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Abstract: In this paper, we consider a low-latency Mobile Edge Computing (MEC) network where
multiple User Equipment (UE) wirelessly reports to a decision-making edge server. At the same
time, the transmissions are operated with Finite Blocklength (FBL) codes to achieve low-latency
transmission. We introduce the task of Age upon Decision (AuD) aimed at the timeliness of tasks
used for decision-making, which highlights the timeliness of the information at decision-making
moments. For the case in which dynamic task generation and random fading channels are considered,
we provide a task AuD minimization design by jointly selecting UE and allocating blocklength. In
particular, to solve the task AuD minimization problem, we transform the optimization problem to
a Markov Decision Process problem and propose an Error Probability-Controlled Action-Masked
Proximal Policy Optimization (EMPPO) algorithm. Via simulation, we show that the proposed
design achieves a lower AuD than baseline methods across various network conditions, especially
in scenarios with significant channel Signal-to-Noise Ratio (SNR) differences and low average SNR,
which shows the robustness of EMPPO and its potential for real-time applications.

Keywords: low-latency mobile edge computing; age upon decision; finite blocklength regime; deep
reinforcement learning; maskable proximal policy optimization

1. Introduction

Mobile Edge Computing (MEC) has been recognized as a key enabling technology
supporting ultra-reliable and latency-sensitive applications in the future Sixth-Generation
Mobile Networks (6G) [1,2], such as autonomous driving [3], simultaneous localization
and mapping [4], intelligent manufacturing [5], and unmanned aerial vehicle [6]. For
instance, in autonomous driving, vehicles need to promptly transmit and process real-time
data from various sources, including sensors on vehicles and other roadside servers, to
achieve comprehensive awareness of the road environment and make reliable decisions
for the following actions. Since vehicles may travel at high speeds, the process needs
to be completed within tens of milliseconds and with high reliability. Considering the
limited performance and resources of User Equipment (UE), and dynamic wireless channels,
Ultra-Reliable Low-Latency Communications (URLLC) in MEC networks is challenging.

In the MEC network, an edge server typically serves multiple UEs. Given the finite
communication and computation resources, there is often competition among UEs. There-
fore, offloading decisions and resource allocation impact system performance and should
be taken into account during system design [7–12]. In [7,8], the authors optimize latency in
the MEC network by controlling the offloading strategy and power allocation. In addition
to making an offloading decision, the authors in [9] allocate the CPU frequency of the MEC
server and assign wireless bandwidth for the transmission. The work in [10] provides
an optimal design to minimize the overall error probability by server selection and time
allocation. The authors of [11] introduce a fast futures-enabled resource trading mechanism
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to determine optimal transmission power and further propose a hybrid market approach
that integrates futures and spot trading to facilitate resource trading in [12].

However, all of these studies are based on the assumption of infinite blocklength,
which means the transmission of data packets is considered arbitrarily reliable at Shannon’s
capacity. To meet low latency requirements, data packets wirelessly uploading/offloading
in MEC networks are more likely to operate via short block codes, so-called communica-
tions in the Finite Blocklength (FBL) regime [13]. In the FBL regime, transmission error
possibly occurs even when the coding rate is set to be lower than the Shannon capacity.
When transmitting data packets with shorter blocklength to reduce transmission delay, the
probability of transmission error increases correspondingly. Therefore, minimizing latency
with a reliability guarantee under the FBL regime should be carefully investigated.

In the past few years, a set of works have taken the FBL impacts into consideration
in the performance analysis and system design for MEC networks [14–17]. The study
in [14] introduces an energy-efficient algorithm for dynamic computation offloading in a
multi-access edge computing scenario, focusing on delay-critical applications by incorpo-
rating URLLC through FBL and reliability constraints to manage radio and computational
resources jointly. The authors of [15] propose an efficient algorithm for an unmanned aerial
vehicle-enabled MEC system with URLLC-based offloading to minimize the maximum
computation latency, considering the FBL transmission and its impact on the data rate.
Moreover, the work in [16] proposes an MEC-aided integrated sensing and communication
scheme that leverages short-packet transmissions to efficiently offload radar-sensing data
to an edge-server, ensuring low latency and high reliability for radar data analysis while
minimizing system energy consumption. In [17], the authors investigate the effects of
short-packet transmission on the radio resource allocation and minimize the energy cost
for mission-critical Internet-of-Things (IoT) in an MEC system. Some authors have also
combined FBL with various communication technologies, such as non-orthogonal multiple
access and retransmission, to analyze the impact on system performance [18–21]. The
authors in [18] provide a design that maximizes the effective capacity via FBL transmission.
In [19], a joint optimization problem is formulated by determining the user grouping and
allocating blocklength. In [20], the authors propose energy-efficient retransmission schemes
for MEC networks with a hybrid automatic repeat request, optimizing the number of retries
and transmission parameters under FBL constraints to minimize energy consumption for
latency-critical tasks. In [21], the authors allocate blocklength to improve the average
end-to-end reliability through a deep reinforcement learning approach. However, existing
studies often focus on the transmission delay under the FBL regime. They tend to overlook
the queuing delay, especially when tasks involve multiple related data packets.

Since transmission delay does not fully capture the total time taken for transmitting
packets, especially ignoring the waiting time of packets at the source, some researchers
have introduced the Age of Information (AoI) [22]. The AoI concept, which includes the
waiting time of packets at the source, offers a more accurate assessment of packet freshness.

Recently, a set of studies have analyzed the AoI performance of networks operating
with FBL codes. The authors in [23,24] present a novel study for downlink cellular networks
and orthogonal frequency division multiple access systems to minimize AoI, considering
the impact of FBL. In [25], authors optimize the tail distribution of AoI in vehicular networks
by employing extreme value theory. The work in [26] investigates the correlation and joint
optimization of AoI and peak AoI in a last-come first-served system with retransmission
and non-preemption policies. Some other recent studies have analyzed the AoI within the
MEC networks. In [27], the authors investigate the average AoI in a wireless-powered MEC
system and derive a closed-form expression for it. In [28], the problem of minimizing AoI
in an MEC system for computation-intensive status updates is addressed with the no-wait
policy and interval-wait policy. The authors of [29] present an AoI-based optimization
strategy for computation offloading and transmission scheduling in MEC-enabled IoT
networks. In [30], the authors analyze the average AoI and the average peak AoI in a
multi-user MEC system, where a base station transmits computation-intensive packets



Sensors 2024, 24, 2812 3 of 19

to UEs. However, in some scenarios, data packets are used for decision-making after
transmission. The freshness of the data at the time of decision is more critical than at the
moment transmission is completed. The AoI does not capture the packets’ freshness for
decision-making purposes.

More recently, the concept of Age upon Decision (AuD) has been introduced in [31].
The AuD measures how old the information is when it is used to make a decision, whereas
AoI measures the information received. The authors investigate the impact of scheduling
update arrival and decision-making processes on the average AuD in [32,33]. Then, the
authors of [34] explored the AuD in IoT-based wireless networks with truncated hybrid
automatic repeat requests, focusing on the impact of FBL and multiple sources. Although
much of the research has looked at the AuD for data packets, the task AuD that involves
multiple data packets still requires further investigation. To the best of our knowledge,
there is also a missing analysis and optimization of a task’s AuD with multiple related data
packets in low-latency MEC networks under the FBL regime.

In this paper, we consider task transmission and computation in a low-latency MEC
network with multiple UEs and one MEC edge server. To minimize the average task AuD,
we allocate finite blocklength resources to UEs and decide the transmission moment. We
propose an action-masked Proximal Policy Optimization (PPO) algorithm that adapts to
time-varying independent channels and randomly arriving tasks while ensuring reliable
task transmission. Our main contributions are summarized as follows:

• We introduce a low-latency MEC network where tasks are composed of multiple data
packets transmitted by various UEs through wireless channels to an edge server under
the FBL regime. We analyze the impact of blocklength allocation and UE selection on
the error probability of data packet transmission and the task AuD.

• We formulate an optimization problem to minimize the average task AuD by jointly
allocating blocklength and selecting UEs while ensuring error probability constraints.
Subsequently, we transform this into a UE selection problem that adheres to the error
probability constraints dictated by the FBL regime.

• We propose an Error Probability-Controlled Action-Masked Proximal Policy Optimiza-
tion (EMPPO) algorithm considering dynamic task generation and random fading
channels. By masking actions that cannot satisfy error probability constraints, our
algorithm prevents the exploration of ineffective actions, thereby enhancing efficiency.

• Simulation results are provided to validate the performance of our proposed method
compared to server baseline methods, especially the standard DRL methods. We
demonstrate the robustness of our method under various network conditions, such as
varying task arrival probabilities, channel correlation coefficients, and Signal-to-Noise
Ratio (SNR).

The rest of the paper is organized as follows: In Section 2, we describe the low-latency
MEC system model and FBL performance and task AuD. We state the optimization problem
of minimizing the task AuD and present an action-masked DRL algorithm in Section 3.
Then, we evaluate the performance and show the simulation results in Section 4. Finally,
we conclude our work in Section 5.

2. Preliminaries

In this section, we introduce the system model of the low-latency MEC network
and FBL regime in detail. Then, we introduce and analyze the task AuD in a two UEs
low-latency MEC scenario.

2.1. System Model

As shown in Figure 1, the system model of the low-latency MEC network we consider
is composed of a set of UEs U = {1, 2, · · · , K} and one MEC server. We discretize time into
frames of consistent length. At the beginning of each frame, the task arrives randomly. A
task consists of multiple data packets of different sizes. Each packet is stored in a user’s
queue and then transmitted to the edge server at a later frame. One frame may transmit
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one or more packets. Once all data packets of a task have been successfully transmitted, the
task can start computation and then be used to decide when the computation is finished.

Figure 1. System model of low-latency MEC network.

Specifically, we discretize time into a set of time frames T = {1, 2, · · · , T}. Each
frame is comprised of n symbols, which are the smallest units required to represent the
transmitted data in our communication system. A symbol is not merely a bit, instead, it
encapsulates a discrete value or a set of bits according to the modulation scheme used. The
duration of each symbol is Ts, which is how long it takes to transmit one symbol. Therefore,
the total duration of the frame Tf can be represented as

Tf = nTs (1)

Each frame can be split into a communication phase and a computation phase. The
frame structure is shown in Figure 2. During the transmission phase, data packets from dif-
ferent UEs are transmitted to the edge server via the wireless channels using time-division
multiple access. During the computation phase, we consider joint-packet task scenarios.
That is, a task is made up of data packets from multiple UEs. A task’s computation and
decision-making process can only be initiated when all data packets involved have been
transmitted (transmission can be distributed across different frames). Considering that
the ability to start decision-making for a task depends mainly on whether the last data
packet of the task has been successfully transmitted, we utilize a fixed time length for the
computation phase. Tasks in which all packets have been fully transmitted can proceed
with calculation and decision-making in the computation phase.

Figure 2. Frame structure.

Data packets may arrive at the beginning of each frame, that is, before the transmission
starts. A data packet with packet size mk,t (in bits) arrives at the UE k in frame t with a
probability of p, suggesting that the data packet arrivals conform to an On/Off Markov
arrival model:

P =

{
p packet arrives
1− p packet does not arrive

(2)

Furthermore, for each UE, a data packet is then cached in an independent First-In-
First-Out (FIFO) queue.

Notably, we consider joint task decisions that require multiple data packets. This
suggests that for a specific task, its data packets always arrive at various UEs at the same
time (e.g., in an autonomous driving scenario, we can realize a comprehensive perception of
the road environment at a specific moment by aggregating the data captured from different
sensors at the exact moment).
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Additionally, due to potential variations in the types of UEs, the sizes of data packets
arriving at each UE may differ. We assume that the packet size mk,t is uniformly distributed
across the range[a, b], ensuring that each packet size within this interval is equally likely to
occur. The probability density function of the packet size mk,t is given by:

f (mk,t) =

{
1

b−a a ≤ mk,t ≤ b
0 otherwise

(3)

Channels are considered to experience quasi-static Rayleigh fading. Therefore, as
the duration of a frame Tf is shorter than the channel coherent time, the channel fading
remains constant within the frame but may vary between the current frame and the next.
Channels between different UE and edge servers are considered to be independent.

Thus, for channel state hk,t, we adopt the widely used Jakes model to depict the
correlation of channel states between frames:

hk,t = ρhk,t−1 +
√

1− ρ2∆hk,t (4)

where hk,t is the channel state of frame t between user k and the edge server, hk,t−1 is the
channel state of frame t− 1 between user k and the edge server, ρ ∈ [0, 1] is the channel
correlation coefficient, and ∆hk,t ∼ CN (0, 1) is a complex Gaussian random variable.
The channel state hk,t is modeled as influenced by the previous state hk,t−1 through the
correlation coefficient ρ and a random component

√
1− ρ2∆hk,t, which represents the

time correlation and randomness of the wireless channel. Hence, we have the received
signal-to-noise (SNR) given by

γk,t = γkh2
k,t (5)

where γk is the average SNR of channel k. We consider instantaneous perfect Channel State
Information (CSI) is available.

2.2. FBL Communication Performance

To achieve low-latency transmission, the data packet is transmitted within the FBL
regime, which means the FBL regime should be considered during the transmission phase.

Following the FBL regime [13], the coding rate rk,t for an additive white Gaussian
noise channel between UE k and edge server in frame t is shown to have the follow-
ing approximation:

rk,t = R(γk,t, εk,t, nk,t) ≈ C(γk,t)−

√
V(γk,t)

nk,t
Q−1(εk,t) (6)

where γk,t is the instantaneous SNR, εk,t is the error probability of transmission, nk,t is the
blocklength, C(γk,t) = log2 (1 + γk,t) is the Shannon capacity, V(γk,t) = 1− 1

(1+γk,t)2 is the

channel dispersion, Q(x) =
∫ ∞

x
1√
2π

e
−t2

2 dt is the Gaussian Q-function, and Q−1(x) is its
inverse function. From (6), the error probability of the transmission εk,i can be expressed as:

εk,t ≈ Q

C(γk,t)− rk,t√
V(γk,t)

nk,t

 (7)

For a data packet with packet size mk,t transmitted at the UE k in frame t , the coding
rate rk,t can also be expressed as:

rk,t =
mk,t

nk,t
(8)
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From the analysis above, we know that allocating more blocklength for the trans-
mission of a data packet will reduce the transmission error probability. However, it will
also result in longer transmission times. Additionally, the error probability is affected by
the time-varying CSI. Therefore, choosing the appropriate blocklength and transmission
timing for data packets is important to achieve a trade-off between error probability and
transmission time.

2.3. Task AuD

To better understand the task AuD, we use a simple example comprising two UEs and
an edge server for low-latency MEC network. Figure 3 shows the task AuD of the network.

Figure 3. Task AuD of the low-latency MEC network.

As shown in Figure 3, the system’s initial AuD is ∆d,0. As time is divided into frames,
if no task completion decision is made, the AuD for the next frame will be

∆d,1 = ∆d,0 + Tf (9)

Then, a task arrives at the UEs at ta. This task consists of two packets m1 and m2,
which are individually cached in the queues of UE1 and UE2. After waiting in the queue,
the packets at both UE1 and UE2 start transmitting to the edge server (may transmit in
different frames). Specifically, the packet at UE1 starts transmission at ts,1 and the packet at
UE2 begins transmission at ts,2. According to the system model, packets must be completed
within the frame when starting transmission. After the two packets have completed their
transmission (i.e., the task transmission is completed), the task begins to compute on the
edge server at a subsequent moment, represented as ts,c, and the computation ends at te,c.
As shown in Figure 2, the computation phase of the task consumes a fixed time length. The
computation finishes at the end of the frame with making the task decision. Since the task
is decided, we have the new task AuD of the network in the current frame:

∆d,c = te,c − ta (10)

Equation (10) shows that the new task AuD is determined by the time that all data
packets of the task complete transmission and the task completes computation. Thus, for
the task AuD ∆d,t in frame t, the task AuD ∆d,t+1 in the next frame is determined by:

∆d,t+1 =

{
∆d,t + Tf if no task decided in frame t
te,c − ta if the task decided in frame t

(11)
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where Tf is the frame duration, te,c is the timestamp when the task computation is com-
pleted and the decision is made, ta is the timestamp when the task arrives at the UEs.

Therefore, for an MEC network that has gone through N frames, its average task AuD
is defined as:

∆d =
1
N

N

∑
t=1

∆d,t (12)

From the example, it can be seen that, compared to the AuD of a single data packet,
which only depends on when the packet is used for decision-making after being transmitted
to the edge server, Task AuD requires that all packets of a task reach the edge server
before they can participate in decision-making together. The Task AuD of a task is largely
influenced by the packet that arrives last at the edge server.

3. DRL-Based Joint User Selection and Blocklength Allocation Design

In this section, we formulate the optimization problem of UE selection and blocklength
allocation. Then, we formulate the task offloading problem as a Markov Decision Process
(MDP) that can be solved by deep reinforcement learning methods. Finally, we investigate
the EMPPO algorithm in detail.

3.1. Problem Formulation

For a network composed of K UEs and one MEC server, we will decide which packets
will be transmitted, and the blocklength to be used for each packet in each frame to
minimize long-term average task AuD. Considering that the data packets on each UE are
cached in a FIFO queue, we assume each UE can transmit at most one packet within a frame.
Therefore, we can use a set to represent the selection of UEs and blocklength allocation in
frame t:

Nt =
{

n1,t, n2,t, · · · , nk,t
}

, nk,t ∈ N (13)

where nk,t is the blocklength assigned to UE k in frame t. nk,t = 0 means that the UE does
not transmit packets in this frame. From (13), the optimization problem of task offloading
can be formulated as follows:

min
Ni ,t∈T

∆d (14a)

s.t.
K

∑
k=1

nk,t = nc, ∀i ∈ T nk,t ∈ N (14b)

εk,t ≤ εmax, ∀k ∈ U , t ∈ T (14c)

∆d is the optimization objective, defined as minimizing the average AuD in Equa-
tion (12). The constraint (14b) guarantees that the total blocklength equals the available
blocklength for the transmission phase in a frame. The constraint (14c) ensures that the error
probability for each transmitted packet does not exceed the error probability constraint
εmax.

From (7) and (8), it is evident that the error probability monotonically decreases as
the blocklength increases. Thus, for a given error probability constraint εmax, with the
known SNR γk,t and data packet size mk,t, we can determine the optimal blocklength no,k,t
for transmission such that the packets are transmitted exactly meeting the error probability
constraint.

Therefore, when we select a UE, the transmitted blocklength is determined uniquely.
By using the binary decision variables, we can transform the joint problem of UE selection
and blocklength allocation into a UE selection problem. At frame t, the set of binary
decision variables used to determine whether the UE transmits is:

Xt = {x1,t, x2,t, · · · , xK,t}, xK,t ∈ {0, 1} (15)

Then, we can transform the optimization problem into:
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min
Xt ,t∈T

∆d (16a)

s.t.
K

∑
k=1

no,k,t ≤ nc, ∀t ∈ T (16b)

Xt = {x1,t, x2,t, · · · , xK,t}, xK,t ∈ {0, 1} (16c)

Constraint (16b) is the total blocklength constraint for a frame. Constraint (16c) is the
set of binary decision variables, where xK,t represents the binary decision for each UE K
at frame t, taking a value of either 0 or 1. xK,t = 1 means UE K transmits its data packet
using the optimal blocklength that precisely meets the error probability constraint in frame
t, whereas xK,t = 0 means that the UE K will not transmit a data packet in that frame.
Given that the selected packets for transmission are transmitted in such a way to exactly
meet the error rate constraint, the total blocklength may not exactly equal the blocklength
available for transmission in one frame. In real-world scenarios, we allocate the remaining
blocklength to the packets to achieve lower transmission error probability.

3.2. MDP Formulation

UE selection problem (16a) can be considered as a sequential decision-making process.
At any given frame, we can only access the present and historical states, and make deci-
sions under the current state which will influence future states and decisions. Therefore,
obtaining the optimal global solution for this problem is impossible. However, it can be
modeled as a MDP and solved by reinforcement learning methods.

Reinforcement Learning tasks are usually modeled by MDP. Each state of the Rein-
forcement Learning system must have the Markov property, meaning once the current
system state is known, future states are solely dependent on it and not on past states. An
MDP in Reinforcement Learning can be described with the tuple (S, A, P, R, γ). S represents
the state space, which is the set of all possible states of the environment. A is the action
space representing the set of all possible actions the agent can take. P is the set of state
transition probabilities when the agent performs an action in a given state. R is the reward
function. γ is the discount factor that dictates the degree to which future rewards brought
by actions are discounted when calculating cumulative rewards.

The classical reinforcement learning process includes the following steps:

(1) At every time step t, the agent observes the current environment state st ∈ S.
(2) The agent selects an action at according to the policy π(st) based on the current

environmental state.
(3) The environment transitions to state st+1 due to action at and gives a reward rt to

the agent.

The learning process of reinforcement learning is an interactive process between the
agent and the environment. It allows the agent to explore in an unfamiliar environment
where different actions lead to different rewards. As the agent interacts continuously with
the environment, it constantly improves its strategy based on changes in rewards and
environmental states. After many trials and errors, it obtains the strategy with the most
cumulative rewards.

The agent continuously updates and iterates its strategy according to the rewards
obtained from the actions taken in different environmental states in the ongoing interactive
process, aiming to obtain as much cumulative reward as possible.

In our low-latency MEC scenario, the definitions of state space, action space, and
reward function are as follows.

• State Space: The state space is composed of three components, which are the age and
size of the oldest data packet in each UE’s queue (the oldest data packet will be at
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the head of the queue), and the real-time SNR of the channels. Therefore, the state in
frame i can be represented as:

st = {∆1,t, ∆2,t, · · · , ∆K,t, m1,t, m2,t, · · · , mK,t, γ1,t, γ2,t, · · · , γK,t} (17)

where [∆1,t, ∆2,t, · · · , ∆K,t] is the vector of length K containing the age of the oldest
data packet in each UE, [m1,t, m2,t, · · · , mK,t] is the vector of length K containing the
size of the oldest data packet in each UE, and [γ1,t, γ2,t, · · · , γK,t] is the vector of length
K containing the real-time SNR of the channels.

• Action Space: From (15), we use a vector of binary decision variables to determine
whether the K-th UE transmits in frame t:

at = {x1,t, x2,t, · · · , xK,t}, xK,t ∈ {0, 1} (18)

where xK,t = 1 means UE K transmits a data packet to an edge server in frame t, and
xK,t = 0 means UE K does not transmit a data packet in frame t. Since each x can be
either 0 or 1, there are a total of 2n possible actions for at.

• Reward Function: To minimize the average task AuD, the reward function we have
designed is as follows:

rt = −α∆d,t + C (19)

where ∆d,t is the task AuD at frame t, α is a scaling factor that adjusts the sensitivity to
changes in AuD, ensuring that the reward is neither too large nor too small, and C is a
constant term that provides a fixed uplift to the reward, potentially aiding in learning
stability and convergence of the learning process.

3.3. EMPPO Algorithm

EMPPO comes from the standard PPO algorithm and its adapted version maskable
PPO. The PPO algorithm was proposed by John Schulman in 2017 [35] and has been widely
adopted due to its simplicity, stability and efficiency. It is a policy gradient method, which
provides an improvement to trust region policy optimization [36]. Then, considering
scenarios where actions cannot always be selected, the maskable PPO has been proposed
in 2022 [37]. By masking nonviable actions, it reduces ineffective exploration by agents,
thereby enhancing the efficiency and performance of the algorithm.

The framework of EMPPO is shown in Figure 4. Within the EMPPO framework, action
masking is critical in addressing the reliability constraint of low-latency MEC networks.
Two main enhancements reflect EMPPO’s key advancements over the standard PPO. Firstly,
EMPPO integrates a dynamic mask layer before the policy network’s output to evaluate
and filter potential actions based on current conditions and ensure compliance with error
probability constraints arising from variable CSI and packet sizes. Secondly, during forward
propagation, EMPPO incorporates an additional step where the mask is actively applied to
refine the action probability distribution, ensuring that only feasible actions are considered
in decision-making processes.

In practice, EMPPO converts binary-encoded action vectors into one-hot encoded
vectors, representing a unique mapping for all potential UE selections. Under the FBL
regime, the mask function comes into play by selectively filtering actions according to
real-time CSI.

EMPPO uses a clipped surrogate objective function to achieve a balance between
exploitation and exploration, which can be expressed as:

LCLIP(θ) = Êt
[
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
(20)

where θ is the policy network parameter, rt(θ) is the probability radio of action, Ât is the
advantage estimate at timestep t, and ϵ is a hyperparameter.
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Figure 4. EMPPO framework.

The probability radio rt(θ) can be denoted as:

rt(θ) =
πθ(at | st)

πθold(at | st)
(21)

where πθ(at | st) is the current policy, πθold(at | st) is the old policy. If rt(θ) > 1, the agent
is more likely to take action based on the current policy. If 0 < rt(θ) < 1, the agent is more
likely to take action based on the old policy.

The value network predicts the expected return from a given state, and the policy
network outputs a probability distribution over actions given the current state. Generalized
Advantage Estimation (GAE) is a method often used in PPO to reduce the variance of
advantage estimates without greatly increasing bias, improving the stability of policy
updates. The advantage function Ât can be calculated as:

Ât = δt + (γλ)δt+1 + · · ·+ (γλ)T−t+1δT−1 (22)

where rt is reward, γ is the discount factor for future rewards and λ is GAE parameter. The
temporal difference errors δt can be calculated as:

δt = rt + γVϕ(st+1)−Vϕ(st) (23)

where Vϕ(st+1) is the value of the subsequent state, Vϕ(st) is the value of the current state.
We employ an experience buffer for optimization. The agent’s experience is stored as

tuples (s, a, r, s′) in an experience buffer and is then processed in epochs using mini-batches
to improve policy parameters iteratively.

Based on the discussion, we can deploy the EMPPO algorithm in low-latency MEC
environments. The specific steps are shown in Algorithm 1.
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Algorithm 1 EMPPO algorithm for UE selection in low-latency MEC network.

Require: Initialize policy network πθ(a|s) with parameters θ
Require: Initialize value function Vϕ(s) with parameters ϕ
Require: Initial policy parameters θold ← θ
Require: Hyperparameters: clipping parameter ϵ, discount factor γ, GAE parameter λ

1: Initialize experience replay buffer B
2: for iteration← 1 to N do
3: Collect a set of partial trajectories Diteration by running policy πθold
4: for each timestep t within these trajectories do
5: Compute advantage estimates Ât using GAE
6: Store transition (st, at, rt, s′) in buffer B
7: end for
8: for each epoch do
9: Sample mini-batch from buffer B

10: for each sampled transition (s, a, r, s′) do
11: Estimate probability ratio rt(θ) using the current and old policies
12: Mask actions using function M(s)
13: end for
14: Optimize policy using the clipped objective function LCLIP(θ)
15: Update θ
16: end for
17: Update old policy parameters θold ← θ
18: end for

4. Simulation Results

In this section, we evaluate the performance of the EMPPO algorithm within a simu-
lated low-latency MEC environment, encompassing diverse scenarios such as random task
arrivals, varying data packet sizes, and dynamic channel conditions. This assessment aims
to show the adaptability of EMPPO in real-time offloading decisions against the baseline
strategies.

We developed our low-latency MEC network simulation environment in Python 3.9
and refined the algorithms from the widely recognized open-source Stable Baselines3
reinforcement learning library [38] to formulate our EMPPO approach. The simulation
experiments were conducted on a setup running Windows 11, comprising an AMD Ryzen
7 5800 CPU paired with 32 GB of system memory and an NVIDIA GeForce RTX 3070 Ti
graphics card.

In particular, we consider a low-latency MEC network composed of three UEs and
one edge server. The setting of specific parameters is based on the 3GPP protocol as much
as possible to be close to the real scenario. The error probability constraint for packet
transmission εmax = 0.001. Tasks arrive randomly in each frame with a probability p = 0.4,
and the size of the data packet mk,i arriving at each UE typically varies between 500 and
2500 bits. Each UE transmits data packets to the edge server through independent wireless
channels. The average SNR of three channels may vary and are set as [γ− ∆γ, γ, γ + ∆γ],
where γ = 10 dB, ∆γ = 3 dB. The channel correlation coefficient ρ is set as 0.8. The length
of each frame is 1 ms, comprising 1500 symbols, with 1000 symbols for transmission and
500 symbols for computation, and one symbol’s duration is 66.7 µs.

In our proposed EMPPO framework, there are two networks: an actor network and a
critic network. Both have one input layer, two hidden layers, and one output layer. The
hidden layers are made up of 64 neurons. The other parameter settings of our algorithm
are shown in Table 1.
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Table 1. EMPPO algorithm parameters.

Description Symbol Value

Number of iterations N 1× 106

Number of episodes ne 5000
Learning Rate α 0.0003
Number of Steps nsteps 2000
Batch Size B 100
Discount Factor γ 0.99
Clip Range ρ 0.2
Exploration Rate ϵ 1
Exploration Decay Rate δ 0.995
GAE Factor λGAE 0.95

To evaluate the proposed algorithm, we compare our algorithm with the follow-
ing baselines.

(1) Random Offloading (RO): Randomly select some UEs for data packet offloading.
(2) Average Offloading (AO): Select UEs for data packet offloading according to a prede-

fined sequence.
(3) Proximal Policy Optimization (PPO): The standard PPO algorithm, which has the

same parameters as EMPPO.
(4) Verified Random Offloading (VRO): Randomly select some UEs to offload data

packets and verify that all selected packets within a frame can meet the error
probability constraints.

(5) Freshness Greedy Offloading (FGO): Always select the UE with the oldest packet for
transmission, until the remaining blocklength makes the selected packet unable to
meet the error probability constraints.

(6) Channel Greedy Offloading (CGO): Always select the UE with best channel state for
transmission, until the remaining blocklength makes the selected packet unable to
meet the error probability constraints.

To minimize the impact of randomness, our proposed method and all baselines will
be tested 500 times, and the average result of these tests will be taken as the output.

Figure 5 shows the convergence performance of the proposed EMPPO and the stan-
dard PPO. EMPPO starts its learning process with an average reward of around 50, higher
than PPO’s starting point of around 38. This is because EMPPO masks actions that can not
meet the error probability constraints. Therefore, even when the action selection tends to
be random at the beginning of the iteration, EMPPO can still achieve a better reward.

As the iterations progress, both EMPPO and PPO quickly improve their rewards in
the first 500 episodes. After 500 episodes, the reward of EMPPO gradually converges to
around 87, while the reward of PPO converges to about 45. This shows that EMPPO has a
similar iteration efficacy to the standard PPO and can obtain a higher reward.

Figure 6 shows the influence of the task arrival probability. It can be seen that EMPPO
has the lowest average task AuD across all task arrival probabilities, followed by the greedy
methods FGO and CGO, followed by PPO, with RO constantly being the worst. As the
task arrival probability increases, the average task AuD for all methods increases. This
is due to an increased task arrival probability, potentially causing data packets to wait
in the queue longer before being transmitted, and tasks have to wait longer for all the
data packets to arrive. In this case, the average task AuD for CGO exceeds FGO’s, which
means freshness-based packet transmission (i.e., FGO) is more efficient than channel-based
transmission (i.e., CGO). This is because CGO tends to send all the packets from channels
with good channel quality first, making it harder to transmit packets from channels with
poor channel quality. There is a certain gap between the performance of PPO and EMPPO,
and the gap gradually increases with the increase in task arrival probability. This indicates
that EMPPO can deal with a large number of data packets more effectively than PPO,
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which may be because EMPPO reduces the exploration of invalid action space through
variable masks.

Figure 5. The convergence of reward.

Figure 6. The average task AuD under different task arrival probability.

At low task arrival probability, EMPPO’s performance is comparable to that of FGO
and CGO, and the average task AuD initially decreases and then increases as the probability
rises. This can be attributed to the less frequent arrival of new tasks and, as a result, a decel-
erated refresh rate of the task AuD. At high task arrival probability, EMPPO significantly
reduces the average task AuD more than other methods. This suggests that EMPPO can
successfully balance packet freshness and channel conditions, performing better under
high-load scenarios.

Figure 7 shows the influence of the channel correlation coefficient. EMPPO consistently
achieves the lowest average task AuD through various channel correlation coefficients.
The average task AuD time for all methods exhibits a slow increase following a rise in the
channel correlation coefficient. Among these, the greedy methods FGO and CGO show a
greater sensitivity to changes in the channel correlation coefficient. A significant increase
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in average task arrival time is observed under the extreme channel correlation coefficient
ρ = 0.99. This is because the channel conditions change slowly at this channel correlation
coefficient, making it difficult to take advantage of channel variations and transmit data
packets with shorter blocklength during optimal channel conditions.

Figure 7. The average task AuD under different channel correlation coefficients.

Figure 8 shows the influence of the average SNR difference between channels. As the
difference increases, the average task AuD for all methods grows, with EMPPO recording
the lowest average task AuD, followed by CGO. Also, the gap in average task AuD
between EMPPO and CGO gradually increases. This is mainly because CGO selects the
UE corresponding to the channel with the highest SNR for data transmission. When the
difference is zero, the channels can be regarded as three independent channels with the
same average SNR, having equal transmission probabilities for each UE. However, as the
difference increases, the channel with the highest average SNR is more likely to transmit
data, while the channel with the lowest average SNR is likely to accumulate data packets.
Figure 8 also shows that PPO and EMPPO methods based on reinforcement learning
are less affected by the increase in channel differences, indicating that the method based
on reinforcement learning can adapt to and balance the transmission of channels under
different channel states.

Figure 8. The average task AuD under different average SNR differences between channels.
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Figure 9 shows the influence of the channel average SNR. As the SNR increases, the
average task AuD of each method decreases. When the average SNR is high, data packets
can be transmitted with a shorter blocklength, allowing more packets to be transmitted
in a single frame. The results of methods based on greedy algorithms tend to be closer to
EMPPO. However, when the average SNR drops, data packets require longer blocklength
for transmission, and often, a task’s data packets could be transmitted over multiple
frames. In this scenario, deciding which data packets are transmitted in which frames
significantly impacts the average task AuD. EMPPO performs better than other methods,
suggesting that EMPPO is more applicable in environments with a low SNR. In extremely
low SNR environments, a frame’s total blocklength might not be enough to transmit a single
data packet. Thus, the average task AuD differences among different methods become
less pronounced.

Figure 9. The average task AuD under different channel average SNR.

In Figure 9, we can observe that RO and AO show different convexity characteristics
from other methods. That is because their performance approaches the maximum average
task AuD. The maximum average task AuD is influenced by the number of simulation
steps, which is set to 200 in the simulation. This leads to a maximum average task AuD of
100 ms (this corresponds to scenarios where no data packets are transmitted in any frame).
An algorithm performing close to this upper bound will show a reduced rate of change,
hence showing the distinct convexity. We can also observe this trend in Figures 6 and 10.

Figure 10 shows the influence of UE number. When the number of UEs increases,
the task AuD of each method increases. This is because the one task’s packet number is
increasing (equal to the number of UEs). While the available blocklength for transmission
is fixed, we need more frames to transmit the packets for one task. When the number
of UEs is small, EMPPO’s task AuD is similar to that of FGO and CGO. However, when
the number of UEs is large, the performance of EMPPO is significantly better than other
methods, which is consistent with the performance under different task arrival probabilities
and confirms our analysis of Figure 6; that is, EMPPO can achieve better performance than
other methods under high-load scenarios, and standard PPO has a lot of invalid action
space to explore, which leads to a lower task AuD.
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Figure 10. The average task AuD under a different number of UEs.

Figure 11 shows the influence of data packet size range. We have set up three different
ranges for data packet size, each with the same average packet size of m = 1500 bits.
Figure 11 shows that the average task AuD decreases as the packet size range decreases.
Specifically, when the range is set to [800, 2200], the average task AuD of EMPPO drops by
about 33% and 7% compared to ranges [300, 2800] and [500, 2500]. On the one hand, this is
because a smaller packet size range results in a more concentrated distribution of packet
size, which leads to a more focused distribution of the required blocklength, allowing
the agent to predict the required blocklength for packets more accurately. On the other
hand, the probability of encountering a large packet size is reduced, which decreases the
probability of packets requiring a blocklength that exceeds frame length constraints. This
enables packets to be transmitted successfully under relatively poor channel SNR.

Figure 11. The average task AuD under different ranges of data packet size.

5. Conclusions

In this work, we proposed a latency optimization design for low-latency MEC net-
works. We optimized the average AuD for tasks through UEs selection and blocklength
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allocation. Specifically, we considered random fading channels and packet transmission
with FBL codes. We formulated an optimization problem to minimize the average task
AuD under error probability constraints and, based on the FBL regime, transformed the
joint optimization problem into an effective UE selection problem. Due to the dynamic task
generation and random fading channels, the problem cannot be well solved analytically. We
further proposed a DRL approach with the action-masked PPO method, which dynamically
masks actions that cannot satisfy error probability constraints.

Simulation results validated the effectiveness of our proposed EMPPO method. In
particular, our method avoids exploring a large volume of the ineffective action space
through the mask, significantly outperforming standard PPO methods. It also adapts better
to scenarios with poor channel SNR and heavy task loads, reflecting the adaptability of DRL-
based methods to dynamic environments. It is also worth mentioning that, although we
assumed real-time CSI can be obtained, the proposed design can be extended to scenarios
where only outdated or imprecise CSI is available, which is more realistic. Under such
conditions, strict error probability constraints cannot be enforced, representing an exciting
direction for our future work.

Author Contributions: Z.J. designed the original idea, performed the simulations, and drafted
the manuscript. J.Y. and X.G. gave some suggestions and reviewed the manuscript. All authors
have made substantive intellectual contributions to this study. All authors read and approved the
final manuscript.

Funding: This research was supported by the Key Research and Development Project in the Hubei
Province of China under grant No. 2022BCA035.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data generated or analyzed during this study are given in Section 4.

Acknowledgments: We would like to acknowledge all the subjects and technicians for their partici-
pation in and support of this study.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

MEC Mobile Edge Computing
FBL Finite Blocklength
UE User Equipment
AoI Age of Information
AuD Age upon Decision
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