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Abstract: In order to efficiently identify early tea diseases, an improved YOLOv8 lesion detection
method is proposed to address the challenges posed by the complex background of tea diseases,
difficulty in detecting small lesions, and low recognition rate of similar phenotypic symptoms. This
method focuses on detecting tea leaf blight, tea white spot, tea sooty leaf disease, and tea ring spot
as the research objects. This paper presents an enhancement to the YOLOv8 network framework
by introducing the Receptive Field Concentration-Based Attention Module (RFCBAM) into the
backbone network to replace C2f, thereby improving feature extraction capabilities. Additionally, a
mixed pooling module (Mixed Pooling SPPF, MixSPPF) is proposed to enhance information blending
between features at different levels. In the neck network, the RepGFPN module replaces the C2f
module to further enhance feature extraction. The Dynamic Head module is embedded in the
detection head part, applying multiple attention mechanisms to improve multi-scale spatial location
and multi-task perception capabilities. The inner-IoU loss function is used to replace the original
CIoU, improving learning ability for small lesion samples. Furthermore, the AKConv block replaces
the traditional convolution Conv block to allow for the arbitrary sampling of targets of various
sizes, reducing model parameters and enhancing disease detection. the experimental results using
a self-built dataset demonstrate that the enhanced YOLOv8-RMDA exhibits superior detection
capabilities in detecting small target disease areas, achieving an average accuracy of 93.04% in
identifying early tea lesions. When compared to Faster R-CNN, MobileNetV2, and SSD, the average
precision rates of YOLOv5, YOLOv7, and YOLOv8 have shown improvements of 20.41%, 17.92%,
12.18%, 12.18%, 10.85%, 7.32%, and 5.97%, respectively. Additionally, the recall rate (R) has increased
by 15.25% compared to the lowest-performing Faster R-CNN model and by 8.15% compared to
the top-performing YOLOv8 model. With an FPS of 132, YOLOv8-RMDA meets the requirements
for real-time detection, enabling the swift and accurate identification of early tea diseases. This
advancement presents a valuable approach for enhancing the ecological tea industry in Yunnan,
ensuring its healthy development.

Keywords: YOLOv8; tea leaf spot detection; inner-EIoU; AKConv; dynamic head

1. Introduction

In the current era of global competition, the significance of agriculture cannot be un-
derstated. Tea, as a vital cash crop in my country, plays a crucial role in securing economic
stability for tea farmers within the framework of the rural revitalization policy. Being a spe-
cialty industry in Yunnan Province and a renowned ‘golden brand’ in regional agriculture,
the high-quality growth of the tea sector can substantially bolster the competitive edge of
regional specialty industries [1].
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Unfavorable environmental conditions such as strong light radiation, low night tem-
peratures, and high daytime humidity in Yunnan can lead to diseases that affect the yield
and quality of tea plants. Disease stands out as the primary factor that hinders the stable
growth of plant yield and quality. Severe cases of disease outbreaks can have catastrophic
effects on smallholder economies heavily reliant on agriculture. As the variety of tea types
increases, planting areas expand, and cultivation methods evolve, numerous secondary
diseases have started to surface. Detecting diseases early on, gathering disease information
promptly, identifying infection causes accurately, and assessing disease severity are crucial
steps that can help reduce pesticide usage, minimize environmental pollution, and effec-
tively prevent and control diseases before they spread and lead to yield decline. Therefore,
the early diagnosis and identification of diseases in tea gardens play a vital role in ensuring
high and efficient tea production [2].

In recent years, deep learning has made significant strides in various fields, including
agriculture, thanks to advancements in data analysis and image-processing technology. Tar-
get detection using deep learning has emerged as a key area of research in computer vision,
with applications in crop maturity detection [3,4], pest and disease identification [5–10],
plant phenotyping [11–13], and weed management [14,15]. Through the development of
sophisticated parallel models, challenges such as scattered data resources, information
integration complexities, and inefficient knowledge utilization in agricultural settings have
been effectively addressed.

Currently, popular deep learning target detection models such as Faster R-CNN [16,17],
SSD [18,19], and the YOLO [20–25] series are widely used in various research studies.
Researchers are continuously enhancing and refining these models for applications in crop
disease classification and detection. For instance, Li et al. [26] employed YOLOv5n to
identify cucumber diseases, achieving improved accuracy through the incorporation of
a coordinated attention mechanism and transformer structure. Sun Fenggang et al. [27]
utilized an enhanced version of YOLOv5s for the rapid detection of apple fruit diseases.
Xue et al. [28] introduced YOLO-Tea, a model for detecting tea pests and diseases based on
an enhanced YOLOv5, which significantly enhanced the accuracy and speed in identifying
tea leaf diseases and pests in natural settings. Additionally, Fuentes et al. [29] investigated
tomato pests and diseases using various deep learning architectures and feature extraction
methods for designing detection networks. Zhou et al. [30] applied the YOLOv7 algorithm
and image-processing techniques to locate and extract the center point of Camellia oleifera
fruit, achieving an average accuracy of 94.7%, surpassing the YOLOv5s algorithm by
0.7 percentage points.

Current mainstream target detection frameworks often do not include specific en-
hancements for small targets. When the targets are smaller in size, existing target detection
algorithms exhibit a noticeable decrease in performance. The overall performance is af-
fected as follows:

1. When the detection target is small and dense, as the network deepens during the train-
ing process, the detected objects may lose edge information, grayscale information,
and other features. This can lead to the mixing of irrelevant features during model
training, along with a significant amount of image noise information, ultimately
reducing model accuracy.

2. The size of the receptive field mapped to the original image is a key factor in the success
of target detection. A small receptive field preserves spatial structural features while
potentially compromising abstract semantic information. Conversely, a large receptive
field retains rich semantic information but may lose spatial structure details of the
target. Many methods aim to enhance the recognition accuracy of crop diseases by
boosting network complexity yet fail to fundamentally improve features. This results
in information loss, redundancy during extraction, increased hardware resource
consumption, and reduced recognition speed.

In order to realize the combination of computer vision technology and the dynamic
recognition of tea diseases, based on the YOLOv8 network framework, this paper introduces
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the Receptive Field Concentration-Based Attention Module into the backbone network. The
RFCBAM replaces C2f in the backbone and enhances the feature extraction capability of
the backbone network. The Mixed Pooling SPPF (MixSPPF) module is proposed to increase
information blending between features of different levels. The efficient RepGFPN module
is introduced to further improve the feature extraction capability of the disease target.
The Dynamic Head module is embedded in the detection head part, the multi-attention
mechanism is applied to detect the multi-scale, spatial position, and multi-task perception
ability of the head-strengthening algorithm, and the inner-IoU loss function is used to
improve the EIoU loss function, replacing the original CIoU with inner-EIoU to improve
the learning ability of the small lesion samples. In addition, traditional Conv blocks are
replaced with AKConv blocks to complete the arbitrary sampling of a variety of targets of
different sizes, reducing model parameters and adding momentum to disease detection.

2. Related Work
2.1. Introduction to the YOLOv8 Algorithm

YOLOv8 is a SOTA (state-of-the-art) model developed by Ultralytics in January 2023,
inheriting the strengths of the YOLO series while adding new features and improvements,
and consists of three main components: backbone, neck, and head [31].

The backbone component focuses on feature extraction by incorporating the C2f
(CSPLayer_2Conv) module for residual learning, inspired by the CSP and ELAN method-
ologies. It utilizes jump-layer connections and additional split operations to effectively
integrate gradient changes into the feature map throughout the process. The Conv convo-
lution module and C2f module are stacked four times in series, with each stack referred
to as a stage. The SPPF (Spatial Pyramid Pooling Fusion) module is then employed to
standardize the vector sizes of feature maps across various scales. The neck component
primarily handles feature fusion, replacing the C3 module with the C2f module and lever-
aging concepts from PANs (Path Aggregation Networks) and FPNs (Feature Pyramid
Networks) to establish top-down and bottom-up feature pyramids. Subsequently, the
output features from different stages of the backbone are upsampled directly. The head
component enhances the original anchor-based coupling head of YOLOv5 by transitioning
to the anchor-free decoupling head, eliminating the objectness branch. Additionally, it
features three detection heads with varying size feature maps to identify and output target
objects of different sizes.

2.2. Improved YOLOv8s Overall Structure

The enhancement and application of deep learning networks have practical importance
for detection tasks in various intricate practical environments [32]. This study introduces
enhancements based on YOLOv8 to effectively detect small targets of early tea diseases in
complex scenarios. The modified structure is illustrated in Figure 1.

2.2.1. Backbone Network Improvements

Yunnan boasts a favorable climate and soil, along with a picturesque ecological setting.
Tea plants thrive in mountainous regions at altitudes ranging from 2000 to 2500 m, where
the peaks are enveloped in clouds and mist. Various factors such as weather fluctuations,
changes in light radiation, water mist obstruction, and water vapor generation can lead to
visual disturbances, as illustrated in Figure 2.
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The backbone layer is known to introduce significant noise while extracting image
features from complex scenes. This noise can disrupt the long-range dependencies between
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pixels, diminish the model’s ability to detect and recognize objects, and potentially result in
false or missed detections. To address this issue, this study enhances the C2f module within
the backbone layer. By emphasizing spatial attention features and directing focus towards
receptive field spatial features, the study aims to mitigate the impact of noise on the model.
This approach resolves the challenge of convolution kernel parameter sharing, ultimately
enhancing model performance. The spatial attention mechanism in CBAM is leveraged
to target receptive field spatial features, resulting in the development of the RFCBAM
(Receptive Field Concentration-Based Attention Module). This module enables the model
to capture long-range information dependencies akin to self-attention mechanisms, thereby
boosting convolution performance. Figure 3 illustrates the improved RFCBAM. Unlike
traditional approaches that treat channel and spatial attention separately, this module inte-
grates both aspects simultaneously. Furthermore, to streamline computational processes,
grouped convolution is employed to extract receptive field spatial features and minimize
feature redundancy.
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RFCBAM and C2f_RFCBAMF are utilized to replace the Conv and C2f convolutions
in the backbone section of the original YOLOv8 model. This replacement not only enhances
the spatial features with improved receptive field attention, but also boosts channel at-
tention, thereby improving feature extraction in both spatial and channel dimensions. By
applying the RFCBAM to transform the bottleneck of the C2f module in the backbone,
more refined feature information can be obtained. The specific structural modifications
are illustrated in Figure 4. The C2f module, enhanced by the RFCBAM, primarily in-
corporates RFCBAM_Neck to substitute the bottleneck in the original module. Within
RFCBAM_Neck, two convolution modules are employed, and the second Conv is replaced
with RFCAMConv to eliminate residual connections in RFCBAM_Neck.
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2.2.2. MixSPPF Module

SPPF uses three max pooling methods to extract input features in series. However,
max pooling only extracts the maximum value of the input feature and can only represent
the local information of the input feature, ignoring the global feature information of the
input image. Therefore, this paper uses MixSPPF, and a combination of average pooling
and maximum pooling is used to improve the extraction of global information by SPPF.
The network structure is shown in Figure 5. Figure 5A shows the SPPF network structure,
and Figure 5B shows the MixSPPF structure.

Sensors 2024, 24, x FOR PEER REVIEW 7 of 24 
 

 

 
Figure 5. The structure of MixSPPF. 

Compared with SPPF, MixSPPF incorporates an average pooling branch that con-
nects three average pooling branches in series. The final output of MixSPPF is obtained by 
concatenating the outputs of three maximum pooling operations and three average pool-
ing operations. The calculation process is detailed in Formulas (1)–(4). 𝑥 = 𝐶𝑜𝑛𝑣(𝑥௜௡௣௨௧) (1)𝑦௠௔௫ = 𝐶𝑎𝑡(𝑀𝑎𝑥(𝑀𝑎𝑥(𝑀𝑎𝑥(𝑥))), 𝑀𝑎𝑥(𝑀𝑎𝑥(𝑥)), 𝑀𝑎𝑥(𝑥)) (2)𝑦௔௩௚ = 𝐶𝑎𝑡(𝐴𝑣𝑔(𝐴𝑣𝑔(𝐴𝑣𝑔(𝑥))), 𝐴𝑣𝑔(𝐴𝑣𝑔(𝑥)), 𝐴𝑣𝑔(𝑥)) (3)𝑦௢௨௧ = 𝐶𝑜𝑛𝑣(𝐶𝑎𝑡(𝑦௠௔௫, 𝑦௠௜௡)) (4)

In the formula, 𝑥௜௡௣௨௧ represents the input feature; 𝐶𝑜𝑛𝑣 represents the convolution 
operation; 𝑀𝑎𝑥 represents the maximum pooling operation; 𝐴𝑣𝑔 represents the average 
pooling operation; 𝐶𝑎𝑡  represents the feature splicing operation; 𝑦௠௔௫  represents the 
output feature of the maximum pooling branch; 𝑦௔௩௚ represents the output features of 
the average pooling branch; 𝑦௢௨௧ represents the final output features. 

2.2.3. Dynamic Head 
When capturing images of diseases, especially in harsh climate conditions, there is a 

risk of losing important pixel information of the disease target. Most current algorithms 
focus on enhancing the performance of the detection head to identify the target from a 
consistent viewpoint. In order to enhance the ability to extract crucial features of lesions, 
this study introduces a novel method called Dynamic Head, which incorporates multiple 
dynamic attention mechanisms. These attention mechanisms, focusing on scale percep-
tion, spatial position, and multi-tasking, aim to enhance the expression capability of the 
model’s target detection head. This, in turn, improves the model’s accuracy in recognizing 

Figure 5. The structure of MixSPPF.



Sensors 2024, 24, 2896 7 of 22

Compared with SPPF, MixSPPF incorporates an average pooling branch that connects
three average pooling branches in series. The final output of MixSPPF is obtained by
concatenating the outputs of three maximum pooling operations and three average pooling
operations. The calculation process is detailed in Formulas (1)–(4).

x = Conv
(
xinput

)
(1)

ymax = Cat(Max(Max(Max(x))), Max(Max(x)), Max(x)) (2)

yavg = Cat(Avg(Avg(Avg(x))), Avg(Avg(x)), Avg(x)) (3)

yout = Conv(Cat(ymax, ymin)) (4)

In the formula, xinput represents the input feature; Conv represents the convolution
operation; Max represents the maximum pooling operation; Avg represents the average
pooling operation; Cat represents the feature splicing operation; ymax represents the output
feature of the maximum pooling branch; yavg represents the output features of the average
pooling branch; yout represents the final output features.

2.2.3. Dynamic Head

When capturing images of diseases, especially in harsh climate conditions, there is a
risk of losing important pixel information of the disease target. Most current algorithms
focus on enhancing the performance of the detection head to identify the target from a
consistent viewpoint. In order to enhance the ability to extract crucial features of lesions,
this study introduces a novel method called Dynamic Head, which incorporates multiple
dynamic attention mechanisms. These attention mechanisms, focusing on scale perception,
spatial position, and multi-tasking, aim to enhance the expression capability of the model’s
target detection head. This, in turn, improves the model’s accuracy in recognizing various
disease targets within complex backgrounds. The structure of Dynamic Head is illustrated
in Figure 6.
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The feature pyramid is extracted using the backbone network and then adjusted to a
three-dimensional feature vector of the same scale. Subsequently, the dynamic detection
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head is inputted, leading to the output of classification detection for multiple diseases.
Formula (5) is as follows:

F ∈ RL×S×C (5)

In the dynamic detection head framework, the input of the head part is regarded
as a three-dimensional level ∗ space ∗ channel. Here, level refers to the feature level, space
represents the product of width and height of the feature map (H × W), and channel
denotes the number of channels in mathematical terms. As a result, self-attention is
typically formulated as shown in Formula (6).

W(F) = π(F) · F (6)

In the formula, π(·) represents the attention function. This type of attention is typ-
ically implemented using a fully connected layer, which can result in a sudden surge in
computational load and is not conducive to high-dimensional calculations. In contrast,
Dynamic Head converts the attention function into three consecutive attentions, each of
which only needs to focus on one dimension:

W(F) = πC(πS(πL(F) · F) · F) · F) (7)

The formula includes three attention functions, πL, πS, and πC, applied to dimensions
L, S, and C. The scale-aware attention module πL combines features of varying scales
according to their semantic significance.

πL(F) · F = σ( f (
1

SC ∑ S,C F)) · F (8)

In the formula, f (·) represents a linear function approximated using 1*1 convolution.
σ(x) = max(0, min(1, x+1

2 )) is a hard sigmoid function.
The spatial perception attention module, denoted as πS, is dedicated to enhancing

the discriminative ability across various spatial locations. Due to the high latitude of S, it
is essential to decouple the module to facilitate sparse attention learning within the same
space. This enables the aggregation of cross-level features at specific locations.

πS(F) · F =
1
L∑L

l=1 ∑K
k=1 wl,k · F(l; pk + ∆pk; c) · ∆mk (9)

In the formula, w represents the variable convolution layer weight; K denotes the
number of sparse sampling positions; pk stands for the convolution center point; ∆pk
indicates the relative center point offset; pk + ∆pk focuses on the judgment area; ∆mk relates
to the weight measurement factor around the position pk, which can be acquired from the
input features of the intermediate level of F.

The multi-task attention module utilizes the Dynamic ReLU function to activate the
input feature map on a per-channel basis. The calculation formula for this activation is:

πC(F) · F = max(α1(F) · FC + β1(F), α2(F) · FC + β2(F)) (10)

In the formula, FC represents the feature slice of the C-th channel, and
[
α1, α2, β1, β2 ]T

=
θ(·) is the learning control activation threshold super function.

To better illustrate the impact of the Dynamic Head target detection head on various
tea leaf lesion targets amidst complex backgrounds, Grad-CAM heat map visualization
is employed for analysis, heat maps are mainly used to display the location and confi-
dence of target objects in various areas in the image. The darker the area, the higher the
probability that the model believes that there is a target object in the area, as depicted in
Figure 7. The results demonstrate that the inclusion of Dynamic Head for the four diseases
of tea leaf blight, tea white spot, tea coal leaf disease, and tea ring spot enhances the
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detection head’s capability to accurately locate disease targets, thereby improving model
accuracy significantly.
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2.2.4. Inner-IoU

The bounding box regression (BBR) loss function is continuously updated and op-
timized with the rapid development of detectors. However, the current IoU-based BBR
mainly focuses on accelerating convergence by introducing new loss terms, while over-
looking the inherent limitations of the IoU loss term itself. Enhancing the IoU loss term can
partially compensate for the deficiencies of bounding box regression, but it lacks the ability
to adapt autonomously to different detectors and detection tasks in practical scenarios.
For instance, in the context of detecting tea diseases, where most diseases manifest as
densely growing lesions, it becomes crucial for the model to consider various metrics in
the bounding box regression, such as distance, overlap area, aspect ratio, etc., between
the predicted box and the ground truth box. IoU, a key component of the predominant
bounding box regression loss function, is defined as follows:

IoU =

∣∣B ∩ Bgt
∣∣

|B ∪ Bgt|
(11)

In the formula, B and Bgt represent the prediction box and GT box, respectively. After
defining IoU, its corresponding loss can be defined as:

LIoU = 1 − IoU (12)

Existing methods primarily rely on IoU and incorporate additional loss terms. GIoU
addresses the issue of gradient disappearance that occurs when the overlapping area
between the anchor box and the GT box is 0. The definition of GIoU is presented in
Equation (13):

LGIoU = 1 − IoU +

∣∣C − B ∩ Bgt
∣∣

|C| (13)

In the formula, C is the smallest box covering B and Bgt.
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Compared with GIoU, DIoU adds a new distance loss term based on IoU by minimiz-
ing the normalized distance between the center points of the two bounding boxes. The
definition is as follows:

LDIoU = 1 − IoU +
ρ2(b, bgt)

c2 (14)

In the formula, b and bgt represent the center points of B and Bgt, respectively. The
function ρ(·) denotes the Euclidean distance, and c stands for the diagonal of the minimum
bounding box. CIoU [33,34] extends this by incorporating shape loss and introducing a
shape loss term derived from DIoU loss. The definition can be summarized as follows:

LCIoU = 1 − IoU +
ρ2(b, bgt)

c2 + αv (15)

α =
v

(1 − IoU) + v
(16)

v =
4

π2

(
arctan

wgt

hgt − arctan
w
h
)2 (17)

In the formula, v represents the consistency of the aspect ratio; α is a positive weight
parameter; wgt and hgt represent the width and height of the target frame; w and h represent
the width and height of the prediction frame.

Compared with DIoU, EIoU calculates the normalized difference between the width
(w, wgt), height (h, hgt), and center position (b, bgt) of the target box and the anchor box
directly, based on DIoU. The definition is as follows:

LEIoU = 1 − IoU +
ρ2(b, bgt)

c2 +
ρ2(w, wgt)
(wc)2 +

ρ2(h, hgt)
(hc)2 (18)

In the formula, wc and hc are the width and height of the minimum bounding box of
the target box and prediction box, respectively.

In this study, the EIoU loss function is utilized. Considering the limitations of the IoU
loss in terms of rationality and convergence speed, the inner-IoU loss is incorporated along
with auxiliary bounding boxes to expedite regression without introducing additional loss
terms. The inner-IoU loss introduces a scale factor ratio to regulate the size of the auxiliary
bounding box. This concept is visually represented in Figure 8.

bgt
l = xgt

c − wgt ∗ ratio
2

, bgt
r = xgt

c +
wgt ∗ ratio

2
(19)

bgt
t = ygt

c − hgt ∗ ratio
2

, bgt
b = ygt

c +
hgt ∗ ratio

2
(20)

bl = xc −
w ∗ ratio

2
, br = xc +

w ∗ ratio
2

(21)

bt = yc −
h ∗ ratio

2
, bb = yc +

h ∗ ratio
2

(22)

inter =
(

min
(

bgt
r , br

)
− max

(
bgt

l , bl

))
∗
(

min
(

bgt
b , bb

)
− max

(
bgt

t , bt

))
(23)

union =
(
wgt ∗ hgt) ∗ (ratio)2 + (w ∗ h) ∗

(
ratio)2 − inter (24)

IoUinner =
inter
union

(25)
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In the formula, (xgt
c , ygt

c ) represents the center point of the target frame; (xc, yc) repre-
sents the center point of the anchor frame; wgt and hgt represent the width and height of the
target frame; w and h represent the anchor frame width and height; ratio is an adjustable
scaling factor, with a value range of [0.5, 1.5]. Similar to IoU loss, the value range of inner-
IoU loss is [0, 1]. In comparison to IoU loss, inner-IoU loss is more effective when the ratio is
less than 1. When the size of the auxiliary bounding box is smaller than the actual bounding
box, the regression’s effective range is smaller than IoU loss, but the gradient’s absolute
value is larger, leading to faster convergence of high-IoU samples. Applying inner-IoU loss
to EIoU results in LInner−EIoU :

LInner−EIoU = LEIoU + IoU − IoUinner (26)

2.2.5. AKConv

Current neural networks utilizing convolution operations have shown impressive
advancements in the realm of deep learning [35,36]. However, traditional convolution
operations still face limitations. Firstly, the sampling shape size is fixed, restricting the
convolution operation to a local window and hindering the capture of information from
other locations. Secondly, the convolution kernel size is fixed to a k × k square, leading to
exponential growth in parameter computation as the size increases, making lightweight
model construction challenging. To address these issues, this study introduces variable
kernel convolution (AKConv), which allows for any number of parameters and sampling
shapes for the convolution kernel. This not only enhances model performance but also
reduces the number of model parameters. The structure is depicted in Figure 9 below.

In AKConv, the input image dimension is set to (C, H, W), where C represents the
number of channels, and H and W represent the height and width of the image. The
convolution operation begins by applying the initial sampling shape of the convolution
kernel to the input image using Conv2d. Subsequently, the initial sampling shape is
adjusted through learned offsets, a crucial step in AKConv that enables the dynamic
adaptation of the convolution kernel shape to the image’s characteristics. Following this
adjustment, AKConv resamples the feature map based on the modified sampling shape. The
resampled feature map undergoes reshaping, convolution, normalization, and activation
through the SiLU function to produce the final output.
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In AKConv, the design of convolution kernels has been innovatively improved to
enhance adaptability and efficiency of convolutional networks. Unlike traditional convolu-
tion kernels, the size and shape of the kernels are not fixed but can be dynamically adjusted
based on the density of lesions and disease characteristics to determine the number of
parameters needed. Given the diverse types of diseases with varying lesion sizes and dis-
tributions, AKConv automatically adapts the size of convolution kernels during processing
to effectively capture various lesion sizes and shapes, thereby enhancing feature extraction
efficiency. The adaptive sampling shape is illustrated in Figure 10. Moreover, by designing
different initial sampling shapes for a 5 × 5 sample grid, AKConv can accurately cover and
process different image areas, leading to improved feature extraction accuracy, as shown in
Figure 11. Additionally, AKConv can adjust the position of the convolution kernel using
offsets to accommodate changes in local features at different locations, enabling better
adaptation to non-rigid deformations, occlusions, and complex backgrounds in the target
image. This capability provides a strong foundation for enhancing disease detection, as
demonstrated in Figure 12.
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3. Results and Discussion
3.1. Data Sets

The shooting scenes in this study are diverse, featuring various lighting conditions and
weather changes. The background of the shooting environment is complex and includes
a significant amount of interference information. The images have been captured using
a Canon EOS 800D device, with a photo resolution of 4608 × 3456 pixels and saved in
.PNG format. A total of 4650 images have been collected, encompassing four types of
diseases: tea blight, tea white spot, tea sooty leaf disease, and tea ring spot. Among these,
3357 images with high-quality shooting effects have been annotated, with 2686 selected for
training, 336 for verification, and 335 for testing. Labeling and visualization experiments
have been conducted on the four disease types, with the results presented in Figure 13,
each matrix unit represents the labels used during model training, and the color depth
of the cells reflects the correlation between the corresponding labels. Dark cells indicate
that the model has learned more strongly about the correlation between these two labels.
Light colored cells indicate weak correlation. A represents the histogram of the number of
categories in the data set; B indicates the length and width of each label frame after x and
y values of all labels are set to the same position. C represents the distribution of x and y
values in the image; D indicates the ratio of label width to label height in the data set; E
represents the details of the label distribution in the original data set. The analysis reveals
an uneven distribution of diseases within the self-built datasets. The positioning of the
rectangular labeling boxes is precise, indicating the suitability of the proposed method for
regional disease detection scenarios in Yunnan.
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3.2. Experimental Environment and Parameter Setting

The experimental environment configuration and parameter settings are shown in
Table 1.

Table 1. Experimental environment configuration and parameter settings.

Configuration Items Configuration Parameters

Computer operating system Windows 11
CPU Intel(R)CORE(TM)i7-11700
RAM 32 GB
GPU NVIDIA GeForce RTX 3060

Compilation language
Framework

CUDA

Python 3.10.10
Pytorch 1.13.1

CUDA Version: 12.0
Epochs 500

Batch size 16

This study evaluates the performance of the network model using parameters such
as recall rate (Recall), precision rate (Precision), F1 balance score, multi-category average
precision (mAP@0.5), detection speed, calculation amount, and other relevant metrics. FPS,
the number of detection frames per second, is utilized to quantify the model’s detection
speed. The specific calculation formula is shown in (27)–(31).

Precision =
TP

TP + FP
(27)

Recall =
TP

TP + FN
(28)

F1 = 2 × Precision × Recall
Precision + Recall

(29)

AP =
∫ 1

0
Precision(Recall)dRecall (30)
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mAP =
∑C

i=1 AP(i)
C

(31)

In the above formula, TP represents the positive samples predicted by the model to
be the positive class, TN represents the negative samples predicted by the model to be
the negative class, FP represents the negative samples predicted by the model to be the
positive class, and FN represents the positive samples predicted by the model to be the
negative class.

3.3. Analysis of Model Training Results

After 500 rounds of model training iterations, the convergence is approached after
450 rounds, yielding promising results on both the training and validation sets. Box_loss
represents the mean inner-EIoU loss function, where a smaller value indicates higher
detection prediction accuracy. Similarly, cls_loss denotes the mean classification loss
function, with lower values indicating improved prediction accuracy. The dfl_loss, or free
deformation loss, addresses target lesion shape issues in detection, with smaller values
leading to better prediction outcomes. Performance degradation can occur due to changes
in size. The mAP@0.5 and mAP@0.95 values reflect model prediction effectiveness, with
higher values indicating better performance. The training and evaluation results of the
YOLOv8-RMDA model can be observed in Figure 14.
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3.4. Comparative Experiments
3.4.1. Backbone Network Comparison Experiments

This study utilizes the enhanced YOLOv8 object detection network as the base model,
incorporating an improved RFCBAM in place of commonly used lightweight feature
extraction backbones like MobileNetV3 [37], MobileNetV2 [38], GhostNetV2 [39], and Shuf-
fleNetV2 [40]. By maintaining consistent parameters except for the backbone network, the
experimental results in Table 2 demonstrate the varying training effects of different back-
bone networks. The RFCBAM enhancement method exhibits superior training accuracy,
recall rate, and average accuracy compared to MobileNetV3, MobileNetV2, GhostNetV2,
and ShuffleNetV2. The mAP@0.5 shows an increase of 7.68%, 9.06%, 17.18%, and 6.57%,
respectively, when compared to the other networks. Thus, enhancing the RFCBAM network
leads to improved detection performance in the YOLOv8 model.
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Table 2. Comparison of different lightweight feature extraction backbone networks.

Model Backbone Network P/% R/% mAP@0.5/% FPS/S

YOLOv8 MobilenNetV3 71.86 72.38 80.34 177
YOLOv8 MobilenNetV2 69.32 67.88 78.96 179
YOLOv8 GhostNetV2 65.66 66.20 70.84 201
YOLOv8 ShuffleNetV2 77.81 75.30 81.45 156
YOLOv8 RFCBAM 78.42 83.26 88.02 149

3.4.2. Comparative Experiments with Different SPPF Structures

In order to assess the performance of the optimal SPPF, the enhanced MixSPPF is
compared side by side with SPPF-DAattention, SPPF-LSA, and SPPF-LSKA [41,42]. The
experimental results can be found in Table 3.

Table 3. Comparative experiments of different SPPF structures.

Integration of Attention Mechanisms P/% R/% mAP@0.5/% FPS/S

SPPF 79.92 78.15 84.26 182
SPPF-DAattention 76.76 75.20 84.14 186

SPPF-LSA 79.48 80.40 87.78 181
SPPF-LSKA 78.42 80.38 88.06 117

MixSPPF 81.17 81.54 88.15 145

Table 3 illustrates that MixSPPF demonstrates superior performance in the mAP5@%
metric. Among the tested models, SPPF-LSKA achieves the highest speed at 117 FPS, while
SPPF-DAattention operates at the slowest speed of 186 FPS. MixSPPF operates at a speed
of 145 FPS. Taking into account both mAP@0.5 and FPS, the optimized MixSPPF with a
mixed pool emerges as the most favorable option.

3.4.3. Comparative Experiments with Different Neck Network Feature Fusion Structures

The YOLOv8 network incorporates three distinct feature fusion structures: Efficien-
tRepBiPAN, AFPN, and REPGFPN [43,44]. The experimental results can be found in
Table 4.

Table 4. Comparison of Different Feature Fusion Structures in Neck Networks.

Attention Mechanism P/% R/% mAP@0.5/% FPS/S

EfficientRepBiPAN 80.10 77.92 82.62 147
AFPN 76.94 78.62 84.76 160

RepGFPN 81.09 81.62 86.42 157

Table 4 demonstrates that RepGFPN achieves an accuracy of 86.42% in mAP@0.5,
surpassing EfficientRepBiPAN and AFPN. This suggests that RepGFPN excels in feature
extraction. While EfficientRepBiPAN has the highest FPS in detection speed, its accuracy
falls behind AFPN and RepGFPN. Consequently, the RepGFPN module is chosen to
enhance the structure of the neck network.

For ratio in the inner-EIoU loss function, the results after taking the values of 0.75, 1,
1.25, and 1.5 comparisons are shown in Table 5.

Table 5. Ablation experiments of ratio.

Ratio P/% R/% mAP@0.5/% FPS/S

0.75 72.52 73.10 77.46 145
1 77.68 74.45 78.28 140

1.25 79.36 80.47 79.88 139
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When ratio = 1, the inner-EIoU loss function essentially becomes the EIoU loss function.
The experimental results indicate that during the early and middle stages of tea growth,
diseases are small targets that are difficult to distinguish. The labeling box is slightly offset,
resulting in a low IoU. On the other hand, when ratio > 1, the auxiliary border is larger
than the actual frame, which aids in IoU regression. Consequently, the experimental results
when ratio > 1 are generally better than when ratio ≤ 1. However, the experimental results
are suboptimal when ratio = 1.5. Therefore, the specific value of ratio should be adjusted
and set according to the detection target of the experimental dataset. In this particular
experiment, the specific value of ratio is set to 1.25.

3.4.4. Ablation Experiments

The YOLOv8s model has been improved and the results of each improvement are
statistically analysed, and the results are shown in Table 6.

Table 6. Ablation experiments.

Model RFCBAM MixSPPF Dynamic Head AKConv P/% R/% mAP@0.5/% FPS/S

YOLOv8 × × × × 82.77 80.06 87.07 147
A

√
× × × 78.42 83.26 88.02 149

B ×
√

× × 81.17 81.54 88.15 145
C × ×

√
× 83.09 83.62 88.72 160

D
√ √

× × 83.43 85.49 90.22 147
E

√
×

√
× 84.02 86.08 90.59 150

F ×
√ √

× 85.12 83.13 89.98 140
G ×

√ √ √
85.09 86.98 92.03 137

H
√ √ √ √

84.84 88.21 93.04 132

Note:
√

, use this algorithm; ×, do not use this algorithm.

In Table 6, A, B, C, and D represent the experimental results obtained by incorporating
RFCBAM and the MixSPPF, Dynamic Head, and AKConv modules into the YOLOv8 model.
The symbol

√
indicates the addition of the module, while × indicates its absence. The

experimental findings demonstrate that the model’s accuracy (P), recall (R), and average
precision (mAP@0.5) have all shown improvement with the integration of each enhanced
module. An analysis of the data in Table 6 reveals that combining A and B results in a
5.42% increase in recall rate (R) and a 3.15% increase in mAP without a decrease in FPS.
Furthermore, the fusion of B, C, and D leads to an overall enhancement in the model’s
performance, with accuracy rate (P), recall rate (R), and mAP@0.5 increasing by 2.32%,
6.92%, and 4.96%, respectively. Finally, the addition of module A on top of B, C, and D
further optimizes the model, boosting the average accuracy (mAP@0.5) by an additional
1.01% while reducing computational costs. Despite this improvement, the FPS of 132
remains sufficient for real-time detection, enabling better detection of small targets in tea
disease images.

3.4.5. Comparative Experiments on the Performance of Different Network Models

To evaluate the efficacy of the enhanced YOLOv8 model, a comprehensive analysis
has been conducted using a total of seven network models: Faster R-CNN, MobileNetV2,
SSD, YOLOv5, YOLOv7, YOLOv8, and YOLOv8-RMDA. These models have been tested
on custom datasets within identical training conditions. Performance evaluation indicators
such as precision, recall, mAP@0.5, and FPS are used in this study. The experimental
results are presented in Table 7, revealing that Faster R-CNN, MobileNetV2, and SSD
exhibit subpar detection results for tea disease targets, with the highest average detection
accuracy reaching only about 80%. On the other hand, the YOLOv8 and YOLOv8-RMDA
models demonstrate superior detection performance. Specifically, the average precision
rate of YOLOv8-RMDA is 20.41%, 17.92%, 12.18%, 12.18%, 10.85%, 7.32%, and 5.97% higher
than Faster R-CNN, MobileNetV2, SSD, YOLOv5, YOLOv7, and YOLOv8, respectively.
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Moreover, the recall rate of YOLOv8-RMDA is 15.25% higher than that of the weakest
Faster R-CNN model and 8.15% higher than the best-performing YOLOv8 model. In terms
of FPS, YOLOv8-RMDA operates at 18, 19, and 15 frames lower than YOLOv5, YOLOv7,
and YOLOv8, respectively. Notably, YOLOv8-RMDA exhibits a lower computational load,
enabling improved real-time detection accuracy without significant amplitude changes,
making it well-suited for regional scene detection applications.

Table 7. Comparison results of different network models for tea disease detection.

Model P/% R/% mAP@0.5/% FPS/S

Faster R-CNN 66.21 72.96 72.63 213
MobileNetV2 77.32 78.08 75.12 221

SSD 73.02 76.59 80.86 157
YOLOv5 82.37 80.39 82.19 150
YOLOv7 79.12 81.17 85.72 151
YOLOv8 82.77 80.06 87.07 147

YOLOv8-RMDA 84.84 88.21 93.04 132

In this study, the YOLOv8-RMDA model’s capability to detect tea disease charac-
teristics is further examined through the utilization of the Grad-CAM heat map analysis
method. This method is employed to assess the effectiveness of various module combi-
nations by visually displaying color changes from blue to red. The Grad-CAM heat map
provides insights into whether the network model has successfully learned crucial features.
The analysis focuses on representative tea disease images, with the results presented in
Figure 15. The YOLOv8 network’s output heat map shows a lack of focus on the main
disease area, with more attention given to irrelevant background areas. On the other hand,
YOLOv8 + RFCBAM’s heat map displays scattered areas of concern, with higher weight
around the disease but not yielding outstanding results. Moving on to YOLOv8 + RFCBAM
+ MixSPPF, the attention is concentrated on the tea disease’s characteristic area, with the dis-
ease’s characteristic color close to dark red, indicating higher responsiveness in that specific
area. Finally, the YOLOv8 + RFCBAM + MixSPPF + Dynamic Head output heat map shows
the darkest color in areas with severe tea disease, demonstrating a more concentrated focus
on the disease itself and better identification performance in diseased areas.

To further verify the improved detection performance of YOLOv8-RMDA in detecting
different tea diseases in the complex environment of the Yunnan region, we selected 4 types
of challenging tiny, dense diseases and tea disease images with similar backgrounds from
the 335 images in the verification set for testing. We compared the performance of YOLOv8-
RMDA with YOLOv8, YOLOv7, and YOLOv5 models to observe their confidence levels.
The results are presented in Figure 16.

The results presented in Figure 16 demonstrate that the improved YOLOv8-RMDA
model excels in detecting small, dense diseases and diseases with similar backgrounds.
The confidence levels of the detection frames for the four diseases depicted in the image are
notably higher at 93%, 92%, 89%, and 96%, respectively, compared to the YOLOv8, YOLOv7,
and YOLOv5 models. Specifically, there is a 2%, 3%, 3%, and 3% improvement over the
YOLOv8 model. Higher confidence in the detection frame indicates a greater likelihood
of detecting the target in the prediction frame, resulting in more comprehensive details
of the lesion target. YOLOv8-RMDA outperforms the YOLOv8, YOLOv7, and YOLOv5
models in terms of mAP@0.5, maintaining high accuracy while also reducing computational
complexity to strike a balance between model weight and accuracy. Figure 16 compares the
detection effects of different models.
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4. Conclusions

This paper presents an enhanced YOLOv8-RMDA algorithm for the early detection of
small targets related to tea diseases in complex scenes in Yunnan. The proposed algorithm
addresses the issue of low recognition rates in traditional algorithms for small target detec-
tion tasks. The collection of regionally representative tea disease image datasets in Yunnan
has been completed independently under natural conditions to ensure the authenticity and
reliability of the experimental data. In the backbone, the RFCBAM and MixSPPF modules
are introduced to enhance the C2f and traditional SPPF modules, reduce background envi-
ronment interference, and improve the ability to extract global feature information. The
experimental results demonstrate that utilizing the improved RFCBAM method yields sig-
nificant advantages in precision and recall when compared to MobileNetV3, MobileNetV2,
GhostNetV2, and ShuffleNetV2. The mAP@0.5 shows an improvement of 7.68% and 9.06%,
respectively, over other networks. Additionally, the mAP@0.5 after implementing MixSPPF
reaches 88.15%, which is 3.89% higher than the initial SPPF module. The use of feature
fusion by RepGFPN in the neck region enhances the model’s ability to detect small target
diseases. Although EfficientRepBiPAN achieves the highest FPS, its accuracy is lower
than AFPN and RepGFPN. Furthermore, integrating the Dynamic Head detection head
based on the previous improvement scheme enhances model accuracy. YOLOv8-RMDA
outperforms Faster R-CNN, MobileNetV2, SSD, YOLOv5, YOLOv7, and YOLOv8 with an
average accuracy increase of 20.41%, 17.92%, 12.18%, 12.18%, 10.85%, 7.32%, and 5.97%,
respectively, effectively enhancing real-time detection accuracy. Finally, heat map analysis
has been conducted on four prevalent tea diseases: tea leaf blight, tea white spot, tea coal
leaf disease, and tea ring spot. The results indicate that the enhanced YOLOv8-RMDA
outperforms YOLOv8 in terms of detection accuracy when the image target size is small,
making it suitable for the early detection of small targets.

The next step involves expanding the tea disease image data set, establishing a model
for multi-modal disease representation and visual recognition, and conducting research to
enhance the model’s accuracy in recognizing small targets. This will enable more efficient
agricultural work to be carried out.
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