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Abstract: Additive manufacturing (AM) technology has recently seen increased utilization due to
its versatility in using functional materials, offering a new pathway for next-generation conformal
electronics in the smart sensor field. However, the limited availability of polymer-based ultraviolet
(UV)-curable materials with enhanced piezoelectric properties necessitates the development of a
tailorable process suitable for 3D printing. This paper investigates the structural, thermal, rheological,
mechanical, and piezoelectric properties of a newly developed sensor resin material. The polymer
resin is based on polyvinylidene fluoride (PVDF) as a matrix, mixed with constituents enabling UV
curability, and boron nitride nanotubes (BNNTs) are added to form a nanocomposite resin. The results
demonstrate the successful micro-scale printability of the developed polymer and nanocomposite
resins using a liquid crystal display (LCD)-based 3D printer. Additionally, incorporating BNNTs into
the polymer matrix enhanced the piezoelectric properties, with an increase in the voltage response by
up to 50.13%. This work provides new insights for the development of 3D printable flexible sensor
devices and energy harvesting systems.

Keywords: additive manufacturing; piezoelectric; polymer; nanocomposite; BNNTs

1. Introduction

The rapid evolution of microelectronics technology has catalyzed significant break-
throughs in various scientific fields, particularly in the realm of smart sensor technology.
These advancements offer unprecedented versatility, paving the way for the development
of next-generation conformal electronics across diverse applications. Traditional micro-
scale electronic fabrication techniques, such as imprint lithography, micromachining, and
photolithography, have primarily relied on two-dimensional (2D) rigid substrates [1–4].
However, these methods face inherent limitations in achieving non-planar structures for
complex curvilinear architectures. Recent advances in materials, manufacturing techniques,
and microelectromechanical (MEMS) designs have made a substantial contribution to
the emergence of several smart devices based on piezoelectric materials for society [5–7].
Piezoelectric materials, a family of organic or inorganic materials, are renowned for their
ability to convert mechanical stress into electrical charge (direct effect) or vice versa (inverse
effect), thus playing a pivotal role in a wide range of multidisciplinary areas, including the
aerospace and bio-medical fields [8,9], to detect and sense physical phenomena such as
mechanical strains and pressure [10–13].

Traditionally, ceramics like lead zirconate titanate (PZT), barium titanate (BaTiO3), and
calcium copper titanate (CCTO) have been preferred due to their exceptional piezoelectric
characteristics [14–16]. Conversely, their rigidity, brittleness, toxicity, and high density limit
their application in conformal electronics. To circumvent these challenges, researchers have
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developed polymer-based composites, capitalizing on polymers’ unique properties, such as
mechanical flexibility, lightweightness, and ease of processing. Particularly, polyvinylidene
fluoride (PVDF), a fluoropolymer, with its distinct polymorphism (α, β, γ, and δ phases),
has emerged as a leading candidate owing to its high dielectric constant compared to other
polymers, increased flexibility, and long-term stability under high electric fields [17,18]. The
performance of PVDF-based sensors is enhanced by incorporating micro and nano piezo-
electric fillers into the polymer matrix, which synergize the flexibility and high piezoelectric
property, thereby unlocking new functionalities tailored to envisioned applications [19].
Traditional processes, such as compression molding, spin coating, and solvent casting, have
been employed for manufacturing piezocomposite materials [11,20,21]. However, these
traditional methods are time-consuming, limit design flexibility, and are mostly suitable
for large-scale structures with complex fabrication processes, underscoring the need for
alternative approaches.

In contrast, additive manufacturing (AM) technology presents a promising solu-
tion with its layer-by-layer stacking approach, enabling the creation of intricate three-
dimensional (3D) structures with unparalleled ease and efficiency. This capability holds
immense potential for the fabrication of multifunctional materials with complex geome-
tries, thereby revolutionizing sensor, energy harvester, and actuator devices [22–24]. Al-
though attempts have been made to 3D print PVDF-based sensing devices using micro-
dispensing [25,26] and fused deposition techniques [27,28], challenges persist in printing
complex out-of-plane patterns, producing uniform filaments and manufacturing an array
of sensor materials in a time-efficient manner. Among different AM techniques, ultraviolet
(UV)-based 3D printing overcomes the aforementioned fabrication challenges. Stereolithog-
raphy (SLA), a well-known UV-based 3D printing technique, can produce high-quality,
macro-sized 3D structures. Yet, this method uses a laser beam that possesses a low printing
rate and is not suitable for rapid production [29]. In this study, a liquid crystal display
(LCD)-based printing method is employed as this is economical and can print an entire
layer at once with effective resolution. Despite advancements in printing technology, to the
author’s knowledge, the availability of resin material amenable to UV-based 3D printing
processes remains a pressing challenge, highlighting the need for developing an optimized
material exhibiting flexibility and piezoelectric properties.

On the other hand, the selection of piezocomposite materials plays a vital role in mate-
rial synthesis in terms of compatibility, lightweightness, and piezoelectric properties. Boron
nitride nanotubes (BNNTs), a promising nanofiller, are known for their high thermal and
chemical stability, mechanical strength, and good biocompatibility. This nanofiller offers
the potential to significantly enhance the piezoelectric properties of polymer composites,
making them ideal for highly sensitive force-sensing applications [30–32]. Although BNNTs’
piezoelectric nature has been explored through analytical and simulation studies [33–35],
experimental research on incorporating BNNTs into polymer composites, especially for 3D
printing smart sensors, remains in the nascent stage.

Addressing the imperative requirements, this paper presents a comprehensive investi-
gation into the structural, thermal, rheological, mechanical, and piezoelectric properties
of a newly developed sensor resin material based on PVDF. Additionally, the effect of
incorporating BNNTs as a nanofiller is examined, focusing on enhancing the nanocompos-
ite’s piezoelectric sensor response. Leveraging an LCD-based 3D printer, this study also
investigates the micro-scale printability of the developed sensor material.

2. Materials and Methods
2.1. Sample Preparation

The process of developing a polymer resin involves blending the base polymer with
additives that enable UV curability, suitable for the selected 3D printing process. The
primary component of the developed resin was PVDF, a base polymer (Sigma Aldrich,
St. Louis, MO, USA) with an average particle size of 3–10 µm, molecular weight (Mw) of
~534,000 g/mol, and density of 1.74 g/mL. Additionally, a hexamethylene glycol diacry-
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late (HDODA) monomer with a density of 1.01 g/mL, bisacylphosphine oxide (BAPO)
photoinitiator (Sigma Aldrich, St. Louis, MO, USA), and Sudan I UV absorber (Thermo
Fisher Scientific, Waltham, MA, USA) were uniformly mixed with a diethyl fumarate (DEF)
solvent (Sigma Aldrich, St. Louis, MO, USA). The investigation examined samples with a
base polymer range of 20 wt. % to 40 wt. % in increments of 5 wt. % while maintaining
fixed amounts of UV absorber, photoinitiator, and solvent at 0.1%, 1.9%, and 23% by weight,
respectively. The remaining quantity consisted of monomers, ranging between 35% and
55% by weight. Additionally, 2 wt. % of boron nitride nanotubes (BNNTs) with an assay
exceeding 80% (Sigma Aldrich, St. Louis, MO, USA) was incorporated as received without
further purification to develop a nanocomposite owing to its higher piezoelectricity and
fine electric field tunability. To fabricate the piezoelectric resin, PVDF with respective wt. %
proportions was mixed using a centrifugal planetary THINKY ARM-310 mixer (Laguna
Hills, CA, USA) at 2000 rpm for an average duration of 20 min, ensuring thorough mixing
of the selected combinations without any agglomeration or air bubbles. Table 1 presents
the sample combinations used throughout various tests.

Table 1. Piezoelectric resin preparation compositions without and with nanofillers.

Sample Resin, wt. % BNNTs, wt. %

Polymer resin 100 -
Nanocomposite resin 98 2

Note: The polymer and nanocomposite resin samples contained additives such as monomers, UV absorbers,
and photoinitiators.

2.2. Piezoelectric Substrate Development Procedure

The piezoelectric-based sensor was fabricated using the Phrozen Sonic Mini 8K LCD
3D printer (Phrozen Technology, Hsinchu City, Taiwan), which boasts a resolution of up
to 1152 ppi and exceptional stability while printing, as depicted in Figure 1. To assess
the UV curing behavior of the developed piezoelectric resin, an array of square coupons
(5 mm × 5 mm × 1 mm) were modeled and sliced using the Phrozen 3D software.
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Figure 1. (a) Schematic representation for UV curability of polymer dissolved in DEF solvent and
(b) LCD 3D printing setup.

Given the customized nature of the developed resin, optimal printing parameters were
determined through iterative trials with a focus on critical factors, such as delamination
between layers, build platform adhesion, and exposure time for polymerization. Table 2
lists the parameters used for printing both the developed polymer and nanocomposite
resins. After printing, the coupons underwent a 5 min rinse in DEF and then in isopropanol
(IPA) to eliminate any residual uncured resin.
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Table 2. Printing parameters for polymer and nanocomposite resins using an LCD printer.

Print Parameter Value

Layer height, mm 0.05
Bottom layer count 6

Bottom exposure time, s 55
Normal exposure time, s 30

Lift distance, mm 6
Lift speed, mm/min 60

Retract speed, mm/min 150

2.3. Phase Characterization Methods

Fourier transform infrared spectroscopy (FTIR) transmission spectra of the polymer
with added nanofiller were recorded within a wavenumber range of 650–3500 cm−1 using
an Agilent Cary 630 spectrometer (Santa Clara, CA, USA) with 64 scans per spectrum.
X-ray diffraction (XRD) spectra were obtained within a 2θ range from 10◦ to 50◦ using a
Panalytical X’Pert Pro diffractometer (Malvern, Worcestershire, UK) with a Cu radiation
source operating at 45 kV and 40 mA, with an irradiated length of 5 mm.

2.4. Thermal and Rheological Measurements

The melting and crystallization properties of the developed polymer and nanocompos-
ite materials were investigated based on differential scanning calorimeter (DSC) measure-
ments collected using a Mettler Toledo DSC 3 (Columbus, OH, USA). Samples weighing
between 30 mg and 40 mg were contained in 40 µL aluminum crucibles. The temperature
of the samples was gradually increased from 30 ◦C to 180 ◦C at a 10 ◦C/min heating rate.

The rheological measurements of the mixed resins with varying proportions of poly-
mer and with nanofillers were conducted utilizing a TA Instruments HR 20 hybrid rheome-
ter (New Castle, DE, USA). The testing framework comprised two 25 mm diameter parallel
plates and a 0.75 mm gap, with temperature control maintained by a Peltier plate setup.
Two types of measurements were performed: (1) viscosity over a varying shear rate from
1 s−1 to 100 s−1 at 25 ◦C and (2) viscosity at a constant shear rate of 100 s−1 for a 60 s
duration at 25 ◦C.

2.5. Nanoindentation

Mechanical characterization of 3D printed samples was conducted using a Bruker
Hysitron TI-980 nanoindenter (Billercia, MA, USA) equipped with a 10 mN low-load
transducer. To study the material’s reduced modulus and viscoelastic properties, single
indentations and micro-scale dynamic mechanical analysis were performed, respectively,
with an applied peak force of 5 mN and a 5 s dwell time at 100 Hz frequency.

2.6. Piezoelectric and Dielectric Property Measurements

The piezoelectric strain coefficient (d33), which represents the induced polarization
per unit stress applied in the thickness direction, was measured using an APC YE2730A
piezometer (Mackeyville, PA, USA) with a 250 mN applied force. The dielectric constant
was determined through parallel plate capacitor measurements of 3D printed samples
sandwiched between aluminum plates. Capacitance values were obtained with a high-
precision Hioki IM 3570 impedance analyzer (Dallas, TX, USA) across a frequency range
of 100 Hz to 1 MHz. The dielectric constant (εr) was calculated as εr = C·d/ε0·A, where C
represents the measured capacitance at different frequencies, A denotes the area of the
aluminum electrode, d signifies the thickness of the individual 3D printed substrate, and
ε0 is the free space dielectric constant. Additionally, the piezoelectric voltage constant
(g33) was derived using the relation g33 = d33/εr ε0 based on the measured values. Finally,
the electrical output signal from the 3D printed device was captured using an Agilent
DSO-X-4024A digital oscilloscope (Keysight Technologies, Santa Rosa, CA, USA).
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3. Results and Discussions

In this section, the structural, rheological, and thermal properties of the developed resin
are presented. Additionally, the mechanical and piezoelectric properties of the 3D printed
sensor material are discussed. Considering better printability and longevity among different
polymer combinations, resin with 35 wt. % PVDF was selected for nanofiller addition.

3.1. Structural and Phase Characterization

The FTIR spectra analysis of the developed resin with varying polymer content pro-
vides information about the crystalline structure, which is crucial for determining the
piezoelectric properties. Among different polar and non-polar crystallographic phases of
PVDF, the β phase is the most essential form due to its excellent piezoelectric behavior.
In the polar β phase, the polymer chains exhibit an ordered carbon backbone structure
with fluorine and hydrogen atoms on each side, enhancing the material’s piezoelectric
properties. Transmittance peaks at 762 cm−1 (CF2 bending and rocking), 872 cm−1 (C-F
stretching), and 1062 cm−1 (C-C-C bonding) represents the non-polar α-phase, while peaks
at 846 cm−1 (CF2 stretching and CH2 rocking), 1179 cm−1 (C-C bonding, monomer’s C-O
stretching vibration), 1406 cm−1 (CH2 wagging, monomer’s C=C), and 1423 cm−1 (CH2
bending) signify the polar β phase presence in the PVDF polymer [25,36–38], as shown in
Figure 2a. Moreover, peaks at 1636 cm−1 (C=C bond), 1719 cm−1 (C=O stretching vibration),
2864 cm−1 (=C-H stretching vibration), and 2938 cm−1 (CH2 symmetrical) indicate the
presence of a monomer in the developed polymer resin [39]. Overall, an increment in the
polar peak at 835 cm−1 was noticed with an increase in PVDF polymer content, which was
validated further by quantifying the polar phase fraction. Furthermore, spectra of the sam-
ple containing BNNTs revealed a unique peak at 810 cm−1 and 1361 cm−1 corresponding
to in-plane and out-of-plane stretching vibrations of B-N bond [40], as shown in Figure 2b.
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Figure 2. FTIR transmittance spectra: (a) resins with different PVDF wt. % and (b) BNNT filler
addition to PVDF polymer, with unique peaks marked (*) corresponding to B-N bond.

Based on the Beer–Lambert law, the relative fraction of the β phase was quantified as
shown in Equation (1):

Fβ =
Aβ(

kα
kβ

)
Aα + Aβ

(1)

where Aα and Aβ are the absorbance peak intensities at the 762 cm−1 (α phase) and 846 cm−1

(β phase); kα and kβ are the absorption coefficients, whose values were 7.7 × 104 cm2 mol−1

and 6.1 × 104 cm2 mol−1, respectively. The calculated polar phase fraction for different
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composition types is listed in Table 3; a maximum of 64.89% polar phase was achieved with
nanofiller addition.

Table 3. Calculated relative polar phase fraction in developed polymer-based resins.

Sample, wt. % F (β), %

PVDF 20 53.86
PVDF 25 56.08
PVDF 30 57.21
PVDF 35 60.01
PVDF 40 61.08

PVDF 35/BNNTs 2 64.89

The XRD diffraction peaks were analyzed to investigate the crystal phases of the
polymer and the impact of the nanofiller on overall crystallization, as shown in Figure 3.
The diffraction peaks at 2θ = 17.8◦, 18.4◦, 20.0◦, 26.6◦, and 38.6◦, shown in Figure 3a, were
attributed to the diffractions of (100), (020), (110), (021), and (040) crystal planes of PVDF
polymer [41,42], respectively, with an increment in intensity corresponding to high polymer
content. Peaks near 26.4◦ and 44.3◦ in Figure 3b were associated with BN crystal planes,
exhibiting a drop in intensity ascribed to the nucleation effect of PVDF crystallization,
which was also quantified using thermal analysis [43]. Additionally, an increase in intensity
was observed for the 20.5◦ (110/200) polar phase plane, which supported the higher β
phase presence with the developed resin [44].
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addition to PVDF polymer.

3.2. Thermal Analysis of Developed Resins Using DSC

The DSC thermograms depicting samples with an increase in PVDF content and
nanofiller addition are displayed in Figure 4a,b. Thermal analysis plays a crucial role in
assessing the thermal stability and reliability of sensor materials across a wide tempera-
ture range.

Thermal parameters, including melting temperature (Tm) and melting enthalpy (∆Hm),
are summarized in Table 4, based on the measured thermograms, while the crystallinity
content (Xc) was calculated using Equation (2):

Xc =
∆Hm

∆H∗
m
× 100% (2)
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where ∆H∗
m is the measured melting enthalpy corresponding to the pure crystalline PVDF

(32.11 J/g).
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(b) comparison of PVDF with BNNT addition, with melting peak marked (*).

Table 4. Melting and crystallinity parameters of polymer-based resin combinations obtained through
DSC measurements.

Sample, wt. % Tm, ◦C ∆Hm, J/g Xc, %

PVDF 20 133.36 9.79 30.49
PVDF 25 133.88 12.02 37.43
PVDF 30 134.33 13.73 42.76
PVDF 35 135.57 15.20 47.34
PVDF 40 138.71 15.78 49.14

PVDF 35/BNNTs 2 157.60 7.32 23.79

Overall, the results indicated that as the PVDF content increased, the melting tempera-
ture, enthalpy, and crystallinity increased. The observed rise in Tm, ∆Hm, and Xc can be
attributed to an increase in the crystalline phase alongside PVDF content. The crystalline
phase typically requires a significant amount of energy to change phase when compared
to an amorphous phase. Notably, an increase of 5.35 ◦C in Tm and 5.99 J/g in ∆Hm was
observed when the maximum and minimum amount of polymer wt. % were investigated
in this study. Upon the introduction of BNNT nanofillers, as shown in Figure 4b, the Tm
exhibited a significant increase compared to the PVDF polymer. The presence of BNNTs
affected the ∆Hm by creating a nucleation site, thus providing an insufficient area for crystal
formation and alignment. Finally, it is essential to note that the thermogram profiles were
single-peaked, an indicative of a homogenous composite that melted uniformly during the
heating process.

3.3. Rheological Behavior of Developed Resins

For the custom-developed resins with different polymer contents, the investigation of
rheological behavior plays a crucial role in the selected 3D printing process. Understanding
the viscosity of combinations with different PVDF wt. % contents under conditions that
emulate the shear rate of LCD printing is of paramount importance. Unlike extrusion-based
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AM techniques that involve high shear forces, vat-based processes like LCD printing result
in significantly lower shear forces as the printed material remains relatively static on the
building platform, which is displaced at a low speed to prevent agitation that may affect the
curing process and accuracy of the printed component. However, despite being categorized
as a low-shear manufacturing process, LCD 3D printing still involves movement and flow
within the vat, influenced by the rheological behavior of the material.

To assess viscosity, measurements were recorded over a shear rate ranging from
1–100 s−1 for all combinations. Figure 5a illustrates the pseudoplastic or shear-thinning
flow behavior of various PVDF wt. % under a 1–100 s−1 shear rate sweep. As the PVDF
content increased, a notable trend emerged wherein the shear thinning behavior became
more pronounced. The samples with 20 wt. % PVDF exhibited Newtonian behavior, with
viscosity independent of the applied shear rate, whereas higher PVDF wt. % combinations
showed a drastic decrease in viscosity as the shear rate increased. This shear-thinning
behavior was advantageous during the printing process as the viscosity directly correlated
with flowability and self-leveling, crucial properties when evaluating the developed resins.
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Figure 5. The viscosity of resin with different PVDF wt. % measured at (a) varying shear rate and
(b) fixed shear rate of 100 s−1.

To compare viscosities as the PVDF wt. % increased, measurements were recorded at
a shear rate of 100 s−1 to simulate shear loading on geometries with small and complex
features. Figure 5b depicts the resulting viscosities, clearly illustrating an exponential
increase in viscosity as the PVDF wt. % rose. Even though the sample with higher
PVDF content exhibited a high polar phase, poor endurance was demonstrated, leading to
increased instances of building platform detachment and warping over time.

Introducing BNNT fillers into the polymer matrix resulted in a 49% increase in viscosity
compared to the polymer resin with 35 wt. % PVDF, as shown in Figure 5b. Nevertheless,
the resin with nanofillers exhibited lower viscosity than the resin with 40 wt. % PVDF and
remained within the printable range while enhancing overall piezoelectric performance, as
discussed in the following sections.

3.4. SEM Analysis

The surface morphology and homogeneity of additives with the PVDF polymer were
investigated by examining 3D printed structures with varying PVDF contents (20–40 wt. %)
using a FEI Quanta 650 scanning electron microscope (SEM). SEM images were captured at
20 kV, as shown in Figure 6a–e, revealing the surface quality of the printed samples, with
an observed increase in polymer content mixed with other added constituents. Specifically,
a combination with 40 wt. % PVDF exhibited a reunion phenomenon (highlighted with
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a circular marker in Figure 6e) and increased warping tendency after printing, leading to
easy delamination between layers and compromising structural integrity. It was noted that
a maximum range of 35 wt. % PVDF demonstrated beneficial printability and mechanical
strength. Polymer softening behavior while printing samples beyond 35 wt. % was also
observed in the material’s modulus, as discussed in Section 3.6.
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3.5. Printability of Developed Polymer Resins

The developed resins demonstrated compatibility with UV-based AM techniques,
facilitating the fabrication of high-resolution, micro-scale structures with complex shapes.
Samples made of the developed polymer and nanocomposite resins were printed using an
LCD printer for resolution inspection. Figure 7a shows a printed eagle symbol, showcasing
high resolution and shape fidelity, particularly evident in intricate features such as the
beak and claws, as shown in the zoomed-in images. However, the powder-based polymer
resin resulted in a rough surface, necessitating refinement in the cleaning procedure before
utilization. The residues on the surface, formed over time after solvent evaporation, were
quickly rinsed with deionized water (DI) and blown dry with a handheld blower. Fur-
thermore, the LCD printer proved beneficial not only for printing macro-scale structures
but also for producing micro-scale structures with high resolution. SEM inspections of
micro-scale scaffold lattice structures with dimensions of 200 µm width and 1 mm thickness
(50 µm thick each layer) were conducted for both polymer and nanocomposite resin materi-
als, as shown in Figure 7b,c. Additionally, the arithmetic mean height (Sa) of the 3D printed
samples was measured using the Filmetrics Profilm3D profilometer to obtain the surface
roughness parameter. The surface of the nanocomposite was rough (Sa = 10.54 ± 0.68 µm)
and flexible compared to the polymer sample (Sa = 7.68 ± 0.60 µm) due to the presence of
BNNTs. This inspection confirmed the compatibility of the developed resin for UV-based
3D printing with better stacked layers, offering a scalable approach to manufacturing
nanocomposite sensors with high resolution and structural integrity.
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Figure 7. Printability of developed resins at micro-scale levels: (a) eagle structure with zoomed-in
images of beak and claws, lattice structures with 200 µm width printed using (b) 35 wt. % PVDF
polymer resin and (c) PVDF/BNNTs nanocomposite resin, (d) zoomed-in layer-by-layer printed
nanocomposite structure, and (e) zoomed-in picture of BNNT nanofillers.

3.6. Effect of Nanofillers in PVDF Polymer’s Mechanical Property

To examine the modulus of the 3D printed polymer-based materials, nanoindenter
analysis was employed to conduct single indentations and study the viscoelastic response,
represented by the reduced modulus (Er) and the complex modulus (E*, a vector sum of
storage and loss modulus), respectively. The measured Er was converted into Young’s
modulus based on the Equation (3):

1
Er

=
1 − ν2

E
+

1 − ν2
i

Ei
(3)

where E and ν are the Young’s modulus and Poisson’s ratio of the material being indented
(assumed polymer’s ν = 0.3) and Ei and νi are the elastic modulus and Poisson’s ratio of the
diamond indenter tip (Ei = 1.14 GPa and νi= 0.07). Figure 8a illustrates the measured (E*)
and calculated (E) moduli alongside indentation hardness values for PVDF combinations
ranging from 20 to 40 wt. %.
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Figure 8. Nanoindenter results demonstrating Young’s and complex moduli for resins with (a) differ-
ent PVDF wt. % and (b) added BNNT nanofillers.
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Based on the measured values, the modulus tended to increase with an increase in
polymer content, and at 40 wt. %, the modulus dropped due to the flexible and reunion
behavior of the polymer combination, as depicted in Figure 8a. A similar trend was noticed
with the addition of BNNTs to the polymer, as shown in Figure 8b. This phenomenon could
be ascribed to the selected UV curing process and loss of crystals, contrary to the increase in
modulus observed in casting processes involving temperature and stretching [45]. Despite
the low Young’s modulus with BNNT addition, the printed nanocomposite exhibited stur-
diness and compliance, suitable for conformal structures, as noted in Section 3.5 regarding
printability. Moreover, adding beyond 2 wt. % of BNNTs would result in agglomeration to
a certain extent and hinder the adhesion between nanofillers and additives, compromising
the structural integrity of the 3D printed sample [45,46].

3.7. Piezoelectric Property Enhancement with Added Nanofillers

Material property measurements, such as d33, εr, and g33, play a pivotal role in assess-
ing the performance of piezoelectric sensors. The d33 value, indicative of the piezoelectric
charge coefficient within the crystal structure of both the polymer and the nanocomposite,
quantifies the charge generated per unit force applied in the thickness direction. Maximiz-
ing the piezoelectric response of PVDF polymer occurs when it exhibited a higher β phase,
facilitating the alignment of the polar group along the polymer chains. The incorporation
of BNNTs serve as a nucleation site for polymer crystallization, resulting in the generation
of coupled electric dipoles in response to deformation, promoting stress transfer efficiency
and enhancing polarization, thus strengthening the piezoelectric response.

The alignment of dipoles in the developed polymer and nanocomposite substrates,
crucial for activating piezoelectricity, was achieved through polarization. Utilizing corona
poling, a non-contact polarization technique involving the application of a high voltage of
8 kV for 30 min facilitated this alignment process. The measured d33 values with varying
PVDF contents in the developed resins post-polarization can be seen in Table 5. It was
evident that the property demonstrated an increase alongside the rise in crystalline content,
mirroring the trend observed in the polar phase discussed in Section 3.1.

Table 5. Measured piezoelectric strain coefficient for 3D printed resins with different PVDF contents
after polarization.

PVDF Sample, wt. % d33, pC/N

20 3.40 ± 0.15
25 4.33 ± 0.19
30 5.67 ± 0.36
35 7.34 ± 0.20
40 8.14 ± 0.17

Analysis of the measured and calculated piezoelectric properties at 100 Hz, as pre-
sented in Table 6, revealed a maximum yield of 12.20 pC/N for d33 and 114.06 mVm/N for
g33 upon filler addition to the base polymer. However, it is noteworthy that the achieved
d33 value was lower than the 16–20 pC/N typically reported in the literature [47,48]. The
difference can be attributed to the current composite containing only 35 wt. % polymer and
2 wt. % nanofiller, while the remaining additives lacked piezoelectric properties. This trade-
off between piezoelectric properties and printability enabled the fabrication of functional
sensors through UV-based 3D printing.

Table 6. Effect of adding fillers on piezoelectric properties, measured at 100 Hz.

Sample, wt. % d33, pC/N εr g33, mVm/N

PVDF 35 7.34 ± 0.20 8.47 ± 0.01 97.85 ± 0.11
PVDF 35/BNNTs 2 12.20 ± 0.83 12.08 ± 0.02 114.06 ± 0.43
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Furthermore, dielectric constant measurements at various frequencies demonstrated a
42.62% increase with BNNT addition. However, a general decrease in the εr value from
12.08 (at 100 Hz) to 8.10 (at 1 MHz) was observed with frequency increment due to the drop
in the space charge polarization effect.

3.8. 3D Printed Sensor Output Response

The piezoelectric responses of 3D printed polymer and nanocomposite sensor samples,
each with dimensions of 5 mm × 5 mm × 1 mm, were investigated using a platen probe and
digital signal oscilloscope setup, as depicted in Figure 9a. The voltage output, indicating
average peak-to-peak voltage, exhibited large positive peaks corresponding to applied
stress at impact and negative values indicating damping at release, as shown in Figure 9b.
Voltage responses were analyzed at 20 Hz, 35 Hz, and 50 Hz with applied longitudinal
forces of 0.4 N, 0.5 N, and 0.6 N, as shown in Figure 9c.
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Table 7 summarizes the average voltage values, demonstrating the piezoelectric nature
of the developed sensor material. It is evident that incorporating BNNTs into the polymer
matrix showed an increase in sensor response of up to 50.13%, making it suitable for high
piezoelectric response sensors.

Table 7. Piezoelectric sensor voltage response measured at different frequencies.

Sample
Voltage, mV

20 Hz 35 Hz 50 Hz

PVDF 35 33.09 ± 4.43 38.58 ± 3.25 41.75 ± 4.93
PVDF 35/BNNTs 2 49.24 ± 5.17 54.23 ± 2.92 62.68 ± 6.36

4. Conclusions

This study underscores the transformative potential of AM technology in the realm of
polymer nanocomposite sensors aimed to enhance piezoelectric properties and response. By
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investigating the structural, thermal, rheological, mechanical, and piezoelectric characteris-
tics of novel sensor resin materials based on PVDF and a BNNT-coupled nanocomposite,
this research addresses a gap in the development of UV-based, 3D printable sensor devices.
Utilizing an LCD-based printer, the findings demonstrate not only the successful micro-
scale printability of the nanocomposite resin but also the enhancement of its piezoelectric
properties. The PVDF/BNNT nanocomposite yielded a maximum β fraction of 64.89%,
with 12.20 pC/N (d33), 114.06 mVm/N (g33), and 12.20 (εr). Additionally, the observed
increase in piezoelectric voltage response by up to 50.13% highlights the efficacy of this
approach in advancing micro-scaled sensor technology. The findings outlined in this work
will provide valuable insights into the utilization of polymer-based resins in sensors and
energy harvester fields. Future work will be dedicated to investigating the ferroelectric and
thermal behavior at different temperatures, suitable for developing an array of embedded
piezoelectric sensors in harsh environments.
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