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Abstract: Biochemical markers, specifically enzymes of the first phase of xenobiotic 
transformation - cytochrome P450 and ethoxyresorufin-O-deethylase (EROD) - were used 
to determine the quantities of persistent organic pollutants (POPs) in fish muscle (PCB, 
HCB, HCH, OCS, DDT). Eight rivers were monitored (Orlice, Chrudimka, Cidlina, Jizera, 
Vltava, Ohře and Bílina; and the River Blanice was used as a control). The indicator species 
selected was the chub (Leuciscus cephalus L.). There were no significant differences in 
cytochrome P450 content between the locations monitored. The highest concentration of 
cytochrome P450 in fish liver was in the Vltava (0.241 nmol mg-1 protein), and the lowest 
was in the Orlice (0.120 nmol mg-1 protein). Analysis of EROD activity showed a 
significant difference between the Blanice and the Vltava (P< 0.05), and also between the 
Orlice and the Vltava (P< 0.01), the Orlice and the Bílina (P< 0.01), and the Orlice and the 
Ohře (P< 0.05). The highest EROD activity in fish liver was in the Vltava (576.4 pmol min-1 
mg-1 protein), and the lowest was in the Orlice (63.05 pmol min-1 mg-1 protein). In 
individual locations, results of chemical monitoring and values of biochemical markers were 
compared. A significant correlation (P< 0.05) was found between biochemical markers and 
OCS, and PCB. Among the tributaries studied those that contaminated the Elbe most were 
the Vltava and the Bílina. These tributaries should not be considered the main sources of 
industrial contamination of the River Elbe, because the most important contamination 
sources were along the river Elbe itself. 
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1. Introduction 

The dramatic increase in anthropogenic activity since the early 20th century has had a negative 
impact on all parts of the environment. The aquatic environment has become an easily accessible 
disposal site for xenobiotics and pollutants such as organochlorine compounds - PCBs and chlorinated 
pesticides. Contamination of water with industrial and agricultural pollutants influences the 
biochemical processes of aquatic organisms. An effective monitoring system using biochemical 
markers has been established to demonstrate these xenobiotics in the environment. The cytochrome 
P450 system has proved to be a very suitable tool for biochemical and environmental monitoring [1]. 
Suitable markers have been used to assess contamination in the River Elbe, which is ranked among the 
very important European aquatic ecosystems. The river is 1 103.5 km long and its catchment covers 
148 268 km2. The river flows through two countries, the Czech Republic (51 336 km2) and Germany 
(96 932 km2). Contamination remains a focus of attention [2-7]. 

A project of intensive research into contamination of the River Elbe, called Projekt Labe I (1991-
1994), was launched in 1991. At present, Projekt Labe IV is in progress, and is centred on potential 
sources of the river's contamination, that is on the important tributaries. These were the Orlice, 
Chrudimka, Cidlina, Jizera, Vltava, Ohře and Bílina. The River Blanice was used as a control.  

The indicator species selected was the chub (Leuciscus cephalus L.). Fish were caught at sites along 
the lower reaches of the tributaries and upstream of the first migration barrier before their discharge to 
the Elbe. The effect of contamination on fish populations was assessed using biochemical markers 
(specifically enzymes of the first stage of xenobiotic conversion, namely cytochrome P450 and 
ethoxyresorufin-O-deethylase) and chemical analyses of fish muscle tissue.  

Cytochrome P450 (CYP 450) is an important biochemical marker and indicator of contamination 
with some pollutants [8]. It is particularly sensitive to a broad spectrum of industrial contaminants (e.g. 
dioxins, polychlorinated biphenyls - PCB, polycyclic aromatic hydrocarbons - PAH) [9,10]. These 
pollutants accumulate in large quantities in river sediments [11], and from there they get in aquatic 
organisms via the food chain. The most important indicator of aquatic environment contamination 
seems to be subfamily 1A of cytochrome P450 [12].  

Another enzyme, ethoxyresorufin-O-deethylase (EROD) is functionally linked to cytochrome P450. 
This enzyme transforms substrates into products emitting a measurable fluorescent signal and is more 
sensitive than the determination of CYP 450. EROD enzyme activity was also determined as part of 
aquatic environment contamination monitoring [4,5,13,14].  

The aim of the study was to assess the degree of contamination in selected tributaries of the Elbe, 
using biochemical markers in male chub; to compare results of biochemical and chemical monitoring; 
and to assess the relationship between CYP 450 and EROD. 
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2. Methods 

In summer (from May to June) 2006, male chub were caught in the Orlice (992 km river´s length), 
the Chrudimka (967 km river´s length), the Cidlina (907 km river´s length), the Jizera (868 km river´s 
length), the Vltava (837 km river´s length), the Ohře (792 km river´s length), and the Bílina (765 km 
river´s length), and at a location on the control River Blanice. These individual locations are shown in 
Figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Map of the Czech Republic and location of sampling sites and the control site. 

At each location, 3-10 chub were caught. The biometric characteristics of these fish are given in 
Table 1. The fish were killed, measured, weighed, aged from scales, and their health status determined 
by macroscopic examination. Individual liver samples were taken for analysis of biochemical markers 
(cytochrome P450, EROD) and individual muscle samples for POPs (PCB, DDT, HCB, HCH, OCS) 
concentrations. Immediately after collection, liver samples were placed in cryotubes into liquid 
nitrogen and stored at -86° C, where they were kept until use. Muscle samples were stored at -20° C. 



Sensors 2007, 7  2602 
 

 

Table 1. Biometric characteristics of male chub (Leuciscus cephalus L.), n = number of fish examined. 

Location (n)   Weight (g) 
mean±SD  

Age (years) (mean of the total) 
(min-max) 

ORLICE 6 323±39 3.8 (3–4) 
CHRUDIMKA 10 180±11 3.2 (3–4) 
CIDLINA 9 238±53 3.7 (2–5) 
JIZERA 3 377±189 4.0 (3–5) 
VLTAVA 7 290±30  3.3 (3–4) 
OHŘE 10 541±64 4.8 (3–7) 
BÍLINA 10 121±18 2.3 (2–3) 
BLANICE (control location) 10 339±39 4.8 (3–6) 

2.1 Liver sample processing 

Liver samples were homogenized in homogenizing buffer (0.25 M saccharose, 0.01 M TRIS and 
0.1 mM EDTA). Processed samples were then poured into centrifugation test tubes and centrifuged at   
10 000 g for 20 min at 4° C. The supernatant was carefully pipetted to ultracentrifugation tubes and 
centrifuged again at 100 000 g for 1 h at 4° C. The supernatant was drained, pellets were washed with 
buffer and, then, resuspended in buffer. This suspension was put into individual eppendorf tubes and 
stored at – 80° C until use. Before the enzymes were assayed, microsomal protein concentrations were 
determined by the Lowry method [15]. 

2.2 Quantitative determination of cytochrome P450 

Total cytochrome P450 was determined by visible light spectrophotometry at 400–490 nm 
wavelength range on the basis of the difference between absorbance readings at 450 and 490 nm, and 
the values obtained were then transformed to final concentrations. Measurements were made after 
cytochrome reduction by sodium dithionite and after the complex with carbon oxide was formed. The 
method is described in detail in [5]. 

2.3 EROD activity determination 

Activity of the enzyme ethoxyresorufin-O-deethylase (EROD) was measured by 
spectrofluorometry. The method is described in detail in [5]. In the presence of the enzyme, its activity 
transforms the substrate ethoxyresorufin to resurufin in the presence of NADPH. Measurements were 
made using the Perkin-Elmer Fluorescence Spectrophotometer 203.  

2.4 Determination of POPs in muscle samples 

Polychlorinated biphenyl (PCB) indicator congeners – IUPAC numbers 28, 52, 101, 118, 138, 153 
and 180, hexachlorbenzene (HCB), α-, β-, γ-isomers of hexachlorocyklohexane (HCH), 
octachlorostyrene (OCS) and DDT and its degradation products DDD and DDE were determined in 
individual muscle samples by means of two-dimensional capillary gas chromatography (2D/HRGC) 
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employing two parallel columns of equal dimension differing in selectivity (DB-5 and DB-17) and two 
electron-capture detectors (ECD). Isolation of target analytes from fish muscle was carried out by 
Soxhlet extraction into a hexane:dichloromethane (1:1, v/v) solvent mixture. The clean-up of extracts 
was performed, as for alkylphenols, by GPC on a Bio-Beads S-X3 column and mobile phase 
ethylacetate:cyclohexane (1:1, v/v). ). The method is described in detail in [16]. 

2.5 Statistical methods 

Statistical analysis of the data was performed using the program STATISTICA 6.1 for Windows 
(StatSoft ČR). The data were assessed by non-parametric methods because data normality was not 
proven. The Kruskal-Wallis test was used to compare contamination levels of the exogenous 
substances monitored in individual profiles. The same test was used to compare biochemical markers 
of contamination between individual profiles. Whenever the Kruskal-Wallis test showed statistically 
significant differences between profiles (P<0.05), multiple comparisons of all profiles were 
subsequently performed. Relations between individual parameters were assessed using Spearman's 
correlation coefficient (R). 

3. Results 

3.1 Macroscopic assessment of health status of fish 

The health status of the fish was examined before tissue samples were collected. Eye damage 
(exophthalmos and corneal opacity) was found in two fish from the Vltava. Pathological changes of 
the gonads (neoplasms and an atrophy of part of the gonads) were found in fish from the Cidlina (1 
fish), the Orlice (2 fish) and the Ohře (1 fish). Macroscopic examination of chub from the Blanice and 
from the remaining locations revealed no pathological changes in the fish. 

3.2 Biochemical markers 

The highest cytochrome P450 concentrations in fish liver were in the Vltava (0.241 nmol mg-1 
protein), while the lowest concentrations were in the Blanice (0.152 nmol mg-1 protein) and the Orlice 
(0.120 nmol mg-1 protein). Statistical analysis showed no significant differences in cytochrome P450 
concentrations in the liver of indicator fish between locations. 

The highest EROD activity in fish liver was in the Vltava (576.4 pmol min-1.mg-1 protein), and the 
lowest level was in the Orlice (63.05 pmol min-1.mg-1 protein) (Figure 2). The Blanice, which was the 
control, was 213.7 pmol min-1.mg-1 protein. Statistical analysis of EROD activity showed a significant 
difference (P< 0.05) between the Blanice control and the Vltava, and also a significant difference 
between the Orlice and the Vltava (P< 0.01), the Bílina (P< 0.01) and the Ohře (P< 0.05). 
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Figure 2. EROD activity in liver samples of male chub 

Significant correlations (R = 0.687) between EROD activity and cytochrome P450 were found in 
fish from all locations at P< 0.01. 
 

Table 2. Content of persistent organic pollutants in male  
chub (Leuciscus cephalus L.) (μg kg-1 of muscle, w.w.). 

LOCATION PCB* 
 

DDT** HCB 
 

HCH 
*** 

OCS 

ORLICE 15.1±2.66 10.6±1.54 1.51±0.23 0.31±0.1 0.028±0.004 
CHRUDIMKA 9.1±1.18 13.0±1.27 1.57±0.10 0.22±0.04 0.041±0.003 
CIDLINA 13.7±3.24 8.1±1.67 0.52±0.05 0.45±0.10 0.072±0.02 
JIZERA 51.9±23.73 23.2±10.21 1.22±0.36 0.20±0.02 0.24±0.13 
VLTAVA 46.1±7.11 25.1±3.23 1.55±0.19 0.21±0.03 0.12±0.02 
OHŘE 68.6±10.95 44.0±5.51 2.82±0.38 0.56±0.21 0.46±0.23 
BÍLINA 31.9±2.92 14.4±1.73 2.93±0.38 0.32±0.01 0.10±0.02 
BLANICE (control location) 10.8±1.06 35.0±4.09 1.75±0.20 0.18±0.03 0.03±0.008 
* sum of 7 indicator congeners (28, 52, 101, 118, 138, 153, 180); ** sum of DDT (o,p´- DDE; p,p´- DDE; o,p´- DDD; 

p,p´- DDD; o,p´ - DDT; p,p´- DDT); *** sum of HCH isomers (α, β, γ) 
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3.2 Chemical monitoring 

Results of chemical monitoring are summarized in Table 2 and Figure 3. The highest concentrations 
of pollutants monitored were in fish from the Ohře and the Vltava. The lowest concentrations were in 
the Blanice and in the Chrudimka. 

PCB concentrations in muscle of indicator fish from the Ohře (P< 0.01) and the Vltava (P< 0.05) 
were significantly higher than those found in the fish from the Blanice. Significant differences were 
also found between the Chrudimka and the Vltava (P< 0.01) and the Ohře (P< 0.05), and between the 
Ohře and the Cidlina (P< 0.05). Among all the indicator PCB congeners, the large majority (70-80 %) 
were the higher chlorinated PCB congeners 138, 153 and 180. 
 

 

Figure 3. Content of PCB (sum of 7 indicator congeners) in male chub muscle samples (wet weight) 

The lowest muscle DDT concentrations were in indicator fish from the Cidlina. The river with the 
highest DDT pollution was the Ohře (44.01 μg kg-1 muscle). DDT muscle concentrations in the Orlice 
and the Cidlina were significantly lower (P< 0.05) than those found in the Blanice. Significant (P< 
0.01) differences were found between the Ohře and the Chrudimka, the Ohře and the Orlice, and the 
Ohře and the Cidlina. 

The highest HCB muscle concentrations were in chub from the Ohře and the Bílina, the lowest in 
chub from the Cidlina. Concentration of HCB in fish muscle from the Cidlina were significantly lower 
than those in the Blanice (P< 0.01), and in fish from the Chrudimka (P< 0.05), the Ohře (P< 0.01) and 
the Bílina (P< 0.01).  
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Statistical analysis showed no significant differences in HCH muscle concentrations between 
locations. The highest HCH concentrations in muscle of indicator fish were found in the Cidlina, and 
the lowest HCH concentrations were in the Blanice tributary. The most abundant were the β-isomer 
(35–50%) and γ-isomer (i.e. lindane) (35–50 %), while the least abundant was the α-HCH isomer 
(approx. 15 %). 

The lowest OCS concentrations in muscle were found in the Blanice, the highest in the Ohře and 
the Jizera. OCS muscle concentrations in chub from the Ohře were significantly higher (P< 0.05) than 
those from fish from the Blanice, the Orlice and the Chrudimka. 

3.3 Correlations between biochemical markers and pollutant concentrations 

Correlating results of chemical monitoring and the results of biochemical marker measurements 
revealed significant relationships (P<0.05) between cytochrome P450 concentrations and the 
concentrations of PCB (R=0.317) and OCS (R=0.329) in muscle of indicator fish. A significant 
correlation (P<0.05) was also found between EROD activity and the concentrations of PCB (R=0.396) 
and OCS (R=0.436) in muscle of indicator fish. 

4. Discussion 

Biochemical monitoring showed that the most contaminated tributaries of the Elbe were the rivers 
Vltava, Ohře, Bílina and Jizera. EROD activity in the liver of chub ranged between 63.1 pmol min-1 
mg-1 protein (the Orlice) and 576.4 pmol min-1 mg-1 protein (the Vltava), cytochrome P450 
concentrations were between 0.120 nmol mg-1 protein (the Orlice) and 0.241 nmol mg-1 protein (the 
Vltava). The broad range of EROD activity observed in fish from the sampling locations may be due to 
the typical induction of cytochrome P450, where small differences in levels of cytochrome inductor 
exposure will be translated into relatively large differences in enzymatic activity. Organisms exposed 
to the natural environment are affected by a number of biotic and abiotic factors, which sometimes 
result in considerable variations in cytochrome P450 values and EROD activity [17]. Substances 
responsible for the activation of biochemical markers were present in all the locations monitored. 
Biochemical markers reflect the exposure of the organism to pollutants in their environment and, 
because they are easy to measure, they are often used as aquatic environment contamination 
assessment indicators [14] – the river Mures in Rumania, [18] – contamination of rivers in southern 
Belgium,  
[19] – Karnaphuly River in Bangladesh, [20] – small streams in an urban area. Biochemical markers 
for the assessment of the contamination of the River Elbe in the Czech Republic with organic 
pollutants have also been used by [4,5]. The highest values of EROD activity along the Elbe were 
reported by these authors from Valy (263.2 pmol min-1 mg-1 protein), a location negatively affected by 
the chemical industry. The least contaminated was the control site, the river Blanice. The highest 
cytochrome P450 concentration was recorded in Lysá nad Labem in the middle reaches of the Elbe 
(0.48 nmol mg-1 protein). The assessment of organic pollutants contamination of the River Elbe on 
German territory using biochemical markers has been conducted by, e.g. [3,21-23] found higher values 
of biochemical markers (EROD and cytochrome system) at locations along the Elbe near the Czech 
Republic compared with locations situated further downstream. Cytochrome P450 values found at 
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locations monitored in Germany are comparable with values ascertained in this study in the Czech 
Republic. Broeg et al. used EROD activity as one of several parameters they monitored when they 
assessed contamination in four locations [21]. They found the highest EROD activity levels in the Elbe 
estuary, indicating that the River Elbe is contaminated with xenobiotics along its entire length. 

Biochemical markers are important indicators of organic pollutant contamination of the 
environment. Monitoring these markers showed differences in contamination levels in different 
locations. These differences were confirmed by the results of chemical monitoring. Results of 
biochemical monitoring indicated that the most contaminated tributaries were the rivers Jizera, Vltava, 
Ohře and Bílina. At the same time, correlation was demonstrated (P<0.05) between concentrations of 
biochemical markers and the amounts of chemical pollutants (specifically between cytochrome P450 
and ΣPCB, cytochrome P450 and OCS, EROD activity and ΣPCB and EROD activity and OCS). PCB 
is one of important cytochrome P450 inductors. The most abundantly represented PCB congeners 
included higher chlorinated PCB congeners (Nos 138, 153 and 180). Higher chlorinated PCBs in the 
Elbe have also been reported in Germany where Heinisch et al. monitored PCB in fish and sediment 
along the entire river [24]. The frequent occurrence of higher chlorinated PCB congeners in the 
environment is the result of past use of technical mixes (e.g. Delor 106), which contain relatively high 
amounts of higher chlorinated congeners. In Czechoslovakia, 21 482 tonnes of PCB were produced 
between 1959 and 1984, of which Delor 106 contributed about 20 % (4 381 tonnes) [25]. 

The highest muscle concentrations of DDT were in fish from the Ohře, and the lowest were from 
the Cidlina. In all the samples examined, the dominant proportion in the sum of substances derived 
from DDT was made up of the isomer p,p´-DDE (75–90 %). Large amounts of the p,p´-DDE 
metabolite are suggestive of old contamination because the DDT to DDE conversion is relatively slow 
and, moreover, the parent substance DDT/DDE metabolite ratio is very low. p,p´-DDE isomer is the 
final product of metabolic transformation of the p,p´-DDT insecticide. A role in this transformation, 
that takes place in the liver, is played by the P450 cytochrome system [26]. The levels of other 
substances decreased in the order: DDE >> DDD >> DDT. All tests showed only minimum quantities 
of o,p´- isomers. o,p'-isomers are less stable than p,p' –isomers and are therefore detected in low 
concentrations in the environment. The o,p´-DDT isomer has a mild oestrogenic activity [27,28]. Some 
DDT isomers can be classified as environmental endocrine disruptors because they may cause 
disruption of the endocrine system [29,30]. Bioaccumulation of DDT and its metabolites in the brain 
causes an induction of liver enzymes [31] and a disruption of hormonal mechanisms [32]. 

HCB, another major environmental contaminant, used to be used as a fungicide for cereal seed. 
Nowadays it is brought into the environment as an intermediate product of a number of chlorinated 
compounds, particularly of lower chlorinated benzenes and of some pesticides [33]. 
Hexachlorobenzene is an omnipresent substance produced during combustion. The European 
parliament regulation 2000/60/EC identifies HCB as a priority hazardous substance. The main source 
of HCB for the Elbe's aquatic ecosystem is the waste site at Chabařovice, which is an abandoned 
brown coal open pit where municipal wastes and about 80 000 barrels of HCB-containing chemical 
waste from chemical plants were dumped between 1978 and 1990. Chlorobenzenes in various 
locations along the River Elbe (in water and in the sediment) in the Czech Republic and in Germany 
were monitored by Heinisch et al. [34]. HCB in the Elbe was demonstrated in bream (Abramis brama) 
and eel (Anguilla anguilla) as early as the 1980s [35,36]. OCS and HCB are considered the main 
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organochlorine contaminants of the Elbe. Marth et al. measured levels of chlorinated hydrocarbon 
contaminants (HCB, OCS, DDT and PCB) in muscle and liver of bream at various locations along the 
Elbe in Germany [37]. Higher levels of organochlorine pollutant contamination were found mainly in 
fish from locations in the upper reaches of the river. 

The lowest OCS concentrations in muscle were in the Blanice tributary, the highest in the Ohře and 
the Jizera. These concentrations were, however, lower by two orders of magnitude than those reported 
by Bester et al. in the liver of bream in the Elbe in Germany [38]. Though octachlorostyrene is a 
pollutant that is known to be prevalent in the environment, there may be sources that are still emitting 
significant amounts of chlorostyrenes along the River Elbe. Generally, such industrial sources exhibit 
their own chemical profile in their emissions.  

Of the three HCH isomers, the most abundantly represented were the β isomer and γ-isomer. (i.e. 
lindane). Lindane, has been used frequently in agriculture for its insecticidal action, and is still found 
in the environment because of its bioaccumulation in soil. Investigating bream from locations along 
the Elbe in Germany, Marth et al. found that the most abundant HCH isomers were a-HCH and b-HCH 
isomers [37].  

Although the manufacture and use of PCB and organochlorinated pesticides is banned or 
considerably restricted, these persistent compounds continue to be found even today among the 
pollutants contaminating aquatic environments all over the world [39-42]. It was noted that substances 
responsible for the activation of biochemical markers were present in all the locations monitored. The 
results of chemical monitoring also showed that locations with the highest values of biochemical 
markers were also those with the highest xenobiotic contaminations. 

5. Conclusion 

Analyses of biochemical markers of contamination and of chemical analyses of indicator fish 
showed that of the tributaries studied the ones that most contaminate the Elbe are the Jizera, Vltava, 
Ohře and Bílina. In most cases, elevated biomarker values were found together with elevated levels of 
the pollutants monitored. On the basis of concentrations of xenogenous substances found, these 
tributaries should not, however, be generally considered the main sources of industrial contamination 
of the River Elbe because the most important contamination sources are along the river Elbe itself. 
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