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Abstract: In the context of construction and demolition waste exacerbating environmental pollution,
the lack of recycling technology has hindered the green development of the industry. Previous
studies have explored robot-based automated recycling methods, but their efficiency is limited by
movement speed and detection range, so there is an urgent need to integrate drones into the recycling
field to improve construction waste management efficiency. Preliminary investigations have shown
that previous construction waste recognition techniques are ineffective when applied to UAVs and
also lack a method to accurately convert waste locations in images to actual coordinates. Therefore,
this study proposes a new method for autonomously labeling the location of construction waste
using UAVs. Using images captured by UAVs, we compiled an image dataset and proposed a high-
precision, long-range construction waste recognition algorithm. In addition, we proposed a method
to convert the pixel positions of targets to actual positions. Finally, the study verified the effectiveness
of the proposed method through experiments. Experimental results demonstrated that the approach
proposed in this study enhanced the discernibility of computer vision algorithms towards small
targets and high-frequency details within images. In a construction waste localization task using
drones, involving high-resolution image recognition, the accuracy and recall were significantly
improved by about 2% at speeds of up to 28 fps. The results of this study can guarantee the efficient
application of drones to construction sites.

Keywords: construction waste management; unmanned aerial vehicle; computer vision; long-
distance target detection

1. Introduction

With the development of human society, more and more construction projects are
being carried out in countries all over the world. The total output value of China’s con-
struction industry exceeds USD 3 trillion, while in the United States, this figure exceeds
USD 6 trillion [1,2]. While improving the living environment of human beings, it also
implies the generation of a large amount of waste. This problem has received extensive
attention from researchers [3]. Construction and demolition waste (CDW), including wood,
brick, glass, and plastic, is the residue and waste from construction-related production
activities [4,5]. The large amount of CDW produced every year results in a significant waste
of material and land resources around the world [6–8]. Meanwhile, landfilled CDW also
generates various forms of pollution [9].

In order to reduce the pollution caused by the construction industry, governments
and researchers are committed to promoting the implementation of the 6R strategy, which
is recognized as a method that can reduce the pollution of waste, in CDW management
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through policies. At the same time, recycled construction waste has a high economic
value [10]. However, its implementation has not been satisfactory [11]. The outcomes
indicate that policies in numerous countries and regions have failed to effectively curb
the arbitrary disposal of CDW [12–15]. This can be attributed to the current reliance on
manual labor for on-site CDW recovery, disorganized management practices, and a lack of
willingness among builders to collect CDW on site. Consequently, research on automated
methods for on-site CDW sorting and collection is imperative to improve the recycling rate
and efficiency of on-site CDW management. At present, automation technologies have
been widely studied in the field of building construction, including CDW processing, and
its effectiveness has been fully proved. Among them, the research on automated CDW pro-
cessing includes various methods, such as a CDW sorting platform, CDW collection robot,
and CDW pile type analysis [16–18]. However, whether the construction waste is picked
up by mobile robots or collected manually, the huge construction site and the complex road
environment hinder the CDW recycling work. Construction waste is always piled up and
deposited in various places on the construction site, and the method of searching all the
areas by manpower or mobile robots is highly inefficient and time-consuming. Therefore,
there is an urgent need for a new method that can quickly and accurately scan an entire
construction site and locate all CDW.

Unmanned aerial vehicles (UAVs) are currently being used frequently on construction
sites [19]. It is faster, more efficient, and less costly compared to mobile robots and humans.
Therefore, utilizing UAVs to locate CDW at construction sites can greatly improve the
efficiency of construction waste recycling. Preliminary investigations have revealed some
challenges in implementing UAV-based automatic target recognition methods at construc-
tion sites. On the one hand, experiments have shown that the algorithm used in previous
studies yields poor recognition results when processing images taken by drones, with low
accuracy and slow speed, as shown in Figure 1. This is due to the small percentage of target
pixels in high-resolution images captured by drones, and those algorithms are not sensitive
enough to detect these targets. On the other hand, the computer vision algorithms only
provide the pixel positions of the targets in the image, and the method of converting these
pixel positions into coordinates for use by CDW collection robots and workers is also a
problem that needs to be solved.
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In order to solve these problems, this study took the most common CDW (brick
and wood) as an example and established a 4K high-resolution CDW dataset, which was
collected from the perspective of a drone. Next, this study proposed an optimized real-
time, small-target recognition algorithm for long-range CDW recognition. Compared
with the traditional algorithm, the proposed algorithm can improve the accuracy of small-
object recognition while ensuring the recognition speed, helping the UAV achieve fast
and accurate real-time detection of CDW on construction sites. Next, this study proposed
a coordinate conversion method based on the results of target recognition, so we can
automatically mark the location of target CDW. Finally, this study verified the effectiveness
of the method through field experiments.

The rest of this paper is organized as follows: Section 2 reviews the state-of-art research
on CDW recycling methods and applications of UAV on construction sites. Section 3
presents the design of the proposed method of CDW localization, followed by Section 4,
which demonstrates the effectiveness and efficiency of the proposed method. Section 5
concludes this research and discusses the potential of future works.

2. Literature Review
2.1. Construction Waste Recycling

Although the discussion on the classification and treatment of construction waste has
been going on for a long time, in fact, the management of waste in construction projects has
not been improved [20]. Construction managers urgently need more new technologies to
improve the management level of CDW [21]. Some researchers believe that the government
should also invest more funds in new technologies [22]. In CDW management, waste
classification is extremely valuable in improving the utilization rate of building materials
and the processing efficiency of CDW [23,24]. Therefore, studying how to automatically
classify CDW on construction sites is an important path to improve the status quo of
construction waste management.

A lot of research has focused on CDW recycling robots, such as the ZenRobotics
sorting system developed in 2014 [16]. This system is dedicated to automatically sorting
construction waste on the conveyor belt for precise and efficient recycling. Similar research
includes the garbage sorting platform developed by Seredkin [25]. The computer vision
algorithm proposed by this research can achieve a recognition accuracy of 64%. This kind
of CDW sorting platform can help waste treatment plants realize CDW sorting, but it does
not help the CDW recycling robot work on the construction sites and cannot fundamentally
improve the recycling rate of CDW.

Based on the above reasons, Wang et al. used computer vision methods, such as target
recognition and instance segmentation, to analyze the posture of construction waste from
the perspective of the robot so as to guide the robotic arm to pick up CDW from the correct
angle [17,26]. Although the robot used the optimized path planning algorithm in these
studies, it still used a lot of time to search the entire construction site, and the search results
also lacked timeliness.

Relevant studies have shown that the use of drones for aerial positioning and com-
manding unmanned ground vehicles to perform tasks is an inevitable choice for improving
the efficiency and effectiveness of automation at construction sites [27]. Therefore, we
believe that the introduction of UAVs will greatly improve the recycling efficiency of
construction waste on construction sites.

2.2. UAV Applications on Construction Sites

Currently, drones have been widely used in construction sites. At the construction site,
UAVs can replace workers to realize the remote reading of RFID, significantly enhancing
construction management efficiency [28]. UAVs are also utilized in the field of safety
management. They are equipped with cameras and scanners to monitor and record crucial
areas and combined with 4D BIM technology to achieve efficient construction site safety
inspections [29]. In instances of buildings damaged by natural disasters, drones can
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replace humans to safely extract damage information [30]. However, the tasks in the
aforementioned studies are human-controlled, and the current low automation level of
UAVs fails to fully utilize their advantages; the accuracy of the results may be disturbed by
human error.

UAV application research in construction waste management involves assisting work-
ers in detecting waste around industrial facilities, such as building objects, managing
landfills, and estimating waste volumes [31–33]. Studies indicate that UAVs have been
extensively used in waste management lately, mostly for identifying locations, analyz-
ing spatial characteristics, and assessing environmental safety concerning accumulated
waste [34]. Presently, there is limited research on locating CDW dispersed at construc-
tion sites.

In conclusion, the current level of UAV-based automation technology used to process
on-site CDW is low, with limited related studies. To enhance CDW automatic recycling
efficiency on construction sites, research on the UAV-based CDW automatic recycling
method, particularly emphasizing developing computer vision algorithms for identifying
CDW from UAV perspectives, is essential.

2.3. Vison-Based Waste Detection Methods

Over the past decade, computer vision research has steadily increased in fields such as
architecture, engineering, construction, and facility management, with applications includ-
ing performance monitoring, health, safety, and resource management [35–38]. These stud-
ies have made outstanding contributions to the improvement of automation in construction.
Among them, many researches on CDW management methods based on computer vision
also provide strong technical support for reducing the negative impact of the construction
industry on the environment.

Previous studies used GoPro to collect images of construction waste in garbage col-
lection vehicles on construction sites and used image classification algorithms to identify
the components of the waste. The study did not consider the mixed pile of construction
waste, and it was impossible to accurately identify different construction wastes in the same
picture [39]. For CDW mixtures, some studies have proposed a component recognition
algorithm based on boundary perception, which aims to automatically analyze the accurate
component information of construction waste [40]. Similar effects can also be achieved
through semantic segmentation algorithms [18]. This kind of segmentation method based
on RGB images has many constraints and cannot guarantee its accuracy in UAV CDW
recognition. At the same time, this type of method is limited by the development level of
hardware equipment, and it is currently difficult to achieve efficient and real-time target
recognition in high-resolution images.

In order to use more information to achieve high-precision recognition, Li et al. col-
lected images and depth information of different CDWs through depth cameras and
analyzed them to realize semi-automatic labeling, classification, and contour recognition
of various types of construction waste [41]. This algorithm performs well on the sorting
platform but is limited by the performance of the depth camera. Therefore, it is difficult to
apply this algorithm to outdoor environments, especially long-distance object recognition
tasks in UAVs.

Currently, widely used target recognition methods include faster Region-based Con-
volutional Neural Network (R-CNN), Single-Shot MultiBox Detector (SSD), You Only Look
Once (YOLO), etc. [42–44]. Among them, YOLO is faster, and the faster R-CNN is more ac-
curate. The YOLO algorithm has been applied in waste recognition, and it has been proven
by experiments that the algorithm can achieve an accuracy rate of more than 92% [45].
However, we found that the target object in the dataset established in this study occupies a
large number of pixels and has significant edges, which is obviously one of the important
guarantees for the good result of the experiment. In the drone’s perspective, the target only
occupies less than 5%, and the quality of the edge of the target object cannot be guaranteed,
which will greatly reduce the accuracy of the algorithm. Studies have shown that although
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computer vision algorithms can show good results in some waste identification tasks, they
perform very poorly in drones, with only 40.5% accuracy [46]. Therefore, the recognition
accuracy of existing computer vision algorithms for small targets are not up to expectations,
and optimizing the algorithms for better detection accuracy is one of the current research
focuses. For example, Liu et al. optimized the YOLOv3 algorithm to improve its accuracy
in the pavement cracks recognition task and finally achieved 87.8% mAP [47].

To sum up, current construction waste recognition algorithms have various defects,
especially in the task of long-distance waste recognition. Therefore, it is very important
to optimize the long-range CDW recognition algorithm for UAVs, including recognition
speed and accuracy.

3. Methodology
3.1. Data Preparation

We collected 1292 images and built a long-distance, high-resolution construction waste
dataset, of which 1033 were used as the training set, and the rest were used as the test set.
Considering the common types of grounds at the construction site, we collected pictures of
wooden strips and bricks in three different backgrounds (tile floor, grass floor, and concrete
floor). Some of the data are shown in Figure 2.
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Based on the image data, it is evident that the drone-collected 4K images clearly cap-
tured the CDW, but the target object occupied less than 5% of the overall image pixels. This
implies that the computer vision algorithms spent considerable time processing irrelevant
background information during object recognition. Furthermore, if we downsized the
image to 41 × 16, as performed in earlier studies, the target features became inconspicuous,
leading to a significant reduction in recognition accuracy.

For the aforementioned dataset, we utilized LabelImg to process the image data and
generate a JSON file [48]. The processing method is shown in Figure 3. Then, we wrote
an algorithm to convert the generated annotation files into a standard COCO dataset and
finally created a high-resolution COCO format dataset for long-distance construction waste
on the construction site [49]. The final dataset structure is shown in Figure 4.
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3.2. Visual-Based Long-Distance CDW Detection Method
3.2.1. CDW Detection Method

In previous related research, some studies used faster R-CNN as the key technology
for CDW recognition. However, experiments and papers show that this method takes
about 10 times longer to recognize a single image than the YOLO algorithm [50]. This is
not conducive to the rapid search and discovery of CDW by UAVs, especially in the case
of high resolution. Therefore, this study used the YOLO series of algorithms as the target
recognition method.

The YOLO algorithm is an end-to-end object detection model that exclusively consists
of a CNN (convolutional neural network) model. In the traditional YOLO algorithm, the
input image is initially resized to a square (e.g., 44 × 48) and then fed through a CNN
network to yield detection results. In the CNN network, the image is divided into multiple
grids of size S × S, and each grid is used as the center point of target detection. The
bounding boxes and confidence values are also proposed in this step. At the same time,
each grid also needs to predict its probability of belonging to a certain class and generate a
class probability map. Finally, by combining bounding boxes and class probability maps,
the algorithm produces the ultimate object detection results. The specific process is shown
in Figure 5.
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YOLOv5 is one of the optimized versions of the YOLO algorithm. YOLOv5 can be
divided into four parts: Input, Backbone, Neck and Prediction, as shown in Figure 6.
Its innovation includes the following points: First, in the input part, the Mosaic data
enhancement method is used to stitch four images using random scaling, random cropping,
and random lining up to improve the robustness of the AI model. Second, an adaptive
image scaling method is used to automatically scale and fill the image according to the
aspect ratio of the input image so that the pixel length values can meet the demand of
downsampling 5 times, thus reducing the input size and improving the computational
efficiency. Third, the image is processed by using the Focus structure, and the information
loss caused by downsampling is reduced in the Backbone part using the operation of
intercolumn sampling, splicing, and convolution. Fourth, the design idea of CSPNet is
adopted in Backbone and Neck, and two CSP structures are designed to cope with the
different demands of different positions in the network.
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Preliminary test results showed that the YOLO algorithm can identify the target CDW
well at a high resolution, but it cannot guarantee the efficiency of the algorithm. Therefore,
we modified the parameters of the image, resizing part of the algorithm to 416 × 416. In
this case, the accuracy of the algorithm decreased dramatically, and a large number of
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targets were missed. Therefore, it was necessary to enhance the sensitivity of the algorithm
to small targets, which are expressed as high-frequency information in images.

3.2.2. Optimization

The network structure design plays a crucial role in ensuring the accuracy of computer
vision algorithms. While the YOLOv5 algorithm currently available can achieve efficient
and precise target recognition, it still falls short in accurately detecting small targets. In
a 4K image from the UAV view, the target CDW occupies only a small part of the whole
image. Therefore, YOLOv5 compresses the image in the Input section, and the target object
occupies only a small number of pixels. Under this premise, multiple downsamplings will
result in the features of the target object being difficult to recognize. To address this issue,
we optimized the network structure of the YOLOv5 model. We used a short connection
structure to obtain features at a lower level. The changes made in the network structure
are illustrated in Figure 7, which includes an additional 4-step-long feature map fusion
compared to the original YOLOv5 model.

Sensors 2024, 24, x FOR PEER REVIEW 8 of 16 
 

 

Therefore, we modified the parameters of the image, resizing part of the algorithm to 416 
× 416. In this case, the accuracy of the algorithm decreased dramatically, and a large num-
ber of targets were missed. Therefore, it was necessary to enhance the sensitivity of the 
algorithm to small targets, which are expressed as high-frequency information in images. 

3.2.2. Optimization 
The network structure design plays a crucial role in ensuring the accuracy of com-

puter vision algorithms. While the YOLOv5 algorithm currently available can achieve ef-
ficient and precise target recognition, it still falls short in accurately detecting small tar-
gets. In a 4K image from the UAV view, the target CDW occupies only a small part of the 
whole image. Therefore, YOLOv5 compresses the image in the Input section, and the tar-
get object occupies only a small number of pixels. Under this premise, multiple downsam-
plings will result in the features of the target object being difficult to recognize. To address 
this issue, we optimized the network structure of the YOLOv5 model. We used a short 
connection structure to obtain features at a lower level. The changes made in the network 
structure are illustrated in Figure 7, which includes an additional 4-step-long feature map 
fusion compared to the original YOLOv5 model. 

 
Figure 7. Optimized network structure. 

The database is another key to guarantee the accuracy of computer vision algorithms. 
Therefore, this study enhanced the reliability and usefulness of data through data pre-
processing methods. Given that most of the pixels in the 4K images from the UAV view-
point are invalid information, this study adopted a cropped image approach to enhance 
the proportion of pixels occupied by the target object in the image. This method can in-
crease the amount of effective information in the training process and improve the train-
ing efficiency. 

3.3. CDW Localization Using an Unmanned Aerial Vehicle 
In order to facilitate the calculation, we set the shooting angle of the drone to be ver-

tically downward and set the resolution of the video capture to 4000 × 3000. By checking 
the equipment parameters, we can easily obtain the horizontal view angle (𝜃 ) and the 
vertical view angle (𝜃 ). The drone can provide real-time data of the latitude and longi-
tude, orientation (angle to due north 𝛼 ), and relative height (ℎ ). Based on these 
data and the coordinates of the center point of the target (𝑥 ,𝑦 ) provided by the computer 

Figure 7. Optimized network structure.

The database is another key to guarantee the accuracy of computer vision algorithms.
Therefore, this study enhanced the reliability and usefulness of data through data pre-
processing methods. Given that most of the pixels in the 4K images from the UAV viewpoint
are invalid information, this study adopted a cropped image approach to enhance the
proportion of pixels occupied by the target object in the image. This method can increase the
amount of effective information in the training process and improve the training efficiency.

3.3. CDW Localization Using an Unmanned Aerial Vehicle

In order to facilitate the calculation, we set the shooting angle of the drone to be
vertically downward and set the resolution of the video capture to 4000 × 3000. By
checking the equipment parameters, we can easily obtain the horizontal view angle (θx)
and the vertical view angle (θy). The drone can provide real-time data of the latitude and
longitude, orientation (angle to due north αUAV), and relative height (hUAV). Based on these
data and the coordinates of the center point of the target (xt, yt) provided by the computer
vision algorithm, we can accurately calculate the latitude and longitude coordinates where
the target is located using the following method.

Step 1: In the acquired image, the projection of the UAV’s position on the ground was
located at the center of the image. Therefore, to facilitate the calculation, we established a
vertical coordinate system, with the projection of the UAV on the ground as the origin and
the UAV facing direction as the y-axis, as shown in Figure 8. The coordinates of the target
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in this coordinate system were (xt_UAV , yt_UAV), which can be obtained using Equation (1).
These coordinates reflect the pixel distance between the target and the UAV projection.{

xt_UAV = xt − 4000
2

yt_UAV = yt − 3000
2

(1)
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Step 2: With the relative height of the UAV and the camera view angle data, we can
calculate the total distance accommodated by the image captured by the UAV in both the
x-axis and the y-axis directions (Dx_UAV , Dy_UAV), as shown in Equation (2). The actual
distance between the target and the UAV in this coordinate system was then calculated and
expressed as a vector

(
Dt_UAV_x, Dt_UAV_y

)
, as shown in Equation (3).Dx_UAV = 2 ×
(

hUAV × tan θx
2

)
Dy_UAV = 2 ×

(
hUAV × tan θy

2

) (2)

{
Dt_UAV_x = xt_UAV × Dx_UAV

4000

Dt_UAV_y = yt_UAV × Dy_UAV
3000

(3)

Step 3: Further, in order to accurately guide the construction waste-picking robot
or worker to find the target object, we needed to calculate the specific location of the
target object. Therefore, we established a coordinate system, with the projection of the
UAV on the ground as the origin and the due north direction as the y-axis, as shown in
Figure 9. We placed two mutually perpendicular sub-vectors of the previously obtained
distance vector in this coordinate system. Equation (4) allowed us to calculate that the
target was Dt_E meters due east and Dt_N meters due north of the point where the UAV
was located. Further, based on the UAV route and position information, accurate target
object localization was able to be obtained.{

Dt_E = sin
(

π
2 + αUAV

)
× Dt_UAV_x + sin(αUAV)× Dt_UAV_y

Dt_N = cos
(

π
2 + αUAV

)
× Dt_UAV_x + cos(αUAV)× Dt_UAV_y

(4)
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4. Evaluations
4.1. Experiments and Results

This study employed a server equipped with an i7-11700K CPU and a 3070 GPU,
running the Linux 20.04 system based on wsl2 in the Windows 10 environment, as the
experimental platform. The system was set up with the CUDA 11.1 and CUDNN 8.4
software, enabling the stable execution of the YOLO algorithms.

The study firstly divided the dataset into an 80% training set and 20% test set randomly;
for the key parameters of the model, depth_multiple was set to 0.33, and width_multiple
was set to 0.25. Based on this, the head part framework of the YOLOv5n model was
optimized according to the method described in Section 3.2.2 to achieve the four-step
feature map fusion.

During the training process, we found that the model was able to achieve accurate
target object recognition after 600 iterations. In order to accurately compare the recognition
ability of different models at different resolutions, we set all training epoch parameters to
600 and tested the YOLOv5n model and our optimized model at 2048 × 2048, 1024 × 1024,
608 × 608, and 416 × 416 resolutions, respectively.

In order to accurately evaluate the effectiveness of the model proposed in this study
on the recognition of small targets, the experimental results at each resolution were com-
pared in experiments, mainly comparing the time and accuracy of the different models in
recognizing images in the experimental platform. The comparison results are shown in
Table 1. For comparison, the experimental results of the faster R-CNN on the same server
were 390 ms recognition speed and 94.2% accuracy.

Table 1. Accuracy and recognition speed comparisons.

Image Resolution
Method

YOLOv5n Recognition Algorithm for Small
Targets (Proposed Method)

Time Accuracy Time Accuracy

2048 × 2048 88 ms 0.968 82.3 ms 0.975

1024 × 1024 72.2 ms 0.948 61.3 ms 0.949

608 × 608 52.8 ms 0.852 48.3 ms 0.870

416 × 416 40.3 ms 0.807 35.6 ms 0.824

The experimental results show that the method proposed in this study is able to slightly
improve the accuracy, provided that the image resolution is sufficient. This is due to the
target occupying a sufficient number of pixel values, thereby rendering the underlying
information inconsequential to the recognition accuracy. However, larger images mean that
the model needs to spend more GPU computational resources, which may not only lead to
memory overflow, it can also be reflected in the speed of image processing. Experiments
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show that despite the server support, the recognition speed of large images (2048-pixel and
1024-pixel levels) is still far below the demand for real-time UAV target recognition, and
only when the image is reduced to the 416-pixel level resolution can the target recognition
speed exceed 25 fps to meet the requirement of real-time CDW recognition. Therefore, the
algorithm proposed in this study can improve the accuracy by about 2% when the input
image pixel value is set to 416 × 416, which is a significant advantage. The result of the
comparative experiment is shown in Figure 10.
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In order to analyze the ability of the algorithms to discover the targets before and after
optimization, we compared the training results of the two algorithms by using the recall
rate as an analytical metric, as shown in Figure 11. The results showed that the algorithms
proposed in this study were able to discover more target CDWs as the number of training
times rose.
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Figure 11. Recall rates for YOLOv5n and the proposed method.

4.2. Discussion

Experiments showed that the algorithm proposed in this study could well achieve
the CDW recognition and classification tasks of UAVs at long distances with a maximum
accuracy of 98%. In order to meet the need for recognition speed, this study further
compressed the image data captured by the UAV to 416 × 416 pixels, which greatly
improved the difficulty of CDW recognition. The comparison experiments showed that the
algorithm proposed in this study had higher recognition accuracy in the UAV construction
waste long-range real-time recognition task, compared with the YOLOv5 algorithm before
optimization. The findings of this research provide a novel methodology for detecting
CDW distributed across construction sites. Leveraging UAV technology, we addressed
the limitations associated with robots’ sluggish mobility and limited detection range.
Consequently, the efficiency of construction waste recycling will be significantly improved.

Of course, some shortcomings were found during the experimental process. Firstly,
the JPG image format may cause the color distortion of some pixels, which leads to the
contamination of the image data and affects the accuracy of target detection. Therefore,
in future research, it is necessary to convert the UAV video data directly to PNG format
images, which can reduce image noise; a comparison of the two methods is shown in
Figure 12. UAV height is also one of the key factors affecting the recognition rate. Being too
far away from the target may lead to omission, and this problem exists in all algorithms. In
addition, our experiments only selected two kinds of CDWs as target objects. In the future,
open target recognition methods can be introduced to improve the generalization ability of
the target recognition algorithm without increasing data.
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5. Conclusions

In this study, we proposed a method to achieve rapid search and localization of CDW at
construction sites using UAVs. In order to achieve this goal, a CDW long-range recognition
algorithm for UAVs was presented, leveraging prior research. Through the optimization of
the YOLOv5 algorithm and the implementation of a four-step feature map fusion method,
we enhanced YOLOv5’s recognition accuracy in the CDW dataset collected by drones. We
also proposed a coordinate transformation method that converted the recognized pixel
position information of a target into real position information that can be easily used by a
robot or a worker.

Meanwhile, a long-range construction waste image dataset was collected and con-
structed using UAV equipment, and the differences in accuracy and recognition speed
between the YOLOv5 algorithm and the algorithm proposed in this study under different
resolution conditions were trained, tested and compared using this dataset. The study
showed that under a 2K resolution, our method can achieve 98% accuracy, which has some
advantage over the YOLOv5 algorithm. The working speed of the algorithm at this time
did not meet the demand of CDW real-time recognition. Therefore, this study further
compared the two algorithms at an image resolution of 416 pixels, and the results showed
that our proposed algorithm was able to improve the recognition accuracy by about 2%
while ensuring the recognition speed.

In summary, the results of this research can help UAVs to quickly locate on-site CDWs
from a long distance, improving the efficiency of CDW discovery at construction sites.
Furthermore, it can assist workers or robots to efficiently and accurately recycle construction
waste to reduce the environmental pollution problems caused by the construction industry.

Although this study performed well in the evaluation tests, there are still some short-
comings that will be improved in future studies. First, the images of the dataset used
JPG format, and the experiment found that some pixel colors were distorted. In future
research, we will develop the method of directly converting video data to PNG format
image data to reduce the noise of the images so as to improve the recognition accuracy.
Secondly, in the future, we will introduce open target detection methods to improve the
generalization ability of computer vision algorithms. Finally, in the future, we will conduct
application tests at construction sites to verify the effectiveness and application potential of
this method.
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