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Abstract: Induction motors (IM) play a fundamental role in the industrial sector because they
are robust, efficient, and low-cost machines. Changes in the environment, installation errors, or
modifications to working conditions can generate faults in induction motors. The trend on IM fault
detection is focused on the design techniques and sensors capable of evaluating multiple faults
with various signals using non-invasive analysis. The methodology is based on processing electric
current signals by applying the short-time Fourier transform (STFT). Additionally, the computation
of the mean and standard deviation of infrared thermograms is proposed as main indicators. The
proposed system combines both parameters by means of Support Vector Machine and k-nearest-
neighbor classifiers. The development of the diagnostic system was done with digital hardware
implementations using a Xilinx PYNQ Z2 card that integrates an FPGA with a microprocessor, thus
taking advantage of the acquisition and processing of digital signals and images in hardware. The
proposed method has proved to be effective for the classification of healthy (HLT), misalignment
(MAMT), unbalance (UNB), damaged bearing (BDF), and broken rotor bar (BRB) faults with an
accuracy close to 99%.

Keywords: induction motors; FPGA sensor; machine learning; thermographic images; time domain;
time-frequency

1. Introduction

Induction motors are robust, efficient, low-cost machines that play a fundamental
role in industry nowadays. Continuous monitoring of these machines is of great interest
due to their widespread use; however, physical changes in the environment, installation
errors, or modifications in working conditions can generate faults in them [1]. Induction
motor faults can be classified as electrical and mechanical faults, the latter being the most
common, representing 55% of faults [2]. Of these, on the one hand, 41% of faults are
bearing faults, which can be caused by lack of lubrication, damaged or cracked bearings,
rotor overloads, bearing misalignment, vibrations, and motor overheating. On the other
hand, 28% are stator faults, 9% are rotor faults, and the remaining 22% take place in other
motor components [3]. Continuous monitoring and predictive maintenance are required
in the industrial sector in order to ensure availability, reliability, and efficiency. In this
regard, diverse non-destructive techniques have been reported in the literature to detect
induction motor faults by measuring and processing different physical magnitudes such
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as mechanical vibration, current, torque, acoustic noise, temperature, speed variation,
magnetic flux, and induced voltage [4]. Through the years, researchers have proposed
diverse techniques using one, or a combination of two or more, of these physical variables
to detect motor faults, as changes or patterns in these variables could point to abnormal
operation conditions in the motor, thus aiming to detect these faults.

Techniques for detecting motor faults have been reported in the state-of-the-art litera-
ture, classified as time domain, frequency domain, and machine learning techniques. For
instance, Nayana and Geethenjali [5] proposed a time domain analysis for detecting faults
in inner races, outer races, and rotating components of induction motors. Indicators such
as waveform length, slope sign change, simple signal integral, Wilson amplitude, mean
absolute value, and zero crossing were calculated from uniform segments of vibration
signals. The classification was performed using the Laplacian score (LS) combined with
linear discriminant analysis (LDA), obtaining a classification accuracy of 98.94% when ana-
lyzing ten bearing fault cases. In another example, Toma and Kim [6] used current signals
to calculate ten temporal statistical indicators. The classification was accomplished using
Support Vector Machine (SVM), Random Forest (RF), and a KNN (K-nearest-neighbor)
algorithms to identify three possible motor states: healthy state, bearing inner race fault,
and bearing outer race fault. To give another illustration, Liang et al. [7] proposed a new
deep learning-based approach using parallel convolutional neural networks (P-CNN) for
bearing fault identification. Two P-CNN branches were built in parallel to extract time
domain features of raw vibration signals. These features are fused as inputs in the final
classifier. This approach exhibited improved stability and robustness as training dataset
size and load conditions varied. Jiang et al. [8] proposed a motor fault diagnostic method
based on Feature Incremental Broad Learning (FIBL) and Singular Value Decomposition
(SVD). Fault features are extracted from two winding current signals and one acoustic raw
signal using particle swarm optimization-variational model decomposition, sample en-
tropy, and time domain statistical features to detect diverse fault states such as short-circuit,
mechanical imbalance, bent rotor, bearing raceway defects, and broken bearing balls. A
maximum test accuracy of 92.73% was obtained in this work.

Time-frequency domain analysis techniques have also been widely used to detect
motor faults in industry. In this regard, Asad et al. [9] performed a broken rotor bar fault
modeling and diagnosis by time-frequency analysis of the motor current. A transient cur-
rent signal was used to perform the analysis using the Discrete Wavelet Transform (DWT).
A low-pass Infinite Impulse Response (IIR) filter was used to improve the readability of the
time-frequency representations. This research confirmed that this time-frequency approach,
combined with machine learning techniques, can detect damaged bars. In another example,
Iglesias-Martinez et al. [10] proposed calculating two indicators to discriminate between
healthy and faulty rotor conditions in induction motors using stray flux signals. The first
one is based on the frequency domain and the bispectrum of the flux signal. A second
indicator based on the temporal domain is calculated using the autocovariance function.
The results showed that the proposed indicators can provide a criterion to discriminate
between healthy and faulty conditions. Similarly, Shao et al. [11] proposed a deep learning
approach based on CNNs to detect one healthy condition and five failure conditions. The
deep model used multiple sensor signals simultaneously. Explicitly speaking, vibration and
current signals were transformed into Time-Frequency Distribution (TFD) images and then
used in a CNN to learn discriminative representations from the images. Two different CNN
architectures were used, reaching values above 99% of test accuracy in both architectures.

Some authors have also used machine learning techniques using various data types
as inputs to detect motor faults. For example, Cao et al. [12] implemented the fault
analysis of an induction motor gearbox by studying the time domain vibration signals
with a convolutional neural network (CNN) in combination with a transfer learning (TL)
technique. The time domain vibration data related to gear fault patterns was converted
into graphical images, which serve as input for the CNN. This TL-based approach reduced
the training database size, using only ten signals per fault and obtaining a classification
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accuracy of 99.41%. In another example, Jing et al. [13] used a CNN to fetch indicators
from vibration signals to distinguish between seven operation conditions (six faults and
one healthy condition) of a planetary gearbox connected to a three-phase induction motor.
A comparison between the CNN approach against the Support Vector Machine (SVM)
and Random Forest (RF) approaches was performed, concluding that the classification
accuracy increased from 92% to 98% using a CNN. Shao et al. implemented a deep belief
network (DBN) to diagnose fault conditions in induction motors such as stator short-
circuit, unbalance, damaged bearings, broken rotor bar, rotor deflection, and healthy motor
using mechanical vibration signals. These signals were transformed using the fast Fourier
transform (FFT) to a frequency domain dataset. A 99.9% failure classification accuracy was
obtained using this frequency-based approach. In another instance, Toma et al. [14] used
genetic algorithms (GA) to analyze the current signals of an induction motor to get the
most significant time domain statistical indicators for detecting bearing faults. The selected
indicators were used in KNN, decision tree (DT), and RF classifiers, getting a 97%, 98%,
and 99% classification accuracy. This approach was applied in three study cases: healthy
state, inner race, and outer race fault.

Besides the traditional detection methods based on current or vibration signals, ther-
mography has also been used to detect diverse types of faults on induction motors. For
instance, Choudary et al. [15] designed a system for processing infrared thermograms
to detect bearing faults. Four failure cases were studied: healthy condition, inner race
defects, outer race defects, and lack of lubrication. Fault classification was achieved using
an SVM, obtaining an accuracy of 97.9%. In another example, Khanjani y Ezoji [16] used
infrared thermograms in a three-phase induction motor to detect electrical faults in the
stator windings. Automatic segmentation techniques were used to segment the region of
interest (ROI) associated with the motor. A CNN was used to transform the thermograms
into representative feature vectors. A KNN and an SVM classifier were used to discriminate
among six fault states in the motor. Mahami et al. [17] presented a method using the Speed
Up Robust Feature (SURF) approach to process infrared thermograms of an induction
motor. This approach was based on calculating invariant descriptors obtained from the
thermograms. These descriptors were organized within a Bag of Visual Words (BoVW) to
identify eight electrical faults using an extremely randomized tree (ERT). Although high
levels of detection accuracy are obtained when reviewing the methods and techniques
mentioned above, these works perform classification using an offline approach in order to
do so. This implies delayed insights about the motor state and limits or impedes real-time
decision-making in case of failure. Consequently, more advanced motor fault detection
systems capable of diagnosing different faults commonly appearing in induction motors
have emerged in recent years. Furthermore, online detection systems, which are gen-
erally implemented using diverse hardware platforms, would also be preferred as they
provide several advantages, including early fault detection, remote monitoring, condition-
based maintenance, and data analysis to identify trends and patterns in physical variables,
potentially saving time and resources in industry environments.

Though most of the works discussed in this section reported results with a good level
of classification and diagnosis accuracy in induction motors, the data processing stage was
performed in an offline fashion using a PC after the acquisition stage, which, as noted above,
implies delayed insights about the motor state and limits and impedes real-time decision-
making in case of failure. Consequently, most classification and diagnosis algorithms are
implemented in software. Therefore, a hardware-based implementation of such algorithms
is desirable because it allows the development of efficient embedded systems for automatic
online fault diagnosis in motors. As noted, fusing signal currents and infrared thermograms
have not been widely reported for fault diagnosis in motors. In this regard, some researchers
have implemented hardware-based online detection systems using field programmable gate
array (FPGA) platforms, with advantages such as parallel processing, real-time processing,
flexibility, customizability, and high performance. For example, Cureño-Osornio et al. [18]
implemented an FPGA-based platform to detect outer race faults in bearings online. The
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system was implemented using a stray magnetic flux sensor in combination with several
IP cores and an embedded processor. The FPGA modules were used to calculate statistical
feature values to indicate the bearing condition in the motor, whether a fault is present,
and the damage severity in the outer race. Valtierra-Rodriguez et al. [19] presented an
FPGA implementation for the complete ensemble empirical mode decomposition (CEEMD)
method. This FPGA-based system extracts features to detect broken rotor faults in induction
motors. Feature extraction and classification modules were also implemented within the
FPGA platform. Results showed a fault detection effectiveness of up to 96%. Karim
et al. [20] used an electrical signature analysis based on an FFT algorithm. The stator
current signature was used to perform online detection of bearing faults in single-phase
induction motors by implementing the frequency domain analysis in an FPGA. Although
these developments present an online fault detection approach, it has to be noted that these
hardware-based platforms can detect only one type of fault in motors.

This work contributes to developing an FPGA-microprocessor-based sensor platform
that runs a series of developed algorithms for the online detection of multiple faults in
electric motors. This system uses infrared thermograms and current signals to detect
five different failure states, which are healthy (HLT), misalignment (MAMT), unbalance
(UNB), damaged bearing (BDF), and broken bar (BRB). The methodology consisted of
processing current signals through time domain and time-frequency domain techniques
in combination with an analysis of thermographic images that was achieved through
diverse image processing techniques. This platform generates a series of indicators from
both signals, which are used as inputs of machine learning algorithms to perform fault
detection. The construction of this system was achieved through the development of
hardware intellectual property cores (IPcores) using a Xilinx PYNQ Z2 board that integrates
FPGA along with a microprocessor, thus taking advantage of the acquisition and processing
of signals and images in hardware. The IPcores are used to acquire and process the current
signals and the thermographic images in order to achieve the automatic diagnosis of
the failure state in motors through the implementation and application of supervised
classification algorithms.

2. Materials and Methods

This section describes the methodology employed to develop the sensor system for
online fault detection in induction motors. The sensor system was implemented into an
FPGA-microprocessor-based platform, making use of indicators obtained from current
signals and thermographic images of the motor. Figure 1 presents a block diagram of the
methodology of this work. The first stage of the methodology consisted of monitoring
temperature and current signals in the induction motor. In this regard, an infrared thermo-
gram acquisition and a current acquisition system were developed in order to monitor both
physical variables. Temperature and current data sets were obtained from two different
test benches. Acquired data were then stored in two databases using a MicroSD (Micro
Secure Digital from Kingston Technology Corporation, Fountain Valley, CA, USA) card
in order to be processed in the development board PYNQ Z2 (Xilinx, Inc., San Jose, CA,
USA) that integrates the FPGA along with a microprocessor. An FPGA-based platform
was selected for the implementation of this work due to its advantages over other kinds of
platforms found in the literature that classify faults in motors. First, an FPGA-based hard-
ware platform allows parallel computing, which is highly desirable to reduce computation
time. Furthermore, such platforms allow the development and implementation of propri-
etary hardware modules that can perform specific calculation tasks, which are susceptible
to being improved quickly and straightforwardly due to their high reconfigurability. In
addition to these factors, the portability of these modules is high, as the description and
implementation of the above modules can be performed so that they are not dependent on
the FPGA chip vendor. A series of image processing and current signal processing were
implemented in this board. Both data processing approaches aim to obtain temperature
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and current indicators of the motor state that can be analyzed using machine learning
algorithms to classify and diagnose the motor state.
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Figure 1. Block diagram of the methodology for detecting faults in induction motors through the
FPGA-microprocessor sensor system.

2.1. Data Processing

Data were acquired from experiments that were performed in two stages. The first
stage was exploratory and involved the analysis of thermographic images and current
signals from the experiments using different statistical and time-frequency algorithms
on a PC using MATLAB (Versión 2020a, The MathWorks, Inc., Natick, MA, USA). The
second stage consisted of organizing and implementing these processing algorithms in
an embedded hardware-based system using a Xilinx PYNQ Z2 board, which aimed to
analyze the thermographic images and the current signals from motors to achieve online
fault detection.

From Figure 1, it is essential to remark that two processing lines were implemented.
The first line processed the thermographic images, and the second one processed the
current signal from the motor. Figure 2 illustrates the stages of the first processing line.
In the first stage, a thermographic image where the temperature was represented using
grayscale was captured. After that, the median (µ) and the standard deviation (σ) of the
image were calculated within the logic unit of the FPGA from each captured image and
used as thermographic indicators, whose equations are shown in (1) and (2), respectively,

µ =
∑h

y=0 ∑w
x=0 I(x, y)

w ∗ h
(1)

σ =

√
∑h

y=0 ∑w
x=0(µ − I(x, y))2

w ∗ h
(2)

where I(x, y) is the pixel intensity at location (x, y), w is the image width, and h is the
image height. Simultaneously, a histogram was obtained from each image, which was used
to extract statistical indicators from the discrete distribution of intensity levels, as shown in
Table 1, where n represents the total number of data samples. In this same processing line,
the thermographic image was converted to pseudocolor to improve the visual perception
of the temperature difference in the image captured.
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Table 1. Equations for calculating the statistical indicators.

Statistical Indicator Equation

Mean x = ∑N
1 x(n)

N
(3)

Maximum value x̂ = max(x) (4)

Root mean square (RMS) RMS =

√
1
n ·

n
∑

k=1
(xk)

2 (5)

SMR SMR =

(
1
n ·

n
∑

k=1

√
|xk|

)2
(6)

Standard deviation σ =

√
1
n ·

n
∑

k=1

√
(xk − x)2 (7)

Variance σ2 = 1
n ·

n
∑

k=1

√
(xk − x)2 (8)

RMS shape factor SFRMS = RMS
1
n ·∑

n
k=1|xk |

(9)

SMR shape factor SFSRM = SRM
1
n ·∑

n
k=1|xk |

(10)

Crest factor CF = x
RMS (11)

Latitude factor LF = x̂
SRM (12)

Impulse factor IF = x̂
1
n ·∑

n
k=1|xk |

(13)

Skewness Sk = ∑n
k=1(xk−x)3

σ3
(14)

Kurtosis K = ∑n
k=1(xk−x)4

σ4
(15)

Fifth moment 5thM = ∑n
k=1(xk−x)5

σ5
(16)

Sixth moment 6thM = ∑n
k=1(xk−x)6

σ6
(17)

Figure 3 shows the stages of the second processing line, which was performed using
statistical, frequency, and time-frequency techniques. In the first stage, the current signal
was normalized to represent the current in the power line of the motor. After that, a
statistical analysis was applied to the normalized current signal using Equations (3)–(17).
The frequency analysis was performed using the fast Fourier transform (FFT), and the
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time-frequency analysis is performed using the short-time Fourier transform (STFT). The
FFT and STFT were implemented within the logic unit of the FPGA.
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2.1.1. Implementation of Algorithms in FPGA

Figure 4 illustrates the process used to implement IPcores oriented to execute the
algorithms and calculations required to be performed within the FPGA. In the first stage,
the algorithm was designed. For each IPcore, a hardware description was performed using
a High-Level Synthesis (HLS) language. Later, a Register Transfer Level (RTL) abstraction
was generated for each description to be implemented on the FPGA. Subsequently, a
series of files describing the architecture of each IPcore was imported into Vivado software
(version 2022.2, Xilinx, Inc., San Jose, CA, USA) to specify how the described IPcore had to
be connected to the board peripherals. Once this connection was set, a bit file was generated
to configure the logic gates within the FPGA and implement the IPcores there.
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2.1.2. Thermographic-Images Processing IPcore

The first algorithm implemented in the FPGA aimed to calculate statistical indices
for the thermographic image. The calculated statistical indicators of the thermographic
image were the mean (1) and the standard deviation (2). The algorithm for calculating
these indicators on the PYNQ Z2 board was implemented following the diagram shown
in Figure 5, where the blocks in pink were executed on the board microprocessor, and the
blocks in purple were executed on the FPGA. In the first step, thermographic images of the
induction motor acquired during the experiments were saved to a MicroSD memory that
had to be placed on the PYNQ Z2 card. The intensity values of the thermographic images
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were reassigned to be in a 0–255 range for storing the information in 8-bit data packets and
saved in a jpeg format. After this, a space was allocated in a DRAM memory integrated
within the board to store the image data, and a copy of the image data was made in the
allocated space. The DRAM memory served as the communication interface between the
microprocessor and the FPGA of the development board.
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values of a thermographic image in the PYNQ Z2 board.

The peripheral block diagram for implementing this IPcore and its interconnection
with the ZYNQ main chip is shown in Figure 6. This block diagram shows the intercon-
nection topology used to link the MeanStd IPcore located in the lower right corner of the
diagram with the ZYNQ chip located at the top left of the diagram. The AXI protocol
was used in order to implement this interconnection. This protocol defines the IP block
interface using a master–slave scheme. Two interconnected blocks (AXI Interconnect blocks
at the top right and bottom left) were required to link the MeanStd IPcore with the ZYNQ
chip which is within the PYNQ Z2 board. AXI ports were defined through three master
interfaces, represented by the three lines connecting the MeanStd IPcore with the AXI
Interconnect block at the bottom left of Figure 6. One of these interfaces was dedicated
to reading the image data from the card DRAM memory. The other two interfaces were
dedicated to storing the calculation results from the statistical indicators.
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2.1.3. Current Signal Processing IPcore

The algorithm implemented in the FPGA for current signal processing was the fast
Fourier transform (FFT). Two FFT IPcores were designed; one focused on the steady-state
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frequency analysis of the current signal, and the other focused on the time-frequency
analysis of the current signal. In the case of the frequency analysis, an IPcore was de-
signed to calculate the FFT with a fixed size of NFFT = 216 = 65536. The other IPcore
focused on the STFT calculation. For the design of this IPcore, a fixed size was determined
NFFT = 210 = 1024. Figure 7 illustrates the STFT calculation of a current signal with the
FFT IPcore in the FPGA logic unit of the PYNQ Z2 board. The first step consisted of
reading the current signal from the MicroSD memory. Then, the signal was normalized in
a Python-based framework that operated within the microprocessor to represent the real
magnitude of the measured current. After the signal was read, the signal had to be divided
into a certain number of windows, which were calculated using Equation (18) in order to
perform a short-time analysis

NW =

⌈
k − NFFT

(1 − Ov)NFFT

⌉
(18)

where k is the initial length of the signal, NFFT is the FFT size, and Ov is the superposition
value of the window per unit. After determining the number of windows into which the
signal was to be divided, the clipped window of the signal was multiplied with a Hamming
window of size equal to NFFT . Later, the normalized and preprocessed current signal was
copied to an allocated space in the DRAM memory of the board, from where the Direct
Memory Access (DMA) module of the IPcore could access the signal values. The IPcore
calculated the FFT of each of the NW windows of the current signal. Finally, a matrix
containing the FFT of each analyzed current signal window was generated.
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2.2. Experimental Setup
2.2.1. Test Bench with WEG Motor

The first test bench used in the experiments shown in Figure 8 was located in the
laboratory of electrical machinery of the Faculty of Engineering at Universidad Autónoma
de Querétaro, San Juan del Río Campus. A WEG three-phase induction motor model 3F
A.E. 00136AP3E48TCT (Jaragua do Sul, Brazil) was used in this test bench; specifications
of this motor are shown in Table 2. The motor was connected to an alternator that served
as a mechanical load. The connection between the motor and the alternator was made by
a set of pulleys and a plastic power transmission belt. The experiments on this test bed
were performed with a direct start at an operating frequency of 60 Hz. To measure the
stable temperature of the motor, each test had a duration of 90 min. The thermographic
image acquisition system shown in Figure 9 captured an image of the motor every 10 s,
thus obtaining a database of 540 thermographic captures per study case. Additionally, the
acquisition of current signals from the induction motor was performed. The sampling
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frequency of the current signal acquisition was 4 kHz. For each study case, five trials were
conducted, each one with a duration of 30 s. The first 10 s of the signal corresponded to
the motor start-up stage, and the remaining 20 s corresponded to the steady state of the
current signal. Five cases of failure in the induction motor or the components connected
to it were studied in this test bench: healthy, bearing defect, broken bars, unbalance, and
misalignment. The study cases are described in Table 3; each has a label associated with it
for an abbreviated reference to each failure case.
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Table 2. WEG motor specifications.

Parameter Value Units

Supply voltage 208–230/460 V
Nominal speed (@60 Hz) 3355 rpm

Power 746 W
Nominal efficiency 75.5 %

Nominal current (@460 V/60 Hz) 1.4 A
Power factor 0.87

Weight 9 kg
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Table 3. Study cases for WEG induction motor.

Study Case Label Description

Healthy HLT Healthy motor and kinematic chain
Bearing defect BDF Motor bearing defect

Broken bars BRB Broken bars in the motor rotor
Unbalance UNB Mechanical unbalance in the motor axis

Misalignment MAMT Misalignment between the motor and the load
Gearbox wear GRF Wear in the gearbox connected to the motor

Different severities were considered for two of the case studies shown in Table 3,
namely, bearing failure and broken bar failure. Tests were performed for the bearing failure
case with five severities of damage in the outer race of metallic bearings. The severities
were induced by drilling on the outer race with the following diameters: 1 mm, 2 mm,
3 mm, 4 mm, and 5 mm. Five SKF model 6203 metallic bearings were used. In the case of
the broken bar study, three severities were considered during the experiments: half-broken
bar, one broken bar, and two broken bars. For the gearbox failure (GRF) case, a gearbox was
connected to the WEG induction motor instead of the belt pulley connection. Four gearbox
wear severities were considered: healthy, 25% wear, 50% wear, and 75% wear. Figure 9
shows the induced wear on the gears and the configuration of the test rig.

2.2.2. Induction Motor 2 Testbench

The second test bench used for experiments in this work was A 1 HP three-phase
induction motor, whose specifications are shown in Table 4. The induction motor 2 (IM2)
was connected to a DC motor, as shown in Figure 10. A rheostat connected to the DC
motor stator was used to control the load level of the induction motor. This rheostat made
it possible to perform experiments under four different load levels: nominal load (100%),
load at 75% of nominal load, load at 50% of nominal load, and no load (0%). The tests
were performed in direct-start at an operating frequency of 50 Hz and a supply voltage
of 220 V. Six cases of induction motor mounting failure were studied in this test bench:
healthy, unbalance (with two severities), horizontal misalignment, vertical misalignment,
and bad mounting due to a loose screw. Table 5 describes the case studies and lists the
labels to refer to them. Since the IM used in these tests did not have a cooling system, the
duration of the tests for the acquisition of thermographic images was limited to 5.5 min,
with an idle time of 3 min between tests. The sampling rate of the thermographic camera
in these experiments was nine frames per second (fps). For the acquisition of the electric
current signals, 30 s trials were performed; the first 10 s corresponded to the motor start-up,
and the remaining 20 s corresponded to the steady state of the current. The signals were
acquired with a sampling frequency of 10 kHz.

Table 4. Specifications of the IM2.

Parameter Value Units

Supply voltage 220/460 V
Nominal speed (@60 Hz) 1140 rpm

Power 746 W
Nominal current (@460 V/60 Hz) 1.8 A
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Figure 10. Test bench with IM2 connected to a DC motor (load).

Table 5. Study cases for IM2.

Study Case Label Description

Healthy HLT Healthy induction motor
Unbalance UNB Unbalance in the motor rotor

Horizontal misalignment HML Motor misalignment and load on the
same horizontal plane

Vertical misalignment VML Height gap between motor and load

Loose bolt LB Loose bolt in the bar that fixed the
motor to the test bench

2.3. Data-Acquisition Systems
2.3.1. Acquisition of Thermographic Images

The acquisition of thermographic images was achieved with a system that integrated
a FLIR Lepton 3.5 sensor (Teledyne FLIR LLC, Wilsonville, OR, USA) with a Raspberry
Pi 4 computer board (Raspberry Pi Foundation, Cambridge, England, UK). This system
allowed the acquisition and storage of infrared thermograms with a variable sampling
rate. The limiting sampling rate was nine fps, given the technical limitations of the infrared
sensor. Figure 11 shows the infrared thermogram acquisition system on the test bench. On
the other hand, Table 6 shows the technical specifications of the FLIR Lepton 3.5 infrared
sensor. The thermographic image stored the temperature values of the scene according to
Equation (19)

V(x, y) = 100 ∗ TK(x, y) (19)

Table 6. FLIR Lepton 3.5 infrared sensor specifications.

Specification Detail

Output matrix 160 × 120
Infrared range 8 µm to 15 µm

Emissivity 95%
Thermal sensitivity 50 mK
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2.3.2. Current Signal Acquisition

In the experiments carried out in the first test bench with the WEG motor, the motor
current signals were acquired using the data acquisition system (DAS) shown in Figure 12.
This DAS (Universidad Autonoma de Queretaro, Queretaro, Mexico) was composed of
an FPGA controlling an ADC ADS7841 from Texas Instruments (Dallas, TX, USA), one
connector to input the current clamp signals, and one connector which enabled the sending
of the captured data to a PC for further analysis. The ADC had a 12-bit resolution. Each
sensor received the signal from one of the three-phase motor supply lines; the fourth sensor
measured the current signal on the grounding line. The sampling frequency of the DAS
was set at Fs = 4000 Hz. In the experiments with the second test bench based on the IM2,
the current signal of only one of the three-phase power supply lines was acquired for the
induction motor. The data acquisition was performed with a Yokogawa digital oscilloscope
(Tokyo, Japan) and a current clamp, shown in Figure 13. The current clamp had a 10 kHz
bandwidth, and could be measured in a range from 0.5 A to 200 A. The sampling frequency
for the current signal of the IM2 was set at Fs = 10,000 Hz.
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3. Results and Discussion

This section aims to address the results obtained in the implementation of the algo-
rithms in the FPGA logic unit of the PYNQ Z2 development board, a discussion of the
acquired data, the results obtained by processing the acquired data, and the results obtained
in the application of machine learning algorithms for data classification.

3.1. Algorithm Implementation on the FPGA

Table 7 shows the resource utilization of the PYNQ Z2 FPGA unit required by the al-
gorithm for calculating statistical indicators (mean and standard deviation). The hardware
description for these statistical indicators reduced the computational time needed to com-
plete the assigned tasks. This time reduction was observed by comparing the performance
when running the algorithm on the PYNQ Z2 microprocessor and the performance when
running the algorithm on the FPGA unit in conjunction with the PYNQ Z2 microproces-
sor. The indicator calculation algorithm was tested with a database of 900 thermographic
images, which were processed in 1.4 s by the microprocessor and 346 ms by the IPcore
implemented in the FPGA unit. On the other hand, Table 8 shows the resource utilization
in the FPGA logic unit required by the IPcore for the FFT calculation of a discrete signal.
Significantly, implementing the IPcore in the FPGA reduced the computation time com-
pared with the ARM microprocessor integrated into the development board. Using the
NumPy Python library implementation, the time taken by the microprocessor to calculate
the FFT was 385 µs. On the other hand, the IPcore implementation on the FPGA calculated
the FFT in 79.6 µs.

Table 7. Resource consumption per IPcore of thermal indicators.

Resource Utilization (%)

LUTs 13.65
Registers 8.85

Slices 11.38
Logical LUT 12.63

Memory LUT 3.14
RAM block 3.57

DSPs 3.18
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Table 8. Resource consumption per FFT IPcore.

Resource Utilization (%)

LUTs 12.62
Registers 9.38

Slices 10.43
Logical LUT 8.86

Memory LUT 4.81
RAM block 6.07

DSPs 5.45

3.2. Data Acquisition

The acquisition of the infrared thermograms of the motor and the preprocessing to
visualize the information in the form of a grayscale image was performed satisfactorily,
as shown in Figure 14. These images are thermographic representations of the studied
motors, associating different levels of gray to temperature values. On the one hand, hotter
regions are represented with tones closer to white; and on the other hand, colder regions
are represented with gray tones closer to black. Therefore, white tones represent the highest
temperature within the image, and black tones represent the lowest temperature. Figure 14a
shows the thermographic representation of the WEG motor side during the healthy machine
case study tests. In turn, Figure 14b shows the thermographic representation of the IM2
side during the healthy condition tests.
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Four current signals were acquired from the WEG motor during the tests with a
sampling frequency Fs = 4000 Hz. Figure 15 shows the time evolution of the four acquired
signals. Signals C1, C2, and C3 correspond to the current measured on the three-phase
motor supply lines. Signal C4 corresponds to the current measured in the grounding line.
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3.3. Data Processing
3.3.1. Analysis of Thermographic Images

The thermographic images of the induction motors were analyzed by calculating two
statistical indicators of the image: the mean and the standard deviation. The histogram
of the thermographic images was also obtained, and the statistical indicators from Equa-
tions (3)–(17) were calculated. Additionally, a pseudocolor palette was applied to the
thermographic images.

WEG Motor

Figure 16 shows the application of the pseudocolor palette to the infrared thermo-
graphic image of the WEG induction motor in a healthy condition; thanks to the pseudo-
color palette, the highest temperature region in the motor can be qualitatively appreciated.
Figure 17 shows the pseudocolor application to capture the WEG motor connected to the
gearbox in a healthy condition. In these graphic representations shown in Figures 16 and 17,
which aim to improve the visualization of results obtained from thermographic images,
a pseudocolor palette was applied to the image to represent the highest temperatures in
reddish tones. In contrast, the lowest temperatures are graphically represented in blueish
tones. For instance, the gearbox of the WEG motor shown in Figure 17 presents the highest
temperatures in this thermographic image with applied pseudocolor.
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Likewise, the IPcore was used to calculate statistical indicators for the quantitative
analysis of the thermographic captures. A database of quantitative indicators of the images
was obtained by calculating the mean and standard deviation of the thermographic images.
These indicators were plotted to observe their behavior in five tests with different failure
states. Figure 18a shows the evolution in the steady state of the mean in the thermographic
image and Figure 18b shows the steady state evolution of the standard deviation in the
thermographic image. Each failure is associated with a different color within these figures.
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For instance, Figure 18a shows that the BDF and BRB indicators of the mean are almost
overlapped in this plot. Furthermore, as observed in this plot, it seems that two groups
of failures can be inferred from these results. The first consisted of the BDF and MAMT
failures, and the second one was the HLT, UNB and, BRB failures that show overlap within
some periods of time. On the other hand, two groups of failures can be observed from
Figure 18b; the first consists of indicators corresponding to HLT and MAMT failures, which
are in the lowest part of the plot, presenting little overlap. The second group consisted of
the standard deviation indicators for the UNB, BDF, and BRB failures at the top of the plot.
It can also be observed that the evolution of BDF and BRB indicators overlap almost all the
time (x-axis).
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Additionally, the two variables (median and standard deviation) were plotted with
respect to each other from which it was observed that the indicators were grouped according
to the failure state to which they belonged (Figure 19). The failure states analyzed were
healthy (HLT), misalignment (MAMT), unbalance (UNB), damaged bearing (BDF), and a
broken bar (BRB). This plot clearly shows five differentiable groups of statistical indicators
plotted using different colors, each associated with a failure. However, although clear
separation is noticeable, little overlap is present between the UNB and the BRB failures.
Additionally, this plot shows the relevance of using two variables within the scope of this
work, as the evolution of single statistical indicators such as mean and standard deviation
was insufficient to distinguish each failure case clearly.
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The data processing of the thermographic images of the WEG motor in the FPGA unit
of the Xilinx PYNQ Z2 board was validated by comparing the results obtained with the
analysis of the mean and standard deviation of the thermographic images in MATLAB.
Figure 20 shows the statistical indicators grouped according to the motor failure case. It
can be observed that the results in Figures 19 and 20 are the same, which indicates that the
analysis performed on the PYNQ Z2 board was correct.
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IM2

Figure 21 shows the application of the pseudocolor palette to the infrared thermo-
graphic image of the IM2 in a healthy condition; thanks to the pseudocolor palette, the
highest temperature region in the motor can be qualitatively appreciated in reddish tones.
In this case, a vertical reddish band in the central region of the motor indicates the region
with the highest temperatures. The IPcore implemented in the FPGA was used to calculate
the two statistics of the set of thermographic images acquired, thus obtaining a database of
quantitative indicators of the images. Figure 22a shows the evolution of the mean of the
thermographic images, while Figure 22b shows the evolution of the standard deviation of
the thermographic images. In the plot of Figure 22a corresponding to the mean indicator,
some interesting aspects can be appreciated. In the first place, a better distinction can
be made between the different failures in the case of motor IM2 in comparison with the
equivalent result of the WEG motor using the evolution of this statistical indicator over
time, as only two failures out of six overlap here. However, that is not the case for the
evolution in the standard deviation over time shown in Figure 22b, as more overlap is
present. In fact, three groups of failures can be observed in the plot, with very high overlap
in the case of UNB0 and LB. Finally, Figure 23 shows the data grouping obtained using the
two statistical indicators as a reference. The case studies shown are healthy motor (HLT),
horizontal misalignment (HML), loose bolt (LB), minor unbalance (UNB0), major unbalance
(UNB1), and vertical misalignment (VML). As observed in this plot, two groups of three
failures are formed. The first group, located in the lower-left part of the plot, corresponds to
the HLT, UNB0, and LB failure indicators, and the second group is located in the top-right
part of the plot, containing the VML, UNB1, and HML failure indicators. It is interesting
to pinpoint that the second failure group corresponds to the mechanical connection of the
motor with the load.
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3.3.2. Current Analysis

The analysis of the current signals of the motors was performed with three approaches:
first, a temporal statistical analysis of the acquired signals was performed with the indica-
tors of Equations (3)–(17); second, the frequency analysis of the signals was performed with
the FFT; and finally, time-frequency spectrograms were obtained with the STFT technique.

WEG Motor

In the frequency analysis, the fast Fourier transform (FFT) of the motor current signals
was calculated. Figure 24 shows the graphical representation of the results obtained after
calculating the FFT of the signals for different fault cases. The time-frequency analysis
performed in the transient (10 s duration) and stationary (20 s duration) regime in the
current signals of the WEG motor is observed in the spectrograms shown in Figure 25.
The spectrograms shown in Figure 25 were calculated by taking a sampling frequency
Fs = 4000 Hz, a window size of NFFT = 1024 samples, and a window overlap of 75%.
These spectrograms were generated on the PYNQ Z2 development board with the IPcore
implemented for FFT calculation.
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3.4. Failure Status Classification

Different classification models were trained with machine learning algorithms in
MATLAB software, and the mean and standard deviation data of the thermographic
images were used as indicators of the machine failure state. For training the algorithm, a
total of 900 thermograms are extracted from the measurement in the experimental tests (180
(samples) by 5 (machine states)). From the 180 thermograms obtained for each machine
state (classification goal), 126 are used for the training of the classification algorithm and
54 for validation. One of the trained models is a Weighted K-Nearest Neighbor (KNN)
classifier with k = 10, considering the Euclidean distance between points, and using the
inverse of the square of the distance for weighing. The training result gave a 99.4% accuracy
in predicting the failure cases. The training was validated by performing a 5-iteration
cross-validation, obtaining the confusion matrix in Table 9. Another machine learning
classifier model trained with this data set was a Linear Support Vector Machine model. The
classifier model obtained from the training gave an accuracy of 99.0% in predicting the five
failure cases. Table 10 contains the confusion matrix of the SVM classifier model.
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Table 9. Confusion matrix of the KNN classifier with thermal indicators from WEG motor.

Predicted

HLT MAMT UNB BDF BRB

True

HLT 100%
MAMT 100%

UNB 97.8% 2.2%
BDF 100%
BRB 0.6% 100%

Table 10. Confusion matrix of the SVM classifier with thermal indicators from WEG motor.

Predicted

HLT MAMT UNB BDF BRB

True

HLT 100%
MAMT 100%

UNB 98.9% 1.1%
BDF 100%
BRB 3.9% 96.1%

As illustrated in Figures 24 and 25, the FFT and STFT computed using the developed
IPcore demonstrates robust and reliable results. This figure specifically highlights how, in
instances of mechanical misalignment, there is a noticeable amplification of fault-related
frequency components. These components correspond to the frequency FMAMT = Fs ± k ·
Fr, where Fs represents the power supply frequency, Fr is the rotor rotational frequency,
and k is an integer. This amplification is critical for the early detection of mechanical faults,
ensuring timely maintenance and system integrity. The clarity and precision of the spectral
lines within the STFT visualization confirm the effectiveness of the IPcore in accurately
identifying frequency variations that signal potential mechanical issues.

Additionally, Table 11 compares the most recent studies reported in the literature
concerning the detection of electromechanical faults in induction motors. This comparison
encompasses each methodology’s main techniques, the analyzed physical quantities, and
the accuracy rates achieved. As can be observed in the table, many of the reported studies
rely on a single quantity for classification purposes, which tends to limit the range of
faults that can be classified. It is noteworthy, however, that as the number of physical
quantities analyzed increases—whether it be stray flux, current, vibrations, or acoustic
signals—the overall efficiency of the method tends to improve, and the variety of faults
that can be accurately classified also expands. A significant insight revealed by the table is
that the proposed methodology can classify a wide array of faults using just a single, non-
invasive physical quantity, namely infrared thermography. Furthermore, most reviewed
methodologies employ complex algorithms that typically require substantial computational
resources regarding memory and processing power to be implemented on an electronic
device capable of generating continuous automatic diagnostics. Herein lies a significant
opportunity for the proposed methodology, given that the methods it uses are straightfor-
ward to implement and require low computational resources; therefore, this makes it an
excellent alternative for implementation on programmable logic devices such as FPGAs, as
this paper has shown. This characteristic enables the development of devices capable of
continuously generating timely, non-invasive diagnostics.
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Table 11. Comparison chart of the proposed methodology against the state of the art in related
literature for IM fault detection.

Reference Proposed
Indicators

Classification
Method Analyzed Faults Acquired Signals Accuracy Rate

Nayana and
Geethenjali [5]

Statistical and
non-statistical
indicators.

Laplacian score
(LS) and linear
discriminant
analysis (LDA)

Bearing faults Vibration 98.94%

Toma and Kim [6]
Temporal
statistical
indicators

SVM, RF, and a
KNN Bering faults Current 98%

Liang et al. [7]
Time domain and
time-frequency
features

Parallel
convolutional
neural networks

Bearing faults Vibration 99.6%

Jiang et al. [8]

Particle swarm
optimization,
sample entropy,
and time domain
statistical features

Feature
Incremental Broad
Learning (FIBL)

Short-circuit,
mechanical
imbalance, bent
rotor, bearing
faults

Current and
acoustic 92.73%

Shao et al. [11] Time-frequency
distribution CNN

Rotor faults,
bearing faults,
shorted turns.

Vibration and
current 99.8%

Cao et al. [12] Pre-trained deep
neural network

CNN and transfer
learning

Gearbox-related
faults Vibration 99.41%

Jing et al. [13] Frequency domain
features CNN Gearbox-related

faults Vibration 98%

Camarena et al.
[21]

Frequency domain
features

Deep belief
network

Stator short-circuit,
unbalance, BRB,
bearing faults

Vibration 99.9%

Ince et al. [22]
Time domain
statistical
indicators

GA, KNN, and
decision tree Bearing faults Current 99%

Choudary
et al. [15]

Two-dimensional
discrete wavelet
transform

SVM Bearing faults Infrared
thermography 97.9%

Khanjani y
Ezoji [16]

Automatic
segmentation,
CNN

KNN and SVM Stator short-circuit Infrared
thermography 100%

Mahami et al. [17] Bag-of-visual-
word

Extremely
randomized tree Stator faults Infrared

thermography 100%

Proposed method
Mean and
standard deviation
thermal indicators

SVM and KNN
MAMT, UNB,
Bearing-related,
BRB

Infrared
thermography 99.0%

4. Conclusions

This work reports the development of an FPGA-microprocessor-based sensor to detect
faults in induction motors. This development was achieved by implementing statistical
and time-frequency analysis techniques as hardware IPcores that work in the logic unit
of an FPGA. These specific-purpose IPcores were used together with some algorithms
implemented within an ARM microprocessor within the same embedded system. The
IPcore version of the algorithms was executed significantly faster than the same algorithms
executed in the microprocessor of the embedded system. Furthermore, the usage of compu-
tational resources within the FPGA was low (15% per IPcore). The proposed methodology
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for processing thermographic images acquired with a low-cost infrared sensor is effective
for acquiring significant statistical indicators for identifying different fault cases, with an ac-
curacy close to 99% with machine learning classifiers such as KNN and SVM. In this regard,
the proposed algorithms and statistical indicators of this work allowed for an improvement
in the distinction and correct classification of the different failures in induction motors when
combining multiple statistical indicators instead of a single one. Additionally, the analysis
of both thermographic images and current signals provides valuable insights into the
condition of the motors under study. By examining the statistical indicators derived from
thermographic images, such as the mean and standard deviation, and utilizing pseudocolor
palettes for enhanced visualization, distinct patterns emerge corresponding to various
failure states. For instance, in the case of the WEG motor, the evolution of these indicators
over time reveals discernible groupings associated with specific faults, demonstrating the
effectiveness of this approach in fault diagnosis. On the other hand, the frequency analysis
of current signals through techniques like the fast Fourier transform (FFT) and the short-
time Fourier transform (STFT) provides additional diagnostic capabilities. Notably, the
STFT, computed using the developed IPcore, exhibits robustness in identifying fault-related
frequency components, particularly in cases of mechanical misalignment.

Additionally, motor current signals were processed by time-frequency techniques that
generated bidimensional spectrograms that show the evolution of the signal frequency
components with time. The implemented algorithms were used to perform experiments
in two different test benches, processing both infrared thermographic images and current
signals from both motors. However, it is relevant to point out that, given the differences in
the acquired signals, the implementation of such algorithms in the FPGA is robust enough
to deliver satisfactory and accurate results compared to software-based implementations
such as MATLAB. As this system was implemented in an FPGA-based platform, future
work might reconfigure the system to consider more fault cases in induction motors
or to implement more machine learning techniques that could use the time-frequency
spectrograms of current signals, such as CNNs.
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