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Abstract: Accurate and fast recognition of vehicle license plates from natural scene images is a cru‑
cial and challenging task. Existingmethods can recognize license plates in simple scenarios, but their
performance degrades significantly in complex environments. A novel license plate detection and
recognitionmodel YOLOv5‑PDLPR is proposed, which employs YOLOv5 target detection algorithm
in the license plate detection part and uses the PDLPR algorithm proposed in this paper in the license
plate recognition part. The PDLPR algorithm is mainly designed as follows: (1) AMulti‑Head Atten‑
tion mechanism is used to accurately recognize individual characters. (2) A global feature extractor
network is designed to improve the completeness of the network for feature extraction. (3) The latest
parallel decoder architecture is adopted to improve the inference efficiency. The experimental results
show that the proposed algorithm has better accuracy and speed than the comparison algorithms,
can achieve real‑time recognition, and has high efficiency and robustness in complex scenes.

Keywords: license plate recognition; multi‑head attention; global feature extractor network; parallel
decoder; YOLOv5

1. Introduction
The license plate of a vehicle is a crucial identifier, for which accurate and real‑time

recognition has a very wide range of applications, such as vehicle identification, intelligent
toll collection, vehicle density statistics, access control management, intelligent driving,
traffic control, and traffic scene understanding. In recent years, license plate recognition
has received broad attention from a wide range of researchers [1,2].

License plate detection and recognition methods can be roughly classified into tradi‑
tional methods and deep learning basedmethods. Most traditional methods use manually
selected features to locate the position of license plates [3–5], then morphological methods
are used to separate the characters in license plates before recognizing individual charac‑
ters [6,7]. However, the accuracy of thesemethods is not high, especially in complex scenes.
Deep learning‑based methods generally contain two networks: a detection network and
recognition network. The detection network is used to locate the location of license plate
in the picture, and the recognition network is used to recognize the sequence of characters
in the license plate picture.

Deep learning‑based license plate detection algorithms are mainly classified into two‑
stage detection algorithms [8–10] and one‑stage detection algorithms [11–14]. The two‑
stage detection algorithms have better performance; however, the real‑time performance is
much inferior to the one‑stage detection algorithms. The single‑stage detection algorithms
are more suitable for license plate detection in a variety of application scenarios and can
meet the requirements of both high detection accuracy and real‑time performance.
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Depending on whether or not segmentation of character positions in license plate im‑
ages is required, deep learning‑based license plate recognition methods can be divided
into two categories: methods that require segmentation and methods that do not require
segmentation. Methods that require segmentation [15,16] have high recognition accuracy
but slow recognition speeds and insufficient generalization performance. Methods that do
not require segmentation can be categorized into three subcategories. The first subcategory
requires correction of the license plate before recognition [17–19], resulting in higher recog‑
nition accuracy; however, thesemethods are calculation‑intensive and slow inference. The
second subcategory uses a Recurrent Neural Network (RNN) combined with an attention
mechanism for license plate recognition [20–24]; however, they cannot parallelize the oper‑
ation and are not efficient. The third subcategory is to share license plate features between
the detection network and the recognition network [25,26], which improves the efficiency
of feature vector utilization and reduces the computational effort; however, the recognition
accuracy is insufficient, and the anti‑interference ability is weak and the robustness is poor.

Despite considerable progress inLPDRresearch, existing algorithms aremainlydesigned
for recognition in stationary and constrained scenarios. License plate recognition in natural
environments faces multiple challenges, including variations in shooting distance, tilt angle,
light intensity, weather conditions, and image blurring [1,27]. These factors increase the com‑
plexity of accurately recognizing license plates in natural scenes and pose a significant scien‑
tific challenge to researchers in the field.

Recently, Transformer has made significant achievements in the field of Natural Lan‑
guage Processing (NLP) [28], and it is gradually being used in the field of computer vision
with outstanding achievements [29,30]. Jocher [31] improved the YOLO algorithm to achieve
high accuracy and speed results on the target detection task. In this paper, inspired by the
above works and in order to be able to recognize license plates accurately and in real time,
Transformer is applied to the license plate recognition task and a novel license plate detection
and recognitionmodel namedYOLOv5‑PDLPR is proposed. Themodel uses the YOLOv5 tar‑
get detection algorithm in the license plate detection part, which can improve the inference
speed and accuracy of the entire system. The parallel decode license plate recognition algo‑
rithm (PDLPR) is proposed to recognize license plates in the license plate recognition part. Its
feature extraction network introduces the Focus Structure, and the decoding structure uses
a parallelized decoder to replace the mainstream serial RNN. Through the Multi‑Head At‑
tention mechanism, PDLPR is able to comprehensively extract the feature information of the
image, which can precisely locate the character in the license plate image. Its input license
plate picture can be recognized without correction and segmentation to obtain the right re‑
sult, which improves the accuracy of license plate recognition comprehensively. Meanwhile,
the parallelized structure design of the decoder can increase the inference speed and save the
inference time. The main contributions of this paper are as follows:
• Wepropose a new license plate detection and recognitionmodel called YOLOv5‑PDLPR,

which employs the YOLOv5 target detection algorithm in the license plate detection part
and the newly proposed license plate recognition algorithm PDLPR. PDLPR has three
main newly designed components: a Multi‑Head Attention mechanism for accurately
recognizing individual characters, a feature extraction network for improving the in‑
tegrity of the global feature extraction network, and a state‑of‑the‑art parallel decoder
architecture for improving inference efficiency.

• Experimental results on the CCPD dataset [25] show that the proposedmethod achieves
an average accuracy of 99.4% and a recognition speed of 159.8 FPS, which are better than
those of the comparison algorithms.
The rest of the paper is organized as follows: The techniques relevant to license plate

detection and recognition are introduced in Section 2. The proposed license plate recognition
algorithm YOLOv5‑PDLPR is introduced in Section 3. Section 4 describes the datasets used
in the experiments, the essential parameter settings of the neural network, and the evaluation
metrics related with the experiment results. Section 5 gives the experimental results and com‑
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parative analysis. Section 6 performs an ablation study to verify the efficacy of the proposed
method. Finally, conclusions are drawn in Section 7.

2. RelatedWork
2.1. License Plate Detection

License plate detection is the foundation of license plate recognition, and its accuracy
directly affects the results of character recognition in license plates. Currently, there are two
main categories of license plate detection methods in common use. One is the license plate
detection algorithmbasedon traditionalmethods. The other is the deep learning‑based license
plate detection algorithms.

License plate detection algorithms based on traditional methods usually extract the in‑
trinsic properties of license plates such as edges, colors, local textures, and morphological
analysis as manual image features for license plate detection [32], such as edge feature‑based
license plate detection algorithms [33,34], color feature‑based license plate detection algo‑
rithms [35,36], texture feature‑based license plate detection algorithms [37,38], character
feature‑based license plate detection algorithms [39,40], and detection algorithms based on
more than two features [35]. As noise interference occurs in real license plate images, most
methods based on a single manual feature only work in specific scenes and have poor detec‑
tion results.

Given sufficient training data, deep learning based license plate detection algorithms
have powerful feature representation and high performance compared to license plate detec‑
tion algorithms based on traditional methods. They can usually be divided into two cate‑
gories: one‑stage detection methods and two‑stage detection methods.

Fast R‑CNN [8] and Faster R‑CNN [9] are classical two‑stage detection networks that em‑
ploy the region proposal network in the first stage to share the convolutional features of the
whole image and generate high‑quality region proposal candidate frames. Then, in the sec‑
ond stage, the Convolution Neural Network (CNN) classifier is used to classify the candidate
frames and obtain the kind of targets.

Although two‑stage license plate detectionmethodsdetect objects accurately andquickly,
they are slow and cannot meet the needs of real‑time detection tasks. Therefore, one‑stage
detection methods have emerged, and the representative networks include the YOLO se‑
ries [11–14], TE2E [41], SSD [42], CA‑CenterNet [43], YOLOv5 [31], Optical Flow CNN al‑
gorithms [44,45], etc.

2.2. License Plate Recognition
After a license plate positioning is complete, character recognition of the license plate is

a significant task, whose task is to recognize the sequence of the license plate characters in the
license plate image. Traditional license plate character recognitionmethods and deep learning
license plate character recognition methods are the two primary categories of methods.

2.2.1. Traditional License Plate Character Recognition Method
Traditional license plate character recognition methods have two main steps: license

plate character segmentation and character recognition. Segmentation of license plate charac‑
ters is to separate all characters of a license plate before character recognition in order tomatch
the input of the character recognition algorithm. The usual character segmentation methods
are character detection, concatenated domain search, and vertical projection. The segmented
individual characters are then fed into the recognition module to obtain the recognition re‑
sults. Character recognition methods usually include template matching, feature statistics,
and machine learning.

Maglad et al. [46] segmented characters using theConnectedComponentAnalysis (CCA)
method, determining different connected domains to slice the characters. Hsu et al. [47] seg‑
mented the characters within a license plate picture using the Maximally Stable Extremal Re‑
gions (MSER) technique. Rahman et al. [48] used vertical projection to find the location of
the start and end of the characters within a license plate image, used horizontal projection to
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obtain individual characters, and then used template matching to recognize the characters.
Gou et al. [6] distinguished different license plate characters with the help of limit regions of
specific characters, and then character recognitionwas performed using Restricted Boltzmann
Machines (RBMs). Ashtari et al. [7] employed an improved template matching‑basedmethod
to locate the license plates. A hybrid classifier consisting of a decision tree and a support vec‑
tor machine (SVM) with a homogeneous fifth degree polynomial kernel is then applied to
identify the extracted letters and numbers.

2.2.2. Deep Learning‑Based License Plate Character Recognition Method
Traditional methods are very susceptible to the influence of uneven illumination and

noise in the license plate image, which leads to the wrong recognition of some license plate
characters and low accuracy of license plate sequence recognition. Deep learning‑basedmeth‑
ods for license plate recognition have shown excellent accuracy and speed in practical appli‑
cations, and become the current research hotspots.

(1) Methods that require character segmentation

Bjorklund et al. [49] proposed a license plate recognition system based on convolutional
neural networks and designed two CNN networks, one for license plate detection and the
other for character detection and classification. Yao et al. [50] presented a novel CNN for li‑
cense plate recognition and improved the learning ability of the network by learning image
features from coarse to fine. Zhuang et al. [15] introduced an approach to license plate recog‑
nition based on semantic segmentation, which converts the license plate recognition problem
into a semantic segmentation task and generates recognition results using the semantic type
of each pixel. However, the subsequent processing steps introduced by this method, such as
connected component processing and character counting, result in poor generalization per‑
formance for the algorithm and require careful adjustment. Castro et al. [16] put forward an
improved SSDnetwork to recognize license plate characters. It locates the region of the license
plate, as well as the area of the characters, and then segments the characters for recognition,
and the recognition accuracy of this method is higher.

Although suchmethods improve recognition accuracy, this is achieved by laborious data
annotation, i.e., annotation of each character in the license plate image, increasing the cost of
data annotation.

(2) Methods without character segmentation

Recently, several approaches have attempted to jointly extract semantic and location infor‑
mation that can achieve better recognition performance without segmenting the characters in
license plate images. These methods can be broadly classified into three categories as follows.

The first category is to feed license plate images or feature maps into a correction network
for correction before the license plate images is recognized. The corrected license plate im‑
ages or feature maps are then fed to the license plate recognition network for recognition. The
LPRNet proposed by Zherzdev et al. [17] used a Space Transformation Network (STN) [51] to
affine transform the license plate image to correct the shape of the license plate, which makes
the license plate image better recognized. Zhang et al. [18] proposed the Inverse Composi‑
tional Spatial TransformerNetwork (ICSTN), which combines Thin Plate Spline (TPS) and STN
for correcting license plate images with geometric deformation to improve the accuracy of
license plate recognition. Yousaf et al. [19] adopted the Multi‑Object Rectification Network
(MORN) [52], which chunks the image and then adjusts the offset of each block to correct the
license plate image before recognition. This method has been successful in the recognition of
Pakistani license plates. This category of methods can correct license plates with skewed an‑
gles and improve recognition accuracy. However, it increases the computational burden of the
training process and decreases the inference speed due to the addition of a correction network.

The second category is to convert the license plate task into sequence recognition task using
RNN. Zou et al. [23] introduced BiLSTM to locate each character of a license plate by heat map
visualizationwithout segmenting each character. Moreover, they utilized 1Dattention to extract
features of character regions. Zhang et al. [24] proposed a license plate character recognition
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network with an Xception network for feature extraction and a RNN decoder combined with a
2D attention mechanism. In real‑world circumstances, it can recognize license plates with both
regular and irregular patterns. Gao et al. [20] proposed a novel license plate recognitionmethod
using a two‑stage encoder combined with a Long Short Term Memory (LSTM) decoder. The
method is able to improve the coding quality and can recognize various types of license plates.
This category ofmethods uses RNNnetworks that treat license plates as a sequence recognition
problem; however, there is a large number of cyclic computations in RNNnetworks that cannot
be computed in parallel, increasing the inference time. Moreover, the long‑term dependency of
LSTM leads to performance degradation.

The third category is to use the features extracted by the license plate detection network
for license plate recognition. Themethod proposed by Xu et al. [22] first performed a region‑of‑
interest (ROI) pooling operation on the feature map generated by the detection part to obtain
the feature vectors of the license plate regions. The features of the license plate are then sent into
the classifier in the recognition portion to acquire the license plate sequence. The approaches
proposed by Gong et al. [21] and Qin et al. [26] used the Feature Pyramid Networks (FPN)
in the license plate detection part to extract the shared features for classification and recogni‑
tion. The detection branch then generates bounding boxes and corner points, which are used
for Region of Interest Align (RoIAlign) and correction, respectively. Finally, the located license
plate features are used for recognition to determine the license plate sequence. This category
of methods shares the features extracted by the license plate detection network with the license
plate recognition network, reducing the calculation cost. However, the recognition networks
of this category of methods are designed in a simpler way, and the extracted features are not
semantically rich enough, resulting in insufficient recognition accuracy.

2.3. Transformer
Vaswani et al. [1] proposed the Transformer architecture, which was initially applied in

the fields of machine translation and Natural Language Processing (NLP), as a neural network
based mainly on a self‑attention mechanism. In contrast to the RNN‑based approaches, Trans‑
former makes the training process highly parallel, which can reduce model complexity and
improves text recognition accuracy. In recent years, inspired by the successful application of
Tranformer in the field of NLP, several works [53–55] have proposed the use of Transformer to
replace the recursive structure in the seq2seq framework, which facilitates parallel computation
and speeds up processing.

Mahdavi et al. [56] used Transformer in the field of mathematical expression recognition.
They won the ICDAR 2019 Competition on Recognition of Handwritten Mathematical Expres‑
sions and Typeset Formula Detection with the greatest recognition rate. Yang et al. proposed
HRGAT [54] for scene text recognition using Transformer. Bymerging CNN featuremapswith
a 2D attention map and then linking to the parallel decoder, it can swiftly recognize the text of
scenes with irregular spatial distribution. Kang et al. [55] applied Transformer network to a
handwritten text recognition task and achieved excellent performance. Ma et al. [57] proposed
the Text Attention Network (TATT), which uses CNN and Transformer to align text with spa‑
tially distorted text images, achieving state‑of‑the‑art performance in text super‑resolution tasks.

3. ProposedMethod
As shown in Figure 1, the proposed YOLOv5‑PDLPR consists of two main parts: the

YOLOv5‑based license plate detection network and the PDLPR license plate recognition net‑
work proposed in this paper. The former receives an entire car picture as its input, locates the
license plate position within the picture, and then outputs a picture including only the license
plate information. The latter takes the license plate picture as its input and puts the license plate
picture through feature extraction, encoding, and decoding operations to obtain the sequence
of license plate characters.
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3.1. License Plate Detection
YOLOv5 was optimized and improved by Glenn et al. [31] on the basis of You Only Look

Once (YOLO), which adds mosaic data improvement and adaptive anchor frame calculation at
the input side, the Focus Structure and cross stage partial network (CSPNet) in the backbone
network, andGeneralized Intersection of Union (GIOU) loss in the Prediction part to the YOLO
model. These improvements make YOLOv5 more flexible and faster than YOLOv4, with the
characteristics of lightness, and has been widely used in the field of target detection in recent
years. In this paper, YOLOv5 is used as a license plate detection network.

3.2. License Plate Recognition
The proposed license plate recognitionmodel PDLPR is shown in Figure 2, which consists

of three main modules: the Improved Global Feature Extractor (IGFE), the Encoder, and the
Parallel Decoder. All the input license plate images were initially resized to 48 × 144. In the
IGFEmodule, feature extractionwas performed on an image and featureswere converted into a
featurevector of 512× 6× 18. In theEncodermodule, theposition encoder encoded theposition
of the feature map, added it to the image feature vector, then encoded the vector using Multi‑
Head Attention to produce a feature vector. In the Parallel Decoder module, the Multi‑Head
Attention of the decoderwas employed to decode the output feature vector from the encoder in
order to predict the license plate sequence.
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3.2.1. Improved Global Feature Extractor
The Focus Structurewas added at the beginning part of the IGEF to implement the feature

mapdownsampling functionwhile ensuring that no feature informationwas lost. In other parts
requiring downsampling, the pooling operationwas also replacedwith a convolution operation
with a stride of two in order to preserve the integrity of the extracted network features. This can
improve the accuracy of license plate character recognition. Figure 3 shows the structure of the
IGFE module, which consists of a Focus Structure module, two ConvDownSampling modules,
and four RESBLOCKmodules.

(1) Focus Structure Module

The structure of Focus Structure module is shown in the bottom part of Figure 3, which
was used to conduct picture slicing operations, and its operation process is shown in Figure 4,
where a value was taken at each interval of one pixel in a input picture so that one picture was
equally divided into four feature maps. Then, they were concatenated along the channel di‑
rection. Thus a three‑channel image became a 12‑channel feature map with half the original
width and height. Finally, the obtained feature map is convolved to perform the downsam‑
pling operation. A Focus Structure is better than other ways of downsampling because it does
not lose any feature information. This means that the extracted semantic information will be
more comprehensive.
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Figure 4. The slicing process of Focus Structure module.

(2) RESBLOCKmodule

structure of eachRESBLOCKmodule is shown in the central part of Figure 3, and consisted
of two residually connected CNN BLOCK modules. During forward inference, the residual
connected structure could prevent the network’s gradient disappearance and explosion.

In the CNN BLOCK module’s convolutional layer for extracting features, we utilized
conv2d with stride = 1 and kernelSize = 3 to extract features, which were then passed via the
BatchNormalization layer [58] and activation function layer in order to extract the image’s vi‑
sual features.

The activation functionmade use of the leakyRelu [59] shown in Figure 5a rather than the
Relu [60] shown in Figure 5b. The reason is that when the input of the Relu function is negative,
the output is always 0, and its derivative is also 0. This tends to cause dead neurons, which
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means that the neurons no longer learn and the parameters no longer change. The leakyRelu is
given a smaller slope value for the case where the input is negative to avoid the occurrence of
death neurons.
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(3) ConvDownSampling module

The structure of the ConvDownSampling module in this paper is the same as that of
CNN BLOCK. However, we set the stride to 2 in conv2d for downsampling and used the
convolution operation in place of the pooling operation for downsampling. This preserves
more feature information in the downsampling process, thus improving the accuracy of license
plate recognition.

3.2.2. Encoder
As shown in Figure 6, the Encoder in this paper consisted of three encoding units con‑

nected by residuals, and each unit contained four submodules: CNN BLOCK1, Multi‑Head At‑
tention, CNN BLOCK2, and Add&Norm. The CNN BLOCK1 and CNN BLOCK2 structures
are the same as in Section 3.2.1, but with a few differences that will be explained later.
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Before calculatingMulti‑HeadAttention, the CNNBLOCK1 in the bottompart of Figure 6
was used to increase the feature vector dimension so that richer feature information could be
extracted. Here, we set CNN BLOCK1’s stride to 1, kernelSize to 1, padding to 1, and the di‑
mension of the output to 1024.
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The CNN BLOCK1 output feature vectors were then encoded using Multi‑Head Atten‑
tion [1]. Here, parallel processing was used to compute the attention on each subspace. The
results in different spatial dimensions are then connected, and a linear conversion is performed
to obtain the final encoding result. This can attend to the connections between features in mul‑
tiple ways and in multiple spaces. The Multi‑Head Attention MHA(Q, K, V) is calculated as
shown in Equation (1):

MHA(Q, K, V) =
[head1

(
QWQ

1 , KWK
1 , VWV

1

)
, head2

(
QWQ

2 , KWK
2 , VWV

2

)
, . . . ,

headi

(
QWQ

i , KWK
i , VWV

i

)
, . . . , headh

(
QWQ

h , KWK
h , VWV

h

)
]

(1)

where Q, K, and V ∈ Rn×d, headi

(
QWQ

i , KWK
i , VWV

i

)
∈ Rn×dk , WQ

i , WK
i and WV

i ∈

Rd×dk  WO ∈ Rd×d, n = width ∗ height = 108, d = 1024, dk = d
h = 128, h = 8. headi

(
QWQ

i ,

KWK
i , VWV

i
)
denotes the result of attention calculation for the i‑th subspace; WQ

i , WK
i , and

WV
i are the projection matrices that project Q, K, and V to the i‑th subspace, respectively; WO

is the matrix for computing the linear conversion of the head; width and height are the width
and height of the feature vector output from CNN BLOCK1, respectively. The value of d is
equal to the dimensionality of the feature vector output by CNN BLOCK1. h is the number of
heads in Multi‑Head Attention, which means that the neural network attends to features in h
spaces. After the experimental comparison, the license plate recognition accuracy is the highest
when h = 8, and the experimental results are shown in Section 6. dk is the dimension of the
projection vector of the input feature vector on each subspace, which is calculated by dividing
d by h. The calculation of Q, K, and V in Equation (1) is shown in Equation (2):

X = [x1, x2, . . . xm, . . . xn]
T

Q = XWQ
K = XWK
V = XWV

(2)

where X ∈ Rn×d, WQ, WK, and WV ∈ Rd×d, xm ∈ R1×d. X is the feature vector output from
CNN BLOCK1. WQ, WK, and WV are three different trainable weights, which were obtained
by random initialization at the very beginning of training and then updated by gradient descent
during the training process, and finally the suitable weights are obtained to fit the real values.

Each headi

(
QWQ

i , KWK
i , VWV

i

)
in Equation (1) was calculated as shown in Equation (3):

headi

(
QWQ

i , KWK
i , VWV

i

)
= so f tmax

(
QWQ

i
(
KWK

i
)T

√
dk

)
VWV

i (3)

where the so f tmax function was used to calculate the probability distribution over the feature
locations. The use of

√
dk was to avoid the softmax value tending to 0 when the dot product of

QWQ
i and

(
KWK

i
)T was too large.

After computingMulti‑HeadAttention, the feature vector dimension is then restoredusing
CNNBLOCK2 in themiddle of Figure 6 to ensure the same input and output dimension before
and after the encoder unit. Here, we set stride to 1, kernelSize to 1, padding to 1, and the output
dimension to 512.

The Add&Normmodule connected the feature vectors before and after computing Multi‑
Head Attention through the residual network, and then performed the Layer Normalization,
which can prevent overfitting of the model to a certain extent, as well as speed up the conver‑
gence of the model.
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3.2.3. Parallel Decoder
The parallel decoder module employs a parallel decoder [1]. In the parallel decoder mod‑

ule, a multi‑headed attention mechanism is used to calculate the correlation between the input
feature vectors, which matches the feature vector of each character of the license plate, so that
only the license plate sequence is required for the training dataset labels, and no individual
character positions need to be labeled.

The structure of the parallel decoder is shown in Figure 7, which consists of three decod‑
ing units. Each unit contains four sub‑modules: Multi‑Head Attention, Masked Multi‑Head
Attention, Feed‑Forward Network and Add&Norm. The Multi‑Head Attention module and
the Add&Normmodule were similar to those described in Section 3.2.
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The functionof theMaskedMulti‑HeadAttention is toprevent themodel from focusingon
subsequent sequence information and to ensure the parallelism of training. It is implemented
by adding the input eigenvector matrix with an upper triangular matrix whose elements are all
−∞, and then performing a softmax operation on the summed matrix. This turns the original
eigenvector matrix into a lower triangular eigenvector matrix. The masking operation of the
MaskedMulti‑Head Attention is able to restrict the region of attention at each time step, ensur‑
ing that the prediction at each location relies only on the known output prior to that location.
Due to the design ofMaskedMulti‑HeadAttention, the entire training process required a single
forward computation. Nevertheless, when the RNN model performs inference, the operation
at time t + 1 can only continue once the operation at time t has been completed. Therefore,
Masked Multi‑Head Attention made the inference of the model proposed in this paper signifi‑
cantly faster than the RNN‑based model.

The output of the Masked Multi‑Head Attention was then fed into the Add&Norm mod‑
ule. This performed a normalization operation to prevent model overfitting and accelerate
model convergence.
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The CNN BLOCK3 and the CNN BLOCK4 change the dimension of the output feature
vector of the Encoder to 512× 18 before decoding in order to reduce the size of the feature vec‑
tor and the computational load on the parallel decoder. Then, the outputs of the Add&Norm
and Encoder modules are fed into Multi‑Head Attention as Q, K, and V, respectively, where
K and V contain the feature information of the license plate image, and Q contains the seman‑
tic information of the license plate label. The Multi‑Head Attention calculates the correlation
of each image feature with the labeled text feature. The higher the correlation, the higher the
probability that the corresponding location in the image is a certain character. Here in the CNN
BLOCK3, we set the convolutional layer parameters stride to 3, kernelSize to (2,1), padding to 1,
and output dimension to 512. In the CNN BLOCK4, we set the convolutional layer parameters
stride to 3, kernelSize to 1, padding to (0,1), and the output dimension to 512.

The output features of Multi‑Head Attention were processed using the Add&Normmod‑
ule and then input to the Feed‑ForwardNetworkmodule. The Feed‑ForwardNetworkmodule
consists of two linear conversions, where the feature vector is input to the first linear function,
activated with the ReLU function, and then input to the second linear function. The definition
of a Feed Forward Network FFN(·) is shown in Equation (4):

FFN(x) = Max(0, xW1 + b1)W2 + b2 (4)

whereW1 andW2 are the weights, b1 and b2 are the biases, andMax(·, ·) is the maximum func‑
tion. W1 ∈ Rd×d, W2 ∈ Rd×d, b1 ∈ Rd, and b2 ∈ Rd. In order to facilitate the connection
between model layers, the output size d was set to 512 for all sub‑layers in the model.

Finally, the output of the Feed‑Forward Network module was employed for forward in‑
ference with the Add&Normmodule to speed up the convergence of the model.

4. Experimental Setup
4.1. Datasets

To evaluate the effectiveness of the proposed model YOLOv5‑PDLPR, the datasets, as
shown in Table 1, were selected.

Table 1. The general information of the license plate datasets.

Datasets Information CCPD PKUData CLPD AOLP

Year 2018 2016 2019 2012
Number of images 283k 2253 1200 2049

Chinese province codes 29 23 31 0
Sequence length 7 7 7~8 6

Image size 720 × 1160 1082 × 727 220 × 165~4596 × 2388 640 × 480
LP colors blue blue + yellow blue + yellow + green + white white

CCPD [25] is a large and diverse open source dataset of Chinese city license plates, pro‑
viding 290k images of unique license plates annotated in detail. Each image in this dataset
contains only one license plate, and each plate consists of seven characters, of which the first
character represents a provincial administrative region (31 categories in total, excluding Tai‑
wan Province, Hong Kong SAR, and Macau SAR), the second character is a letter, and each of
the remaining five characters is a letter or a number (all occurrences do not contain “I” and “O”,
with 34 categories of numbers and letters). As shown in Table 2, the dataset is grouped into nine
sub‑datasets according to recognition difficulty, illumination of the license plate area, distance
from the plate at the time of capture, horizontal and vertical tilt degree, andweather (rain, snow,
fog). During themodel comparison experiments, half of the data in the sub‑dataset CCPD‑base
were randomly selected as the training set, while the other half were used as the validation set.
Six sub‑datasets (CCPD‑DB, CCPD‑FN, CCPD‑Rotate, CCPD‑Weather, CCPD‑Challenge, and
CCPD‑Tilt) were selected for testing the models.
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Table 2. Description of each sub‑dataset in the CCPD dataset [25].

Sub‑Dataset Description Image Number

CCPD‑Base Ordinary license plate picture 200 k

CCPD‑FN License plate is relatively close or far from the
camera’s shooting position 20 k

CCPD‑DB Brighter, darker or unevenly lit license plate areas 20 k

CCPD‑Rotate License plate tilted 20 to 50 degrees horizontally,
−10 to 10 degrees vertically 10 k

CCPD‑Tilt License plate tilted 15 to 45 degrees horizontally
and 15 to 45 degrees vertically 10 k

CCPD‑Weather License plate photographed in rain, snow and fog 10 k

CCPD‑Challenge The more challenging pictures in the plate detection
recognition task 10 k

CCPD‑Blur Blurred plate images due to camera lens shake 5 k

CCPD‑NP Picture of a new car without plates fitted 5 k

PKUData [34], published by Yuan et al., offers pictures of license plates in various situa‑
tions, but each picture contains only the detection box for the location of the license plate and
misses the license plate sequence. Therefore, wemanually annotated 2253 images from its data
subsets G1 (normal daytime environment), G2 (daytime with sun glare), and G3 (nighttime)
to evaluate license plate identification.

CLPD [24] is provided by Zhang et al. It collects 1200 images of different license plates
from 31 Chinese provincial administrative regions (excluding Taiwan Province, Hong Kong
SAR, and Macau SAR) taken in various environments. Like PKUData, CLPD is only used to
test the license plate recognition model.

AOLP [47] consists of 2049 license plate images from the Taiwan Province of China. Ac‑
cording to complexity and shooting conditions, the dataset is divided into three subsets: access
control (AC), law enforcement (LE), and road patrol (RP). AC contains 681 images, LE con‑
tains 757 images, and RP contains 611 images. Each license plate consists of six characters, each
consisting of a letter or number (excluding the “O”). As the license plate style of the Taiwan
Province is completely different from that of other Chinese provinces, we conducted three sets
of experiments on this dataset, each using two of its three subsets for training and the remaining
one for testing.

4.2. Implementation Details
The experimentswere conducted on a server Intel(R) Xeon(R) Silver 4210CPU@2.20 GHz,

with aGeForceRTX2080TiGPUand the operating systemUbuntu 18.04.6, using the neural net‑
work framework PyTorch. To prevent overfitting, we employed data enhancement strategies
such as color dithering, random cropping, random scaling, random panning, and random
rotation.

The license plate detection algorithm used in this paper is the YOLOv5. The size of the
training input image was adjusted to 640 × 640, the Adam optimizer was used to train the
detection network for 300 epochs, the batch size was set to 50, the initial learning rate was
set to 1 × 10−3, the final learning rate was 1 × 10−5, and the cosine variation was used. The
license plate detection algorithmwas testedwith the input image resized to 640× 640 and the
batch size was set to 5.

The training process of the license plate recognition algorithm used in this paper was
trained with the input image size adjusted to 48 × 144, using the Connectionist Temporal
Classification loss function andAdam optimizer; the epochwas set to 1000, the batch size was
set to 128, and the initial learning rate was set to 1 × 10−3. When the loss was not reduced,
the learning rate was multiplied by a decay factor of 0.9 every 20 epochs. The license plate
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recognition algorithm was tested with the input image resized to 48 × 144 and the batch size
was set to 5.

4.3. Evaluation Indicator
The evaluation metric for license plate detection in this paper was Intersection Over

Union (IOU), which was defined as shown in Equation (5):

IOU =
Area(db ∩ gb)
Area(db ∪ gb)

(5)

where gb is the area of the ground truth box, db is the area of the detected bounding box,
Area(·) is a function that finds the area, ∩ is an intersection operation and ∪ is a union oper‑
ation. For a fair comparison, the same evaluation criteria as [25] were used in this paper on
the CCPD dataset. The detected bounding box was considered correct only if the IOU was
greater than 0.7. When the IOU was greater than 0.6 and each character on a license plate was
correctly recognized, the license plate recognition result was considered correct.

5. Experiment Results
The performance of the proposed license plate recognition algorithm YOLOv5‑PDLPR

and the state‑of‑the‑art approaches were compared in this section using the same exper‑
imental setup.

5.1. Experiments on the CCPD Dataset
The experimental results of comparing YOLOv5, which was used as the license

plate detection algorithm in this paperwith the state‑of‑the‑art approaches on theCCPD
dataset, are shown in Table 3.

Table 3. Comparison of the results of different license plate detection methods on the CCPD dataset.
Labeling the best performance in bold and the second best performance with underlining.

Method Overall
Accuracy

Base
(100 k)

DB
(20 k)

FN
(20 k)

Rotate
(10 k)

Tilt
(10 k)

Weather
(10 k)

Challenge
(10 k)

Speed
(FPS)

Faster RCNN [9] 92.9 98.1 92.1 83.7 91.8 89.4 81.8 83.9 17.6
YOL09000 [12] 93.1 98.8 89.6 77.3 93.3 91.8 84.2 88.6 43.9
SSD300 [42] 94.4 99.1 89.2 84.7 95.6 94.9 83.4 93.1 40.7
TE2E [41] 94.2 98.5 91.7 83.8 95.1 94.5 83.6 93.1 3.2
RPnet [25] 94.5 99.3 89.5 85.3 94.7 93.2 84.1 92.8 85.5
YOLOv5 96.7 97.2 97.7 92.9 98.9 98.9 99.0 90.6 218.3

As can be seen from Table 3, the YOLOv5 algorithm has a higher average accuracy
on the entire CCPD test dataset than all the comparison algorithms. In addition, the
accuracy on the CCPD‑DB, CCPD‑FN, CCPD‑Rotate, CCPD‑Tilt, and CCPD‑Weather
increased by 6.1%, 8.9%, 3.5%, 4.2%, and 17.6%, respectively, when compared to the
second‑best algorithm. Its detection speed reached 218.3 FPS, which was 155.3% faster
than RPnet [24]. Thus, it can be seen that YOLOv5 has the highest detection efficiency.

Table 4 shows the results of a comparison between the proposed framework YOLOv5‑
PDLPR and the state‑of‑the‑art algorithms on the CCPD dataset.

As seen from Table 4, the average accuracy of the proposed algorithm on the whole
CCPD test datasetwas 99.4%, and the accuracies onCCPD‑base, CCPD‑DB,CCPD‑FN,CCPD‑
Weather, and CCPD‑Challenge were 99.9%, 99.5%, 99.5%, 99.4%, and 94.1%, respectively,
which are higher than all the comparison algorithms. The accuracies obtained using YOLOv5‑
PDLPR for recognition on the sub‑datasets CCPD‑Rotate and CCPD‑Tilt were 0.1% and 0.3%
lower than the method proposed by Fan et al. [43], because they trained their models with
synthetic data, which made their models learn more features. However, the recognition re‑
sults of YOLOv5‑PDLPR were better than those of the algorithm of Fan et al. [43], which was
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not trained using synthetic data. YOLOv5‑PDLPR achieved a speed of 159.8 FPS, which was
87.1% faster than the second‑fastest algorithm. This is because YOLOv5‑PDLPR uses parallel
inference to improve efficiency and saves recognition time by not performing additional cor‑
rection operations after the license plate detection task is completed. Experimental results on
this dataset show that our license plate recognition model is robust and efficient in complex
scenarios and is a real‑time recognition framework that can meet the requirements of road
surveillance.

Table 4. Comparison of results of different license plate recognition methods on the CCPD dataset.
Labeling the best performance in bold and the second best performance with underlining.

Method Overall
Accuracy

Base
(100 k)

DB
(20 k)

FN
(20 k)

Rotate
(10 k)

Tilt
(10 k)

Weather
(10 k)

Challenge
(10 k)

Speed
(FPS)

Ren et al., 2015 [9] 92.8 97.2 94.4 90.9 82.9 87.3 85.5 76.3 17.4
Liu et al., 2016 [42] 95.2 98.3 96.6 95.9 88.4 91.5 87.3 83.8 39.1

Joseph et al., 2016 [12] 93.7 98.1 96.0 88.2 84.5 88.5 87.0 80.5 42.0
Li et al., 2017 [41] 94.4 97.8 94.8 94.5 87.9 92.1 86.8 81.2 3.2

Zherzdev et al., 2018 [17] 93.0 97.8 92.2 91.9 79.4 85.8 92.0 69.8 56.2
Xu et al., 2018 [25] 95.5 98.5 96.9 94.3 90.8 92.5 87.9 85.1 85.5

Zhang et al., 2019 [17,61] 93.0 99.1 96.3 97.3 95.1 96.4 97.1 83.2 6.5
Luo et al., 2019 [52] 98.3 99.5 98.1 98.6 98.1 98.6 97.6 86.5 54.9
Wang et al., 2020 [53] 96.6 98.9 96.1 96.4 91.9 93.7 95.4 83.1 51.8
Zou et al., 2020 [23] 97.8 99.3 98.5 98.6 92.5 96.4 99.3 86.6 ‑
Zhang et al., 2020 [24] 98.5 99.6 98.8 98.8 96.4 97.6 98.5 88.9 40.2
Zhang et al., 2020 [24]

98.9 99.8 99.2 99.1 98.1 98.8 98.6 89.7 40.2(SYNTHETIC DATA)
Qin et al., 2021 [26]

97.2 99.3 92.9 93.2 97.9 95.5 98.8 92.4 36.0(ResNet‑18)
Qin et al., 2021 [26]

97.6 99.5 93.3 93.7 98.2 95.9 98.9 92.9 26.0(ResNet‑50)
Fan et al., 2022 [43] 98.8 99.7 99.1 99.0 99.1 99.3 98.5 88.0 11.7
Fan et al., 2022 [43] 99.0 99.8 99.2 99.2 99.6 99.6 98.5 88.8 26.0(SYNTHETIC DATA)

YOLOv5‑PDLPR (Ours) 99.4 99.9 99.5 99.5 99.5 99.3 99.4 94.1 159.8

Figure 8 shows the results of detection and recognition of six license plate images by three
license plate detection recognition algorithms (Zhang et al.—2020 [24], Xu et al.—2018 [25],
YOLOv5‑PDLPR (Ours)), respectively. The method of Zhang et al.—2020 [24] does not use
the license plate detection network to determine the location of the license plate and then di‑
rectly inputs the real license plate image for recognition, and the other two methods use the
results of the license plate location network for recognition. The sequence of characters after
each “GT” in the first row of Figure 8 represents the sequence of real license plate characters,
and the visualization result pictures of the method for detecting and recognizing six license
plate images are listed after each method name in turn, and the sequence of characters after
“Pred” below each visualization detection and recognition picture indicates the sequence of
license plate characters detected and recognized by the method, and if a character is in red
font, it means that the character is not correctly recognized by the method. As can be seen
from Figure 8, some characters are incorrectly recognized by the method of Zhang et al. [24]
and Xu et al. [25] in the case of light intensity, a tilted license plate, and a blurred license plate,
while our method is able to accurately locate and correctly recognize them, which indicates
that our proposed algorithm performs better in complex scenarios.

By plotting the heat map of the model, we can observe where the network is concerned
during the run. As shown in Figure 9, there are six columns in total. Each column shows the
heat map of different license plate pictures in complex cases. The first row of each column
displays the original images of various license plates, while the second row begins with the
attention map of each individual character. In each column from top to bottom, if a character
on the license plate is darker, it indicates that the network paysmore attention to the character
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features at that location, and then the network extracts these features for recognition. For
example, in the second line of the license plate “皖NLE9132”, the color of the characters “皖”
is deeper, indicating that the network is more focused on the characteristics of the location of
“皖”. Similarly, the network is able to locate the features on other character positions on the
license plate and thus accurately identify the characters on the plate.

Sensors 2024, 24, x FOR PEER REVIEW 16 of 23 
 

 

 
Figure 8. The detection and recognition results of three license plate detection recognition algo-
rithms. If a character is displayed in red font, it means that the corresponding method does not 
recognize the character correctly, refs. [24,25]. 

By plotting the heat map of the model, we can observe where the network is con-
cerned during the run. As shown in Figure 9, there are six columns in total. Each column 
shows the heat map of different license plate pictures in complex cases. The first row of 
each column displays the original images of various license plates, while the second row 
begins with the attention map of each individual character. In each column from top to 
bottom, if a character on the license plate is darker, it indicates that the network pays more 
attention to the character features at that location, and then the network extracts these 
features for recognition. For example, in the second line of the license plate “皖 NLE9132”, 
the color of the characters “皖” is deeper, indicating that the network is more focused on 
the characteristics of the location of “皖”. Similarly, the network is able to locate the fea-
tures on other character positions on the license plate and thus accurately identify the 
characters on the plate. 

 
Figure 9. License plate recognition heat maps. 

 GT: 皖 A308Q0 GT: 皖 AS5769 GT: 皖 AP3392 GT: 皖 AX169B GT: 皖 AH892B GT: 皖 AJY723 

Zhang et. al. -2020          

Pred: 皖 A308L0 Pred: 皖 AS5Z69 Pred: 皖 AP33S2 Pred :皖 AX169D Pred: 皖 AH8928 Pred: 皖 AJ1723 

Xu et al. -2018 
      

Pred: 皖 A20800 Pred: 皖 AS5Z69 Pred :皖 A93392 Pred: 皖 AX1698 Pred: 皖 AH8928 Pred: 皖 AJY125 

Ours 
      

Pred: 皖 A308Q0 Pred: 皖 AS5769 Pred: 皖 AP3392 Pred: 皖 AX169B Pred: 皖 AH892B Pred: 皖 AJY723 

Figure 8. Thedetection and recognition results of three license plate detection recognition algorithms.
If a character is displayed in red font, it means that the corresponding method does not recognize
the character correctly, refs. [24,25].

Sensors 2024, 24, x FOR PEER REVIEW 16 of 23 
 

 

 
Figure 8. The detection and recognition results of three license plate detection recognition algo-
rithms. If a character is displayed in red font, it means that the corresponding method does not 
recognize the character correctly, refs. [24,25]. 

By plotting the heat map of the model, we can observe where the network is con-
cerned during the run. As shown in Figure 9, there are six columns in total. Each column 
shows the heat map of different license plate pictures in complex cases. The first row of 
each column displays the original images of various license plates, while the second row 
begins with the attention map of each individual character. In each column from top to 
bottom, if a character on the license plate is darker, it indicates that the network pays more 
attention to the character features at that location, and then the network extracts these 
features for recognition. For example, in the second line of the license plate “皖 NLE9132”, 
the color of the characters “皖” is deeper, indicating that the network is more focused on 
the characteristics of the location of “皖”. Similarly, the network is able to locate the fea-
tures on other character positions on the license plate and thus accurately identify the 
characters on the plate. 

 
Figure 9. License plate recognition heat maps. 

 GT: 皖 A308Q0 GT: 皖 AS5769 GT: 皖 AP3392 GT: 皖 AX169B GT: 皖 AH892B GT: 皖 AJY723 

Zhang et. al. -2020          

Pred: 皖 A308L0 Pred: 皖 AS5Z69 Pred: 皖 AP33S2 Pred :皖 AX169D Pred: 皖 AH8928 Pred: 皖 AJ1723 

Xu et al. -2018 
      

Pred: 皖 A20800 Pred: 皖 AS5Z69 Pred :皖 A93392 Pred: 皖 AX1698 Pred: 皖 AH8928 Pred: 皖 AJY125 

Ours 
      

Pred: 皖 A308Q0 Pred: 皖 AS5769 Pred: 皖 AP3392 Pred: 皖 AX169B Pred: 皖 AH892B Pred: 皖 AJY723 

Figure 9. License plate recognition heat maps.

5.2. Experiments on CLPD and PKUData Datasets
After training the models on the CCPD‑Base dataset, the models were evaluated for

recognition using the CLPD and PKUData datasets, and two cases of recognition are con‑
sidered: one is to recognize all characters in the license plate (including Chinese characters),
and the other is to recognize only non‑Chinese characters in the license plate, and is com‑
pared with the license plate recognition methods that have performed the same experiments
in recent years, and the experimental results are shown in Table 5.
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Table 5. Comparison of results of different license plate recognition methods on the CLPD and
PKUData datasets. Labeling the best performance in bold and the second best performance with
underlining.

Method
CLPD PKUData

ACC ACC (Without
Chinese Characters) ACC ACC (Without

Chinese Characters)

Xu et al., 2017 [25] 66.5 78.9 77.6 78.4
Zhang et al., 2020 [24] 76.8 87.6 88.2 90.5
Fan et al., 2022 [43] 55.8 79.3 81.6 81.8
Fan et al., 2022 [43]
(SYNTHETIC DATA) 82.4 88.5 92.4 92.5

YOLOv5‑PDLPR 80.3 93.1 95.5 95.7

Considering Chinese characters, the test results on the CLPD dataset indicate that the
accuracy of the algorithm proposed in this paper is lower than that of the algorithm proposed
by Fan [43] using synthetic data. This is because our model does not use synthetic data and
is only trained on the CCPD dataset, and the Chinese characters in the CCPD dataset are not
evenly distributed, with “皖” accounting for more than 95%. However, when tested on the
CLPDdataset, theChinese characters are evenly distributed, and therewere alsoChinese char‑
acters that do not appear in the CCPD dataset. Consequently, the model was unable to fully
learn the Chinese information, resulting in low test accuracy. Nevertheless, the accuracy of
our method is higher than the algorithm proposed by Fan [43], which was not trained using
synthetic data. When Chinese characters are not considered, our algorithm has the highest
accuracy (ACC), and the ACC improves by 5.2% compared to the second‑best result.

As shown in Table 5, the results on the PKUData dataset show that the accuracy of
the proposed YOLOv5‑PDLPR was the highest, regardless of whether Chinese characters
were considered or not. When Chinese characters were considered, the accuracy of the pro‑
posed YOLOv5‑PDLPR achieved 95.5%, which was 3.4% higher than the second‑best algo‑
rithm. When Chinese characters were not considered, the accuracy of the proposed YOLOv5‑
PDLPR achieved 95.7%, which was 3.5% higher than the second‑best algorithm. For the sam‑
ples in the PKUData dataset, the images were captured at different moments in each day, and
thus with different light levels. The proposed YOLOv5‑PDLPR has not been trained on this
dataset; however, it also has a very well‑tested accuracy, indicating that the model is robust.

The experimental results show that the algorithm proposed in this paper has high accu‑
racy for character recognition, can accurately recognize license plate characters even under
poor lighting conditions, and has reliable generalization ability and high robustness.

5.3. Experiments on the AOLP Dataset
On the AOLP dataset, the experimental results of the proposed framework YOLOv5‑

PDLPRwere compared with other detection and recognition algorithms that have performed
experiments on this dataset in recent years. Two cases were considered for the localization of
the position of the license plate during recognition. The first was to use the detection results
of the detection network to determine the license plate position (denoted as “Box”). The sec‑
ond was to use the actual license plate position (denoted as “GT”). The experimental results
are shown in Tables 6 and 7. Using GT for license plate recognition can avoid errors caused
by license plate positioning offset, and experimental results can more intuitively reflect the
performance of the license plate recognition network. For fair comparison, we did not use
any synthetic data during model training and only used rotation, translation, and scaling to
extend the training dataset.

The results in Table 6 show that when using the detection results of YOLOv5 to provide
license plate locations, the accuracy of the model proposed in this paper tested on AOLP‑AC,
AOLP‑LE, and AOLP‑RP was 98.5%, 99.1%, and 96.1%, respectively, which was 1.2%, 0.8%,
and 1.2% higher than the second‑best algorithm, respectively. The results in Table 7 show that
when real license plate locationswere used, the accuracies of themodel proposed in this paper
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were 99.6%, 99.9%, and 99.8% for AOLP‑AC, AOLP‑LE, and AOLP‑RP, respectively, which
were 0.3%, 1.2%, and 5% higher than the second‑best algorithm, respectively. The subset of
AOLP‑RP consisted mainly of rotated license plates, and the proposed method in this paper
achieved the largest performance improvement in these plates. This result demonstrates that
the method is effective at recognizing irregular license plates.

Table 6. Comparative results of different license plate recognition methods using Box on the AOLP
dataset. The best performance is labeled in bold and the second best performance with underlining.

Method AOLP‑AC AOLP‑LE AOLP‑RP

Li et al., 2017 [41] 95.3 96.6 83.7
Wu et al., 2018 [43] 96.6 97.8 91.0

Zhang et al., 2020 [24] 97.3 98.3 91.9
Zou et al., 2020 [23] 97.1 96.6 93.4

Zou et al., 2021 [62] (Box) 96.3 97.9 95.0
YOLOv5‑PDLPR (Box) 98.5 99.1 96.1

Table 7. Comparative results of different license plate recognition methods using GT on the AOLP
dataset. Labeling the best performance in bold.

Method AOLP‑AC AOLP‑LE AOLP‑RP

Zou et al., 2021 [62] (GT) 99.3 98.7 95.1
YOLOv5‑PDLPR (GT) 99.6 99.9 99.8

6. Ablation Study
In this section, we conducted a series of experiments to evaluate the impact of the IGFE,

the parallel decoder, the number of decoding units in the parallel decoder, and the number of
heads inMulti‑HeadAttention on the recognition accuracy. Without using a synthetic dataset,
the training dataset in the experiment was half of CCPD‑Base and the validation dataset was
the other half. The test datasets consisted of the three sub‑datasets CCPD‑DB, CCPD‑Tilt, and
CCPD‑Challenge, as these three sub‑datasets best represent the impact of natural scenes such
as light intensity, plate tilt, and plate blur on the performance of the license plate recognition
network. The batch size for the test was set to 5.

With all other conditions being the same, using ResNet‑18 [63] as the reference model,
the experiments were conducted with only IGFE as the backbone as well as after adding the
Focus Structure and the ConvDownSampling structure to IGFE, and the results are shown in
Table 8. A “

√
” in the table indicates that the network used in the experiment contains the

structure corresponding to this column, whereas a “×” indicates that the network used in the
experiment does not contain the structure corresponding to this column.

Table 8. The influence of different module structures in the backbone network on the accuracy of
license plate recognition. Labeling the best performance in bold.

Module
Backbone

Focus
Structure ConvDownSampling

Accuracy

DB Tilt Challenge Overall
Accuracy

ResNet‑18 ‑ ‑ 99.0 99.3 93.3 97.7
IGFE (our) × × 98.8 98.3 90.3 96.6

×
√

98.9 98.6 90.7 96.8√
× 99.1 98.8 91.0 97.0√ √

99.5 99.7 94.4 98.3

The second and third rows in Table 8 show that by only retainingConvDownSampling in
IGFE to replace thepoolingdownsamplingoperation, the overall accuracy canbe improvedby
0.2 percentage points. This demonstrates that replacing the network’s pooling operation with
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the convolution operation can reduce the loss of features during the downsampling process
and increase the ratio of correct model identification.

The second and fourth rows in Table 8 show that retaining only the Focus Structure in
the IGFE improved the average accuracy by 0.4 percentage points and improved the accuracy
by 0.7 percentage points on the CCPD‑Challenge sub‑dataset. This shows that using the Fo‑
cus Structure in the network can reduce feature loss during downsampling and improve the
correct rate of model recognition.

The third and fourth rows in Table 8 show that retaining only the Focus Structure in the
IGFE can improve theoverall accuracyby0.2percentagepoints compared to retainingonly the
ConvDownSampling structure in the IGFE. This is because when using the Focus Structure
instead of the ConvDownSampling structure, there is no loss of feature information at any
point. This makes the increase in precision attributable to the Focus Structure more apparent
in the experiment results.

The second and fifth rows in Table 8 show that keeping both the Focus Structure and the
ConvDownSampling structure in the IGFE can improve the overall accuracy by 1.7 percent‑
age points; in particular, on the CCPD‑Challenge sub‑dataset, the accuracy was improved by
4.1 percentage points. This demonstrates that when the Focus Structure and the ConvDown‑
Sampling structure are used together, less feature information is lost during feature extrac‑
tion than when the two structures are used separately. As a result, recognition accuracy is
improved a lot. In addition, the first and fifth rows of Table 8 show that the accuracy of li‑
cense plate recognition using IGFE was higher than that using ResNet‑18. This means that
the features extracted by IGFE are more complete than those extracted by ResNet‑18.

To investigate the effect of using different decoders in our proposed model YOLOv5‑
PDLPR on license plate recognition accuracy, license plate recognition experiments were con‑
ducted on CCPD‑DB, CCPD‑Tilt, and CCPD‑Challenge using LSTM, BiLSTM, Linear, and
Parallel Decoder as decoders of the model, with all other conditions being the same, and the
experimental results are shown in Table 9.

Table 9. The influence of different decoder on the accuracy of license plate recognition. Labeling the
best performance in bold.

Decoder
Accuracy

CCPD‑DB CCPD‑Tilt CCPD‑Challenge

LSTM 97.9 97.7 87.8
BiLSTM 96.2 95.2 80.6
Linear 90.3 81.9 70.1

Parallel Decoder 99.5 99.7 94.4

As can be seen from Table 9, when using the parallel decoder in the proposed model
YOLOv5‑PDLPR is more accurate than using LSTM, BiLSTM, and Linear as decoders for li‑
cense plate recognition. The two decoders, LSTM and BiLSTM, as variants of RNN, have bet‑
ter accuracy for license plate recognition using them in model YOLOv5‑PDLPR than that of
Linear, the most basic fully connected layer decoder. This indicates that the parallel decoder
is able to extract the global semantics of the images more adequately than the RNN under the
conditions of light intensity, plate tilt and plate blurring, and the parallel decoder has higher
accuracy compared with the traditional RNN decoder.

The number of heads in Multi‑Head Attention submodule of the Encode module is an‑
other factor that impacts recognition performance of the proposed model YOLOv5‑PDLPR.
To evaluate the effect of changing the number of attention heads on the license plate recog‑
nition accuracy of the proposed model YOLOv5‑PDLPR, experiments were conducted on
CCPD‑DB, CCPD‑Tilt, and CCPD‑Challenge by changing only the number of attention heads
while keeping the number of decoder blocks as three and all other conditions the same, and
the results are shown in Table 10.
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Table 10. The influence of different number of attention heads on the accuracy of license plate recog‑
nition. Labeling the best performance in bold.

Head Number
Accuracy

CCPD‑DB CCPD‑Tilt CCPD‑Challenge

1 99.2 99.4 93.4
4 99.4 99.5 93.4
8 99.5 99.7 94.4
16 98.7 98.6 90.6

As can be seen from Table 10, when the number of attention headswas less than or equal
to eight, the license plate recognition accuracy increases with the increase in the number of at‑
tention heads on each dataset. However, when the number of attention heads exceeds eight,
the license plate recognition accuracy begins to decline. This indicates that increasing the
number of attention heads can improve the recognition rate; however, there is an upper limit
of eight attention heads. Therefore, the number of attention heads was finally set to eight in
this paper.

The recognition performance is also affected by the number of decoding units. In this sec‑
tion, while keeping the number of heads inMulti‑HeadAttention as eight and other conditions
the same, the experiments were conducted on CCPD‑DB, CCPD‑Tilt and CCPD‑Challenge by
changing the number of decoder blocks, and the results are shown in Table 11.

Table 11. The influence of different number of decoding units on the accuracy of license plate recog‑
nition. Labeling the best performance in bold.

Decoder Unit
Number

Accuracy

CCPD‑DB CCPD‑Tilt CCPD‑Challenge

1 97.3 94.9 84.4
2 97.8 96.4 86.4
3 99.5 99.7 94.4
4 99.2 99.2 91.8
5 99.0 98.7 91.0

The experimental results in Table 11 show that when the number of stacked decoding
units is less than or equal to 3, the recognition accuracy of the license plate recognition model
increases as the number of decoding units increases. However, when the number of decoder
blocks stacked exceeds 3, the recognition effect begins to diminish. Adding more decoding
units also deepens and complicates the network, which requires more calculated costs and
makes training more difficult. Therefore, the number of decoder blocks was finally set to three
in this paper.

7. Conclusions
This paper proposed a YOLOv5‑PDLPR algorithm for resolving the problem of license

plate detection and recognition in natural scenes under complex conditions. Compared with
traditional feature extraction methods, this method included a feature extractor that can ob‑
tain global feature information, which can be used to obtain rich semantic information. Mean‑
while, the advantage ofmulti‑headed attentionwas fully utilized, whichmakes the license plate
pictures accurately recognized without auxiliary correction, showing excellent performance in
natural scenes. The model does not involve the RNN, so it can be inferred in parallel, which
improves the recognition efficiency significantly compared with other methods. Furthermore,
the experiments on the CCPD dataset achieved an average accuracy of 99.4% and recognition
speed of 159.8 FPS. However, due to the limited training data set, this method can recognize
fewer types of license plates and had a low recognition rate for Chinese characters other than
“皖” in license plates. Therefore, in the future, the accuracy of license plate recognition can be en‑
hanced by collecting more license plate data with a balanced distribution of Chinese characters.
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