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Abstract: This study comprehensively investigates how rain and drizzle affect the object-detection
performance of non-contact safety sensors, which are essential for the operation of unmanned
aerial vehicles and ground vehicles in adverse weather conditions. In contrast to conventional
sensor-performance evaluation based on the amount of precipitation, this paper proposes spatial
transmittance and particle density as more appropriate metrics for rain environments. Through
detailed experiments conducted under a variety of precipitation conditions, it is shown that sensor
performance is significantly affected by the density of small raindrops rather than the total amount of
precipitation. This finding challenges traditional sensor-evaluation metrics in rainfall environments
and suggests a paradigm shift toward the use of spatial transmittance as a universal metric for
evaluating sensor performance in rain, drizzle, and potentially other adverse weather scenarios.

Keywords: safety sensor; performance evaluation; object detection; UAV; UGV; rainfall; spatial
transmittance; drop size distribution; precipitation rate

1. Introduction

The aim of this paper is to explore a method for quantitatively assessing how rain and
drizzle affect the detection capabilities of non-contact safety sensors in adverse weather
conditions. In recent years, unmanned aerial vehicles (UAVs) and unmanned ground
vehicles (UGVs), such as drones, delivery robots, autonomous vehicles, and agricultural
machines, have reached the stage of practical application. These autonomous systems,
which coexist with humans, must incorporate non-contact safety sensors to accurately
perceive their surroundings, detect approaching people or hazardous objects, and perform
safe stopping or avoiding maneuvers.

Outdoor operations present unique challenges, such as light interference from the
sun and reduced visibility during adverse weather (rain, snow, fog, etc.), which can
affect sensors’ detection capabilities, as illustrated in Figure 1. Consequently, sensors
that maintain performance integrity in outdoor environments are essential. However,
robust sensor technology alone is not enough. Establishing precise evaluation criteria
and test methodologies is crucial to ensure consistent performance under all expected
environmental conditions.

This study focuses on the effects of rain and drizzle, the most common severe weather
events in warm, humid climates. For safety sensors designed to operate in rainy conditions,
it is important to inform users of the operational limitations associated with rainfall. Specif-
ically, it must be clearly specified under which conditions the sensor retains the ability to
detect objects and measure distance and when these functions become compromised.

The precipitation rate is a metric that has been used to evaluate the performance
of sensors in rainfall environments. However, this paper argues that precipitation rates
may not accurately reflect sensor detection capabilities. For example, a sensor may work
properly in heavy rain (80 mm/h) but fail in light drizzle (2 mm/h).
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Figure 1. UAV in adverse weather conditions. 
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Our experimental results lead us to conclude that while small raindrops primarily 
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The main contributions of this paper include demonstrating that evaluating sensors
based solely on precipitation rate can be misleading in certain scenarios and proposing
a more effective method for performance evaluation based on spatial transmittance, or
raindrop density. Using this novel metric, we quantitatively demonstrate the varying
impacts of different rainfall types on sensor efficiency and explore the behavior of common
sensing technologies in rainfall conditions.

This paper is organized as follows: After clarifying the scope of this paper in Section 1.1,
we first outline the physical properties of rainfall based on meteorological studies in
Section 2.1. We then review relevant international standards and core sensing technologies
in rainfall environments and present our previous work on sensor evaluation techniques in
adverse weather conditions in Sections 2.2–2.4.

In Section 3, we propose a method for evaluating sensor performance in rain and
drizzle environments. First, in Section 3.1, we compare precipitation rates and spatial
transmittance as evaluation metrics. The problems associated with evaluating sensors
based on precipitation rate are described, and the superiority of spatial transmittance is
demonstrated. Section 3.2 then defines the object-detection rate in a precipitation environ-
ment, and Sections 3.3–3.5 detail the predefined precipitation conditions reproduced in the
experiment, the test piece and experimental setup, and the sensor device under test.

Section 4 presents the experimental results, including measurements of the physical
properties of the precipitation conditions and the object-detection rates of the sensors
under these conditions. It also discusses the impact of precipitation on detection perfor-
mance. Finally, we discuss metrics for evaluating sensor performance in rain and drizzle
environments in Section 5. Section 6 is the conclusion.

Our experimental results lead us to conclude that while small raindrops primarily af-
fect visibility, large raindrops affect precipitation rates. Therefore, as a metric for evaluating
sensor performance, we recommend using the spatial transmittance or the particle density
of the rain environment.

1.1. Scope

Before considering the safety of machines, including UAVs and UGVs, it is important
to clearly define the scope of the application [1]. In this paper, we will focus on the behavior
of sensors in rain and drizzle as meteorological phenomena. We will not discuss fog or
mist, which are caused by the same water particles.

Water droplets on the optical windows of sensors will not be discussed in this paper.
Although water droplets on windows have a significant impact on sensor performance,
this issue relates to the “pollution” of the optical window and should be distinguished
from the effects of raindrops or drizzle in the observation space. The issue of the optical
window pollution is covered in detail in the IEC 61496 series, which specifies detailed
design requirements and test methods [2].

The effect of wind on rain and drizzle, while potentially significant, is not treated here
and is left for future study.
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This paper focuses on the evaluation of non-contact safety sensors based on optical
principles, similar to those discussed in our previous paper [3]. Specifically, we examine
“depth cameras” (also known as 3D cameras, distance imaging cameras, or RGBD sensors).
These cameras capture scenes at relatively short distances as depth images or 2D arrays,
where each pixel contains distance information from the point of measurement. They are
relatively inexpensive and can also capture RGB images with the same field of view as
depth images, making them highly compatible with deep-learning-based object recognition
and identification. As such, they are expected to find applications in both safety and
non-safety systems across a variety of fields.

This paper covers the three main sensing principles used in depth camera products:
Time of Flight, Stereo Vision, and Structured Light. Time-of-Flight (TOF) sensors calculate
the distance to an object by measuring the time it takes for emitted periodic light to reflect
back from the object. Both Stereo Vision and Structured Light sensors use triangulation, a
principle of multiple-view geometry [4], to determine the distance to feature points on an
object. We distinguish between systems that use two or more cameras for triangulation,
referred to as Stereo Vision (SV), and those that combine a single camera with a pattern
light projector, referred to as Structured Light (SL) [5]. Some SV-based sensors incorporate
an auxiliary pattern light projector for enhanced performance.

This paper does not specifically address LiDAR technology, which measures distance
over medium to long ranges by planar or spatial scanning using single or multiple laser
beams. However, since LiDAR- and TOF-based depth cameras share similar sensing prin-
ciples, the discussion in this paper is likely to be applicable to LiDAR in many scenarios.
Radar and ultrasonic sensors are outside the scope of this paper due to their use of different
sensing wavelengths, distance ranges, and the relatively low resolution of their measure-
ments. Similarly, proximity and contact sensors are not discussed as they do not align with
the paper’s focus on optical sensing technologies.

2. Background and Related Work
2.1. Meteorology
2.1.1. Precipitation

Precipitation as a meteorological observation value, also known as precipitation rate,
intensity, or amount, is defined as “the volume of water, usually measured in millimeters or
inches, that falls to the ground at a given location during a given period of time” [6]. This
metric, widely accepted and used in daily weather forecasting, offers a straightforward
measure of rainfall amount and intensity. Consequently, it has been adopted as a metric
to evaluate the performance of outdoor safety sensors, typically to denote the operational
limits of the sensor.

However, this paper argues against the use of precipitation rate as a metric for sensor
detection capability. The rationale is that precipitation rate does not necessarily correlate
accurately with sensor performance. In some cases, it can mislead by misrepresenting sensor
performance. Sensor performance should be evaluated by the physical characteristics of the
precipitation space from the sensor to the object, not by the rate of precipitation accumulated
on the ground.

2.1.2. Particle Density and Drop Size Distribution

Precipitation, a meteorological phenomenon in which liquid water droplets fall from
clouds to the ground, is conveniently divided into drizzle and rain based on particle size.
Drizzle is precipitation consisting of water particles 0.1 to 0.5 mm in diameter [7]. Particles
smaller than 0.1 mm in diameter do not reach the ground because they evaporate during
their descent from the cloud. Rain, on the other hand, is precipitation composed mainly
of water particles larger than 0.5 mm in diameter, with the maximum particles being 5
to 8 mm in diameter. Water droplets larger than this are not stable and break up as they
fall and do not occur naturally [8]. Note that normal rainfall also includes drizzle-sized
particles, which are more numerous than large raindrops.
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The particle sizes, along with their fall velocities, are measured by a disdrometer, a
meteorological instrument. This instrument records the particle size and fall velocity of
raindrops as they pass through its measurement area, which is defined by a line laser
beam plane, and outputs these data as a particle size and velocity distribution (PSVD)
matrix [9]. This matrix is a 2D frequency distribution that details the discrete information
of the particle size and drop velocity distribution. It is presented as a 2D matrix that records
the cumulative number of raindrops per unit time for raindrops of a given particle size
class Di and a velocity class Vj. Figure 2a shows a heat map visualizing the PSVD matrix
from a 300 mm/h heavy rain event observed in a subsequent experiment.
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Figure 2. PSVD Matrix and DSD measurements from the NIED Large-scale Rainfall Simulator
on 31 October 2023. (a) PSVD matrix depicting 300 mm/h cloudburst (raindrop counts per 10 s
visualized as a heat map); (b) DSD derived from the PSVD matrix, overlaying the Marshall Palmer
distribution with R = 300.

By analyzing the PSVD matrix, we can derive useful physical properties of the rainfall
environment. The particle density (PD), defined as the total number of drops per volume
of rainfall space [m−3], and the drop size distribution (DSD), which represents the number
of drops per unit diameter per volume in the size class Di [m−3mm−1], are calculated
using Equations (1) and (2), respectively. The corresponding precipitation rate R [mm/h] is
determined using Equation (3):

PD = ΣiPD(Di) =
1

At∑i,j
ni,j

Vj
, (1)

DSD(Di) =
1

At∆Di
∑

j

ni,j

Vj
, (2)

R = ΣiR(Di) =
π

105 At∑i,j
ni,jDi

3, (3)

where A is the sampling area [m2], t is the sampling time [s], ni,j is the number of raindrops
as an element (I, j) of the PSVD matrix, Vj is the drop velocity class of the matrix [m/s], and
∆Di is the bin width of the drop size class Di [mm].

The graph in Figure 2b shows the DSD derived from the PSVD matrix. Here, the
horizontal axis represents the raindrop size D [mm], and the vertical axis represents the
number of raindrops per unit volume [m−3mm−1], for particle sizes ranging from Di to
Di + ∆Di, plotted on a logarithmic scale.
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The size distribution of raindrops in natural rainfall is known to follow a specific
pattern; Marshall and Palmer [10] demonstrated in 1948 that the DSD can be effectively
parameterized by an exponential function,

DSD(D) = N0e−ΛD, (4)

where Λ = 4.1R−2.1 [mm−1], N0 = 8000 [m−3mm−1], and R is the precipitation rate [mm/h].
The Marshall–Palmer distribution tends to overestimate the number of small raindrops.

In addition, as raindrops fall from clouds to the ground, the number of small raindrops
decreases due to coalescence or adsorption into larger raindrops, as well as evaporation [11].
Therefore, a more general formula involving the gamma function has been proposed [12].

The dotted line in the graph in Figure 2b represents the Marshall–Palmer dis-
tribution for R = 300. In this observation, the size distribution closely matches the
Marshall–Palmer distribution for particle sizes greater than 1 mm, with sizes greater
than 6 mm considered outliers.

2.1.3. Visibility of Rainfall

Visibility is the maximum distance at which an object can be clearly seen with the naked
eye, and it is an important meteorological observation for aircraft and ship operations. The
mechanical measurement of visibility is defined by the World Meteorological Organization
(WMO) as the Meteorological Optical Range (MOR), which is “the length of path in the
atmosphere required to reduce the luminous flux in a collimated beam from an incandescent
lamp, at a color temperature of 2700 K, to 5% of its original value” [13]. MOR [m] can be
calculated according to Koschmieder’s law using

MOR = d × ln(c0)

ln(Td)
, (5)

where Td is the spatial transmittance observed at a distance d [m] from the light source, and
c0 is a constant denoting the threshold of light attenuation. Empirically, c0 is 0.02 (2%) in
most cases but is set to 0.05 (5%) for rainfall, which is the same as the MOR definition [14].
Throughout this paper, the term “visibility” will refer to the perceptual quality of a space,
while “MOR” will refer to the precise physical measurement of visibility.

MOR is commonly used to evaluate sensor performance in fog and similar environ-
ments. However, its suitability for technical evaluation of sensor performance is ques-
tionable because MOR is tailored to the characteristics of the human eye, as evidenced by
the use of different c0 values for rainfall and other conditions. Therefore, in our previous
work, we demonstrated the advantages of using spatial transmittance over MOR for such
evaluations [3].

The spatial transmittance of a rainfall environment can be formulated using Lambert-
Beer’s law as

Td = e−γd , (6)

where γ [m−1] is the absorption coefficient of the rainfall environment, which quantifies the
rate at which light is absorbed per unit length in space. This coefficient can be approximated
from the PSVD matrix using

γ = Σiγ(Di) = 2πΣiPD(Di)

(
Di
2

)2
=

2π

At ∑
i,j

ni,j

Vj

(
Di
2

)2
, (7)

which indicates that the transmittance in a rainfall environment is influenced by the total
cross-sectional area of the raindrops rather than the precipitation rate [15]. Observations of
actual weather conditions show that drizzle, despite its low precipitation rate, causes less
visibility [16]. Conversely, as discussed below, even very high precipitation rates may not
significantly reduce spatial transmittance.
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In this paper, we demonstrate with experimental results that this formulation is
practical. We then elucidate the correlation between raindrop size distribution and sen-
sor detection performance and propose a new metric for sensor evaluation to replace
precipitation rate.

In the discussion of visibility in this paper, it is not necessary to consider the wave-
length of light. This is because sensor devices operating on optical principles primarily use
wavelengths within the visible to near-infrared spectrum, and the spatial transmittance
of rainfall does not depend on wavelength across the spectrum [17]. It should be noted,
however, that the wavelength should be considered for sensor devices that use light beams
beyond the infrared spectrum or in contexts involving aerosols other than precipitation,
where the transmittance does exhibit a wavelength dependence.

2.2. Standardization

This section reviews international standards related to sensor-performance evaluation
and test methods under rain conditions.

The IEC 61496 series is an important international standard for safety sensors, covering
technologies such as light curtains, LiDARs, TOF cameras, monocular and Stereo-Vision-
based cameras, and radars [2]. This group of standards is primarily intended for indoor
factory environments and does not address outdoor conditions, including rain.

For outdoor safety sensors, the IEC 62998 series specifies design requirements. And
IEC TS 62998-1 refers to the IEC 60721 series as a quantitative reference for outdoor
environments [18].

The IEC 60721 series categorizes the severity of environmental conditions to which
electrical and electronic products are exposed, including an extreme rainfall intensity
of 6 mm/min (360 mm/h) for short periods of time [19]. However, it lacks details on
the physical characteristics of the rain, such as raindrop size distribution or visibility,
because it focuses more on product design for environmental resistances than on sensor
detection capabilities.

Efforts to standardize ground service robots, including transport and other types,
continue under ISO 13482 and its revision projects [20]. While the sensing requirements for
these robots include collision avoidance and road surface detection, the standards do not
detail specific environmental conditions.

The growing demand for drones has spurred active international standardization,
with various guidelines and test methods being developed. For example, ISO 5110 de-
fines test methods for drone flight stability in wind and rain conditions [21]. However,
standardization for sensor performance in rain conditions has not been initiated.

In summary, current international standardization efforts are primarily focused on
hardware durability in a rainfall environment rather than the impact of rainfall on sensor
detection performance. It is anticipated that future regulations will require a focus on the
latter. This paper contributes to filling this gap by focusing on particle size distribution and
spatial transmittance.

2.3. Computer Vision and UAV/UGV

In the fields of computer vision and robotics, a variety of sensing and image-processing
techniques have been developed for use in rainy conditions.

Garg and Nayar proposed an efficient algorithm to mitigate the visual effects of rain
in both computer vision and computer graphics, based on a detailed analysis [22].

Charette et al. developed a “smart headlight” system. It uses a camera to determine
the location of precipitation, such as raindrops and snowflakes, in front of a vehicle. The
system then segments the headlight beam with a beam splitter to bypass these particles.
This method reduces light scattering and reflection from the particles, thereby improving
driver visibility [23].

Lee et al. use sensor fusion techniques with cameras and LiDARs to achieve road
detection for autonomous vehicles in various weather conditions, including rain [24].
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Murase’s research team has presented several driver assistance technologies. Using cameras
and multiple sensors, these technologies accurately detect pedestrians, obstacles, driver
status, and weather conditions in rainy and foggy environments [25].

Xi et al. propose a collaborative learning network, CoDerainNet, to improve the
accuracy of object detection by drones in rainy weather. The network effectively reduces
image noise caused by rain and improves object-detection accuracy and computational
cost [26]. Li and Wu propose a framework for extracting highly accurate vehicle motion
data from video captured by UAVs. They improve YOLOv5, a typical deep learning
algorithm, to improve the accuracy of vehicle detection under various weather conditions,
including rainfall [27].

These studies lay the groundwork for both theoretical and practical approaches to
improving sensor performance in rainy conditions, which are critical for the deployment of
automated machines in outdoor environments.

In addition to these advanced core sensing technologies, evaluation methodologies
are also essential to verify the functionality of safety sensor products as intended. This
paper addresses this issue by proposing criteria for evaluating sensor performance in
rainfall environments.

2.4. Our Previous Work

Our research group has actively pursued the evaluation of human detection perfor-
mance of safety sensors for service robots, leading to the development of a light interference
test method under direct sunlight [28] and a simulated snowfall chamber that mimics the
visibility reduction due to snow in a room temperature environment [29].

Regarding fog, our experiments with different sensor technologies have revealed
significant differences in sensor behavior in foggy conditions. We have demonstrated that
fog can drastically affect the detection capabilities of optical sensors to the extent that
even minimal fog that is barely perceptible to the human eye can severely degrade the
detection capabilities of some sensors [30]. These findings led us to question the suitability
of the commonly used visibility metric, MOR, for evaluating sensor performance. As an
alternative, we proposed MOT, Minimum Object-detectable Transmittance, a novel metric
based on spatial transmittance [3].

In this paper, we extend our focus to include rain and drizzle, which are critical
weather phenomena affecting sensor performance along with fog and snowfall. Based
on experiments at a large rainfall test facility, we will show that sensor evaluation based
on precipitation rates can be misleading in some cases, and we discuss more appropriate
methods of performance evaluation.

3. Sensor Evaluation in Rain/Drizzle Environments
3.1. Precipitation Rate vs. Spatial Transmittance

As mentioned above, precipitation rate is commonly used as an indicator of sensor
performance in rain conditions. It is widely recognized as intuitive weather information for
rainfall intensity, which is important to sensor users, including designers and integrators
working on outdoor drone and robotic applications. Therefore, the specifications for
standards-compliant outdoor safety sensors should always include operating limits in
precipitation conditions, such as “This sensor product is designed for use in precipitation
rates up to 80 mm/h”.

However, relying solely on precipitation rate to measure sensor performance is fun-
damentally flawed. The precipitation rate measures the amount of water that falls to the
ground and accumulates, losing information about the physical properties of the precip-
itation space between the sensor and the target. In fact, as previously discussed, a high
precipitation rate does not always correlate with poor visibility.

Sensor performance should be evaluated based on the physical characteristics of the
space, i.e., the “visibility”. To quantitatively evaluate the visibility, this paper adopts
the spatial transmittance Td at distance d [m] intended for sensor use, as introduced in a
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previous study [3]. To evaluate the visibility of the rainfall space itself without relying
on a specific sensor, we use T5, which uses 5 m as a representative distance. For added
compatibility, the MOR calculated by Equation (5) can also be used in conjunction with
spatial transmittance.

3.2. Object-Detection Rate in Rainfall Environments

This section presents the methodology used to measure the detection capability of
the sensor under rain conditions, focusing on the object-detection rate. A test piece is
strategically placed at dS meters within the field of view of the sensor S in a controlled
precipitation condition, PC, and observations and detections are executed repeatedly over f
frames. The detection rate, DR, is then simply defined as follows:

DR(S, ds, PC) =
fdet
f

=
fdet

fdet + f f ail
, (8)

where fdet is the number of frames out of all f frames in which the test piece is successfully
detected, while f f ail is the number of frames in which detection failed.

We then investigated how the physical properties of rain, such as precipitation rate and
particle density, affect the performance of the sensor. This is carried out by comparing the
detection rate DR(S, ds, PC0) of the sensor S in a clear environment with no precipitation
to the detection rate DR(S, ds, PCx) under varying precipitation conditions PCx, which
represent different combinations of precipitation rate and particle density.

3.3. Simulated Precipitation Conditions

The experiments described in this paper were conducted at the Large-scale Rainfall
Simulator, a test facility of the National Research Institute for Earth Science and Disaster
Resilience (NIED) [31]. A photograph of the facility is shown in Figure 3a. This facility is
one of the world’s largest and most powerful water spray facilities capable of reproducing
nature-like rainfall and has the following specifications:

• Nozzles with four different spray diameters installed 16 m above the ground
(2176 nozzles in total);

• Capable of spraying up to approximately 3000 m2 (44 m × 72 m);
• Maximum precipitation rate of approximately 300 mm/h;
• Raindrops up to approximately 6 mm in diameter.
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Using a nozzle with a smaller spray diameter and increasing the water pressure
(i.e., increasing the precipitation rate) increases the distribution of the number of small
diameter raindrops. By changing the combination of nozzle and water pressure, it is
possible to reproduce rainfall with different precipitation rates and drop size distributions.

In this experiment, three of the four nozzle types were used to reproduce four different
precipitation conditions, which were expected to have very different combinations of
precipitation and transmittance (particle density) from each other, in order to facilitate
verification of the claims made in this paper. Measurements were made under the following
five precipitation conditions, including the clear condition:

• PC0: Clear condition with no rainfall.
• PC1: Rainfall at a pre-set precipitation rate of 45 mm/h using Nozzle 1, which has

the smallest spray diameter. Precipitation consisting mainly of drizzle-sized particles
is reproduced.

• PC2: Rainfall at 80 mm/h using Nozzle 2, which has a medium-diameter spray nozzle.
Reproduces heavy rainfall.

• PC3: Rainfall at 200 mm/h with Nozzle 2. Reproduces a cloudburst with many
drizzle-sized particles.

• PC4: Rainfall at 300 mm/h using Nozzle 4, which has the largest spray diameter.
Reproduces the largest cloudburst consisting mainly of large raindrops.

The particle size and velocity distribution, PSVD, of the simulated rainfall was
measured using an OTT Parsivel2 laser precipitation disdrometer (OTT HydroMet,
Kempten, Germany), an instrument widely used in both practical and research applica-
tions in meteorology.

In this paper, we describe two types of precipitation rates for rainfall simulated at
the facility:

• Values pre-set by the facility;
• Values calculated from the observed PSVD matrix using Equation (3).

Due to the inherent non-uniformity of the simulated rainfall, these two values often
do not coincide and can sometimes differ significantly.

3.4. Test Piece and Experimental Setup

In this experiment, the test piece for sensor detection was a matte black acrylic plate
with dimensions of H: 400 mm × W: 200 mm. The width of 200 mm is indicative of the
minimum human torso size considered in the design of safety sensors, as specified in
IEC 61496-3 [32].

The diffuse surface reflectance of the test piece under dry conditions was approxi-
mately 5% across the visible to near-infrared spectrum. During the rainfall experiments, the
test piece was exposed to rain, and water droplets were deposited on its surface. To ensure
consistent surface conditions across all experiments, including those under PC0 without
rain, the test piece surface was intentionally maintained with water droplets, as shown in
the photograph in Figure 4a.

This black test piece with water droplets presents a challenging detection target for
optical sensors. In fact, a preliminary evaluation revealed that some sensor products
could not detect the test piece even under the clear condition PC0 (these products were
subsequently excluded from the main experiment).

The positioning of the test piece and the sensor is shown in Figure 4b. To prevent
water droplets from affecting the optical window of the sensor as described in Section 1.1
and to prevent electrical damage from water, the sensor was placed under a tent to ensure
a distance of 500 mm between the optical window and the rainfall. Consequently, the
portion of the distance d between the test piece and the sensor’s optical window that was
exposed to the rain was (d − 500) mm. The test piece was oriented perpendicular to both
the ground and the optical axis of the sensor. The height of the bottom edge of the test piece
and the optical axis of the sensor was set to 1000 mm above the ground reference plane.
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The selection of the distance dS from the sensor’s optical window to the test piece
required careful consideration due to the varying basic performance of the sensors used in
this experiment. We determined d to be the maximum distance at which the sensor could
reliably detect the test piece in a clear environment. This was operationalized as finding a
position where the detection rate DR(S, dS, PC0) for the sensor S in the clear environment
PC0 does not reach 100% but remains as high as possible. This implies finding a distance
dS that satisfies

sup{DR(S, dS, PC0)|dS ∈ A} < 1.0, (9)

where A represents the set of distances at which the sensor S can detect the test object in
the clear environment PC0.

With this setup, the impact of rain on the sensor can be sensitively reflected in the detec-
tion rate. That is, if the sensor S can almost detect the target at PC0, i.e., DR(S, dS, PC0) ≈ 1.0,
and the detection rate decreases significantly under precipitation conditions PCx, i.e.,
0.0 ≤ DR(S, dS, PCx) ≪ 1.0, then the effect of rainfall PCx on the sensor can be estimated
from these differences. Conversely, if the DR is hardly reduced by PCx, then the sensor is
hardly affected by rainfall.

3.5. Sensor Devices

In this experiment, we tested the following four depth cameras, each based on one of
the three sensing technologies described in Section 1.1, to investigate how the impact of
rainfall varies with the sensing technology:

• S1: Stereo Vision (SV);
• S2: Structured Light (SL);
• S3: Time of Flight (TOF);
• S4: Time of Flight (TOF).

It should be noted that all sensors are general-purpose products, not designed for
safety applications, and were not originally intended for use in a rainy environment.
Therefore, since none of the sensors are considered to be technically prepared for rainfall,
we expect to be able to directly observe the effects of rainfall on the performance of the
sensor devices.

The detection rates described in Section 3.2 were calculated for the depth images
produced by these sensors. In order to measure the detection rate under the same conditions
for all sensors, we used software implementing our original object-detection algorithm
instead of the proprietary software bundled with the sensors. The software is available
online under an open-source license as a common platform for object detection [33].

In this experiment, the depth image frames continuously output by the sensor were
processed using this common software to identify candidate object regions. Object detection
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was considered successful if the area of the candidate region reached 400 pixels or more in
the image coordinate system. Such frames were counted as successful detection frames fdet
in Equation (8). However, for sensor S1, which has a wide viewing angle, the threshold
was lowered to 100 pixels due to the relatively small object area compared to the depth
image size. Areas detected away from the position of the test piece, such as the ground and
the tripod legs supporting the test piece, were excluded using the masking function of the
software. For more details, refer to [33].

4. Experimental Results
4.1. Physical Properties of Precipitation

Table 1 shows the measurement results for the following physical properties of rainfall
reproduced under the four predefined precipitation conditions:

• Precipitation rate, R (pre-set and measured);
• Particle density, PD (calculated by Equation (1));
• Absorption coefficient γ, the corresponding 5 m transmittance T5 and MOR (Equations (5)–(7)).

Table 1. Measurement results of the physical properties of rainfall for each of the predefined
precipitation conditions.

Precipitation
Condition

Precipitation Rate,
R [mm/h],

Pre-Set/Measured

Particle Density,
PD [m−3]

Absorption
Coefficient,

γ [m−1]

Spatial
Transmittance (5 m),

T5 [%]
MOR [m]

PC1 45/46.2 64,659.2 0.0451 79.8 66.6
PC2 80/59.8 17,043.2 0.0158 92.4 189.6
PC3 200/118.4 72,718.7 0.0678 71.2 44.2
PC4 300/334.1 18,949.4 0.0288 86.6 104.3

Figure 5 shows plots of the drop size distribution (DSD) for each of the precipitation
conditions and the distribution of the absorption coefficient γ, as listed in Table 1, for each
raindrop particle size class.
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These data show the following:

• The 45 mm/h rainfall in PC1 was characterized by mainly drizzle mixed with rain,
with the majority of drops being 1 mm or less in particle size. Despite having the
lowest precipitation rate among the four types, its particle density, PD, was about
65,000, which was not significantly different from PC3 at 200 mm/h. The absorption
coefficient was also the second highest among the four types, with a 5 m transmittance,
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T5, of 79.8% (corresponding MOR: 66.6 m), making the visibility in this condition the
second worst after PC3.

• The 80 mm/h rainfall in PC2 is characterized as typical heavy rainfall. However, its PD
was the lowest among the four types, being less than half of that observed in PC1. The
absorption coefficients were significantly lower than those in PC1 for all particle sizes.
In addition, the T5 was 92.4% (MOR: 189.6 m), making it almost indistinguishable
from conditions that are clear to the human eye at close range.

• The 200 mm/h rainfall in PC3 had a distribution of raindrops of 1 mm or less in particle
size similar to that of PC1, but it reached a cloudburst level due to the significantly
higher number of 1 to 3 mm raindrops. The T5 was 71.2% (MOR: 44.2 m), which was
the worst visibility among the four types, although the difference from PC1 was not
substantial. This suggests that the contribution of light absorption by raindrops larger
than 1 mm in particle size is relatively small.

• The 300 mm/h rainfall in PC4 had cloudburst-class conditions, with a noteworthy
presence of raindrops of 2 to 5 mm in particle size. However, its PD was comparable
to that of PC2, and the T5 of 86.6% (MOR: 104.3 m) was not significantly different. As
shown in the absorption coefficient plot, the coefficients for small raindrops of 1 mm
or less in particle size were markedly lower than those observed for PC1 and PC3,
while larger raindrops of 2 mm or more in diameter had a non-negligible but limited
impact. Consequently, the impact of this rainfall on visibility was relatively moderate.

In summary, these findings indicate that high precipitation rates do not necessarily
result in reduced visibility within the precipitation space. The graphs in Figure 5 clearly
show that raindrops with a particle size of 1 mm or less are the primary contributors to
reduced visibility in the rainy environment. This is consistent with the observations of
the low visibility from natural drizzle discussed in Section 2.1. This also suggests that
the selection of the precipitation conditions described in Section 3.3 was appropriate. It
also reinforces the argument made in this paper that the precipitation rate alone is not an
appropriate metric for assessing sensor performance.

4.2. Evaluation of Sensor Detection Performance
4.2.1. Evaluation Procedures

This section details the results of the object-detection tests conducted with the sensors
and the precipitation conditions mentioned above.

First, detection was performed under PC0, a clear condition with no precipitation, to
determine the distance d as described in Section 3.2. Accurately determining the distance d
that satisfies Formula (9) proved to be difficult. Therefore, we incrementally adjusted the
position of the test piece during detection. This approach led to an ad hoc determination of
the maximum distance at which the detection rate dropped below 100%. The distances thus
determined for each sensor and the corresponding detection rate DR(d, PC0) are listed
in Table 2.

Table 2. Measurement distances, d, determined for the sensors.

Sensor Sensing
Technology d [mm] DR (d, PC0) [%]

S1 SV 4210 96.86
S2 SL 3231 87.76
S3 TOF 4101 97.77
S4 TOF 3596 67.37 *

* For sensor S4, DR (PC0) is not close to 100%, which does not strictly satisfy Formula (9).

For sensor S4, we could not experimentally find a distance d at which a detection
rate DR(S4, d, PC0) close to 100% could be obtained stably and at which the detection
rate would decrease under rain conditions. This is because S4 was originally designed
for indoor short-range sensing applications, and its operation was very unstable in this
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experiment. Therefore, we substituted the detection rate DR of 67.37% obtained at the
distance d of 3596 mm. Since this does not strictly satisfy Formula (9), the results for sensor
S4 could be considered as supplementary information.

Figure 6 shows examples of depth images and RGB images from frames where each
sensor achieved successful detections in the clear condition, PC0. In the depth images,
pixels closer to the sensor appear in brighter gray or red, while pixels without distance
information are shown in black. The red areas indicate object regions identified by the
object-detection algorithm discussed earlier, and such frames are categorized as successful
detection frames fdet.
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Then, for each sensor S, the test piece was positioned at the specified distance dS,
and detection tests of more than 500 frames were executed repeatedly both in the clear
condition PC0 and in precipitation conditions PC1 to PC4.

4.2.2. Detection Rates under the Precipitation Conditions

Figure 7 shows a graph summarizing the detection rates achieved in the experiment.
Figures 8 and 9 show examples of successful and unsuccessful detections by each of the
sensors in precipitation conditions PC1 (45 mm/h) and PC4 (300 mm/h), respectively.
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Top: RGB images. Middle: depth images showing cases where the test piece was detected. Bottom:
depth images where the test piece was not detected.

As shown in Figure 7, the PC1 (45 mm/h) rainfall, with the lowest precipitation rate
of the four types, had the most significant impact on the sensors, causing all sensors to fail
to detect the test piece. Conversely, the PC4 (300 mm/h) rainfall had a significantly lower
impact than PC1, despite being one of the heaviest natural rainfalls. The RGB images in
Figures 8 and 9 clearly illustrate that PC1 has significantly poorer visibility.

Similarly, the PC3 rainfall (200 mm/h) resulted in near-zero detection rates for all
sensors, demonstrating that its effect on sensor performance is comparable to that of PC1.
However, since the precipitation rate of PC3 is much higher than that of PC1, this result
further suggests that precipitation rate has minimal effect on sensor performance.
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These results clearly demonstrate that rainfall intensity alone is not a reliable metric
for sensor detection capability. Regardless of the sensing technology used, it is primarily
the spatial transmittance, determined by the particle density PD of small raindrops, that
affects a sensor’s detection performance.

Examples of detection failures shown in Figures 8 and 9 include the following cases:

• For sensors S1 and S3, when the area representing the test piece falls below the
detection threshold;

• For sensor S2, when it is unable to acquire distance data due to rain;
• For sensor S4, when the test piece is obscured by noise and cannot be detected as a

connected region.

4.2.3. Sensing Technologies under the Precipitation Conditions

This section analyzes whether there are differences in the effect of rainfall on different
sensing techniques.

For precipitation conditions PC2 (80 mm/h) and PC4 (300 mm/h), which are char-
acterized by a lower number of drizzle particles, a significant difference in the detection
performance of the sensors was observed.

Interestingly, the detection rate of the TOF sensor S3 did not decrease significantly
under the PC2 and PC4 precipitation conditions, although previous reports indicated that
TOF-based sensors tend to be highly affected by scattering from particles in space [30,34].
As shown in Figure 5, PC1 (45 mm/h) and PC3 (200 mm/h) are significantly affected by
scattering effects due to small raindrops of 1 mm or less in particle size, while PC2 and PC4,
which contain significantly smaller numbers of particles, are less affected.

The marked difference in detection rates between the S2 and S4 sensors, both of which
use the TOF method, could be attributed to the fact that the S4 sensor is designed for
short-range indoor use, which makes it difficult to detect low-reflectivity test pieces even
under clear PC0 conditions, thus making it more susceptible to rainfall.

The detection rate was higher for PC4 compared to PC2 in the case of S2 using SL and
S4 using TOF, even though the spatial transmittance of PC4 was slightly lower than that of
PC2, but not by a significant margin. This does not easily explain why PC4 would have a
higher detection rate. The fact that both sensors are intended for indoor applications may
contribute to the considerable variability in performance at their limits.

5. Discussion

This section presents an analysis showing that small raindrops cause a more signif-
icant problem for sensors and discusses a metric for evaluating sensor performance in
rainfall environments.

5.1. Raindrop Size and Spatial Transmittance

Figure 10 graphically illustrates the precipitation rate required to achieve the same
spatial transmittance as the PC1 (45 mm/h) precipitation condition described in Section 3.3,
but in a hypothetical scenario where all raindrops are of uniform particle size. The num-
ber of raindrops PD(Di) required to achieve the same 5 m transmittance T5 = 0.7988
(MOR: 66.6 m) as PC1 by rainfall consisting only of raindrops of particle size Di [mm] was
determined using Equations (6) and (7). And the fall velocity Vi of raindrops of particle
size Di was estimated by the Foote and Du Toit polynomial [35]. Then, the precipitation
rate Ri calculated by Equations (2) and (3) was plotted.

According to these calculations, a precipitation rate consisting of drizzle-sized rain-
drops with a particle size of 0.4 mm, which has a spatial transmittance equivalent to PC1,
is approximately 35 mm/h. This is consistent with the experimental results, because the
0.4 mm particle size corresponds to the most frequent raindrop size of raindrops in PC1, as
shown in Figure 5.

However, it would require a cloudburst-level rainfall of about 216 mm/h, consisting
of only 1 mm raindrops, to match the transmittance of PC1. Obviously, such a precipitation
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rate cannot be produced by 1 mm raindrops alone. In the case of 3 mm raindrops, it would
require a precipitation rate of approximately 1308 mm/h, which is unrealistic for Earth.
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5.2. Redefining Sensor Evaluation Metrics for Rainfall

From the above analysis, it is clear that using precipitation rate as a metric to evaluate
sensor performance is not appropriate. Instead, the spatial transmittance Td at the measure-
ment distance d where the sensor is intended to be used, or the density of small particles
PD(D|D ≤ 1.0), should serve as the metric for sensor evaluation. More specifically, since
the density of larger particles, PD(D|D > 1.0), is negligibly small, the total particle density
PD can be used as an indicator, where PD(D|D ≤ 1.0) ∼= PD.

To provide information to sensor users, such as safety sensor system integrators, a de-
scription based on the intended maximum operating distance and its spatial transmittance,
as suggested in our previous paper [3], should be used. For example, the user manual
should state: “This sensor is designed for use in rainfall with a spatial transmittance greater
than 80% at a sensing distance of 5 m”. Alternatives might include “. . . with a raindrop
density PD of 50,000 or less” or “. . . with an MOR of 65 m or more”.

If there is a need to use precipitation rate as a metric for compatibility or ease of general
understanding, it is important to distinguish between rainfall and drizzle. For example,
“. . . for use in rainfall of less than 80 mm/h or in drizzle of less than 0.5 mm/h”.

Relying on precipitation rate alone should be avoided, as it can lead to inaccuracies
under certain environmental conditions.

6. Conclusions

This study investigated the object-detection performance of non-contact safety sensors
in rainfall environments. Our experimental results highlighted that higher precipitation
rates do not necessarily correlate with reduced visibility and that the presence of numerous
small raindrops has a greater impact on sensor detection performance than the sheer
volume of precipitation. These results challenged the conventional use of precipitation
rate as a metric for evaluating sensor performance, providing an understanding of its
inadequacy and potential for misleading conclusions in certain scenarios. We recommended
the adoption of spatial transmittance or raindrop density as more reliable indicators for
assessing sensor effectiveness in precipitation conditions.

In this experimental design, we selected four types of optimal precipitation condi-
tions given our limited resources. Ideally, experiments should include a wider variety of
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precipitation conditions and a greater number of sensor devices. Additionally, validat-
ing the approach through field tests is crucial. This will further reinforce the proposed
methodology. These are challenges to be addressed in future research.

Integrating the findings from this research with our previous work [3,28–30], we
conclude that spatial transmittance is a universally applicable metric for evaluating sensor
performance across a spectrum of environmental conditions, including rain, drizzle, and
fog. This conclusion leads us to propose that spatial transmittance may be the only metric
worth considering for evaluating sensor object-detection performance, regardless of the
specific weather phenomena. In addition, the applicability of this metric could potentially
be extended to various aerosols and environmental particles such as blowing snow and
sand dust. However, the influence of spatial transmittance on sensing capabilities can
vary significantly depending on the particle types present, suggesting that the uniform
application of this metric requires careful consideration and further validation. Addressing
these nuanced challenges and testing the proposed hypotheses will be essential for future
research in this field.
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