfor

Calculate the virtual forces between wireless sensdes using equations (4), (5), (6) and (7)
Perform PSO updates &nusing equations (13), (15) and (16)

endfor
Select randona 0 U (1,5/2)|Qy, # QY
Qx, =b(LR)
for each particlkO[L..s]:
Evaluate the effective coverage arefQx, )
if f(Qx,)<f(Qy)
themy, =Qx,
if f(Qy,)<f(QyY)
themy =Qy,
Endfor
Calculate the virtual forces between wireless sensdes using equations (4), (5), (6) and (7)
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Perform PSO updates Qnusing equations (13), (15) and (16)
for swarmkO[1..u]:

Select randomO U (1,s/2)|Ry, #R ¥
IDk'Xu = ka
Endfor
until stopping condition is satisfied

4. Simulation Results

To investigate the performance of the VF, PSO, \WP&d VFCPSO algorithms in the
optimization of dynamic deployment in WSNs, we glate here different WSN scenarios. VF, PSO,
VFPSO and VFCPSO are used to carry out the dyndeptoyment respectively. The simulation is
done on an AMD Atholon XP1600+ (1.40GHz) PC usingTMAB.

4.1. Comparison of Performance and Computation Time

At first, a WSN includingn, =80 stationary nodes and =20 mobile nodes is simulated. The
detection radius of each sensor is7m, and the range detection errorrjs 0.5 = 3.5n. The sensor
nodes are deployed in a square region with @ea00x 100= 100006v. The probabilistic detection
model parameters are set@s-1, a, =0, S, =1, 5,=05, ¢, =0.9, d, =2r =14m, C=3r =2Im. The
parameters for virtual force are set ag=1, w;=5, w; =5, w, =1, MaxSep=0.5 =3.5n
according to the discussion in [6]. The accelerattmnstants of PSO are set @s-c,=c,=1,
MaxNumber = 600. The numbers of used patrticles in all PSO algorgtare all 20.

Figure 5. Dynamic deployment after (a) initial random plaesm and after the
optimization of the (b) VF algorithm, (c) PSO, yPSO, and (e) VFCPSO.
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Fig. 5 illustrates the simulation results. Theialitocations of stationary sensor nodes are shawn
Fig. 5(a), where the effective coverage area i438. The final results carried out by VF, PSO,
VFPSO and VFCPSO are shown in Fig. 5(b), (c), @ é), respectively, where the grey level
presents the detection probability of each pomthis independent operate, the effective covetdge
the deployment carried out by VF, PSO, VFPSO an@REO are 71.99%, 89.06%, 91.68%, 95.98%.

It is obvious that VFCPSO can implement dynamiclal@pent most effectively, i.e., the effective
coverage area is improved more remarkably than ByRSO and VFPSO. The reason is that the co-
evolutionary manner significantly increases theusoh diversity and improves the robustness and
global searching ability of CPSO, and virtual facd wireless sensor nodes can direct the evolation
particles and increase convergence speed. Furthernd& performs worst because the virtual force
exerted by stationary sensor nodes impact the ggtran of dynamic deployment. PSO cannot
achieve the global optimal because the evolutiorparticles is only suggested by the historical
information. Compared to PSO, VFPSO performs bdisrause the combination of virtual force
improves the regional convergence ability of PS@welver, the performance of VFPSO is also
impacted by thetWo steps forward, one step back” scenario.

For detailing the comparison of convergence spéexdimprovement of effective coverage during
the execution of VF, PSO, VFPSO and VFCPSO algwostlin the former individual operation are
compared, and the results are shown in Fig. 6. @isly, VFCPSO can quickly converge to a global
optimal with only 12 iterations, while VFPSO ispped in suboptimal locations in search space with
122 iterations. Without the guidance of virtualder PSO algorithm improves the effective coverage
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more slowly than the VFPSO and VFCPSO algorithmsd, iaalso converges to suboptimal after 369
iterations. Furthermore, VF algorithm is signifidgnimpacted by the virtual force exerted by
stationary node, so the effective coverage arga si@und 71.99% for a long time.

For investigating the robustness of VF, PSO and SGRigorithms, 100 independent operations
with different initialization are carried out, artde average computation time and mean and mean
square root (MSR) of effective coverage area ampewed and illustrated in Table 1. It must be noted
that the parameters of network and wireless sersies are same in these 100 independent operates.

The results shiw that the dynamic deployment datechby VFCPSO algorithm can effectively
cover most area of region of interest (96.36%). Almel effect of VFCPSO is also robust since the
MSR of effective coverage are of VFCPSO is only4@e5 The VF algorithm is still impacted by
stationary sensor nodes, so the mean of effectiverage area is worse (77.51%). Furthermore, the
performance of the VF algorithm is determined kg thndom initialization of stationary sensor nodes
which is not stable, so the MSR of effective cogerarea of VF is 7.76%.

Figure 6. The improvement of effective coverage during tkecation of the VF, PSO,
VFPSO and VFCPSO.
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Table 1. The average computation time and mean and MSHfexft@e coverage area
of VF, PSO, VFPSO and VFCPSO in 100 independentatipes.

VF PSO VFPSO VFCPSO
Mean of effective coverage area (%y7.51 90.17 92.57 96.36
MSR of effective coverage area (%) 7.76 2.45 1.13 .540
Average computation time (s) 19.27 27.82 17.39 15.2
Average iterations 587.14360.49 125.37 10.27

Besides the effectiveness and robustness, the VBCGHRgorithm also performs well with regards
to computation time. In this scenario, the compatatime of the VFCPSO algorithm is less than that
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of the other three algorithms, implying that VFCP&0a fast and effective algorithm for dynamic
deployment.

4.2. Effect Analyses of the Number of Wireless Sensor Nodes

As presented before, the computation complexityP&O will increase exponentially as the
dimensionality of the search space increases,esadmputation time varies significantly relativettwi
the number of wireless sensor nodes in dynamicogemnt. For investigating the effect of the number
of wireless sensor nodes, a series of experimandgferent WSNs which contains different numbers
of wireless sensor nodes are implemented. The gaeasnof different WSNs are listed in Table. 2.

Table 2. The parameters of different WSNSs.

Number of mobile sensor nodes 10 20 30 40 50 60 7080
Number of stationary sensor nodes 40 80 120 160 20240 280 320
Detection radius (m) 10 7 5.8 5 4.5 4.1 3.8 3.5
Range detection error (m) 5 3.5 2.9 2.5 275 2059 1 1.75
Communication Range (m) 30 21 17.4 15 135 123 411.105

Predefined threshold of virtual force (m)20 14 11.6 10 9 8.2 7.6 7

The VF, PSO, VFPSO and VFCPSO algorithms are addptdeploy the wireless sensor nodes in
100 independent operates for each kind of WSNsemisely. The means of effective coverage area
and average computation time of each algorithmhean\WSNs which contains different numbers of
wireless sensor nodes are illustrated in Fig. 7.

Figure 7. The means of effective coverage area and ave@g@utation time of VF,
PSO, VFPSO and VFCPSO algorithms in the WSNs wbastiains different numbers
of wireless sensor nodes.
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As illustrated in Fig. 7(a), the computation timiefa@ur algorithms all increase with the number of
wireless sensor nodes. However, the computatioa tinthe VFCPSO algorithm is the least all the
time, and its change rate is also the lowest ofalt algorithms, which implies that the VFCPSO
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algorithm can converge to the global optimal megtidly. Compared to the VFCPSO algorithm, the
computation time of the PSO algorithm sharply iases with the number of wireless sensor nodes,
because of the exponentially increased computat@nmplexity. The VFPSO algorithm adopts the
traditional PSO algorithm, so its computation tiailso increases faster than the VFCPSO algorithm,
although the virtual force can increase its coneeog speed. The computation time of the VF
algorithm is largely impacted by the complex vifti@ce exerted on wireless sensor nodes, which is
the motivation for its largely increased computatiine.

Fig. 7(b) shows that the effective coverage ardathe PSO, VFPSO and VFCPSO algorithms
decrease when the number of wireless sensor nodesases. The reason is that the performance of the
PSO algorithms, including PSO, VFPSO and VFCPSA, deteriorate as the number of wireless
sensor nodes increases because the probabiligneragting a sample inside the optimality regiort wil
increase according to the volume of search spasethB® performance of VFCPSO deteriorates slower
than the PSO and VFPSO algorithms, which implied YW\CPSO has better global optimal search
ability and can be adopted in large scale WSNs hkvhliontains many wireless sensor nodes.
Furthermore, the performance of the VF algorithmuist determined by the randomly initialized
dynamic deployment and the parameters of network &iteless sensor nodes, so the effective
coverage area of the VF algorithm is irrelativelvtie number of wireless sensor nodes. However, the
performance of the VF algorithm is still worst besa it cannot overcome the impact of the virtual
force exerted by stationary sensor nodes.

The comparison results of effective coverage angbcamputation time in different WSNs present
the outstanding performance of the VFCPSO algorittvmch demonstrates that this algorithm is a
fast, effective and robust algorithm for dynamipldgment in WSNSs.

5. Conclusions

This paper proposes an improved co-evolutionargigh@aiswarm optimization algorithm, called the
VFCPSO algorithm, as a practical approach for wgglsensor networks with dynamic deployment. In
the proposed algorithm, CPSO is adopted to impléngéwbal searching of optimal deployment
vectors in co-evolutionary manner, virtual forceuged to direct the updating of particles towaluds t
better positions. The simulation results illustréte outstanding performance of VFCPSO algorithm,
i.e., VFCPSO is more efficient than the VF, PSO 9¥/€&SO algorithm in terms of effective coverage
area and computation time and the performance ® RCPSO algorithm is nearly stable as the
number of wireless sensor nodes increases. lteaetlared that the proposed VFCPSO algorithm has
good global searching and regional convergencdiabiin the procedure of optimization, and it can
implement the dynamic deployment of hybrid WSNshwitobile sensor nodes and stationary sensors
nodes rapidly, effectively and robustly.
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