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Abstract: In cardiac cine imaging, acquiring high-quality data is challenging and time-consuming
due to the artifacts generated by the heart’s continuous movement. Volumetric, fully isotropic data
acquisition with high temporal resolution is, to date, intractable due to MR physics constraints. To
assess whole-heart movement under minimal acquisition time, we propose a deep learning model
that reconstructs the volumetric shape of multiple cardiac chambers from a limited number of input
slices while simultaneously optimizing the slice acquisition orientation for this task. We mimic
the current clinical protocols for cardiac imaging and compare the shape reconstruction quality of
standard clinical views and optimized views. In our experiments, we show that the jointly trained
model achieves accurate high-resolution multi-chamber shape reconstruction with errors of <13 mm
HD95 and Dice scores of >80 %, indicating its effectiveness in both simulated cardiac cine MRI and
clinical cardiac MRI with a wide range of pathological shape variations.

Keywords: cardiac magnetic resonance imaging; shape reconstruction; view optimization; deep
learning

1. Introduction

Cardiac magnetic resonance (CMR) imaging typically follows a specific routine. Firstly,
a low-resolution scout scan is acquired to localize the heart coarsely. Secondly, the scout
scan is examined for manual imaging view-plane placement following dedicated protocol
guidelines [1]. The scanner is then adjusted to capture the imaging planes of interest.
Lastly, the acquired images are examined by clinical experts or automated post-processing
software.

1.1. MR Physics Constraints and Timing

Examining images relies on sufficient image contrast, i.e., the signal-to-noise ratio
(SNR). The SNR of an acquired image slice is constrained by the physical principle of MR
as derived by Macovsci [2]:

SNR ∝ f (Obj)ωoVh
√

T (1)

where f (Obj) is the influence of the examined object, ω0 is the resonant frequency, Vh is
the voxel volume, and T is the acquisition time. Consequently, the SNR is affected by the
imaging time and the spatiotemporal resolution of a scan. In CMR, the SNR is negatively
impacted by cardiac and respiratory motion artifacts that increase with longer acquisition
times [1]. Therefore, the acquisition time T acts as a lower and upper bound for the quality
of the acquired cardiac images. Various sequences have thus been developed to improve
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the SNR and reduce the acquisition time. The SNR can be increased by combining images of
the same cardiac phase when the acquisition is synchronized over multiple heart cycles [1].
This approach often requires breath-holding strategies that burden the patients [3]. In
parallel imaging, the acquisition time is shortened by using multiple receiver coils that are
read out in parallel [3–5]. From another point of view, T is proportional to the number of
acquired slices Nz and the number of acquired K-space lines Ny, which can be captured at
the rate of the repetition time TR [6]:

T ∝ NzNyTR (2)

Equation (2) states that acquiring more slices at a higher resolution (more K-space
lines) takes longer. This has been addressed with compressed sensing where only a fraction
of K-space lines are captured, accelerating the acquisition by a constant factor at the cost
of introducing artifacts [7]. Nevertheless, applying these techniques for high temporal
resolution cine imaging may be insufficient and remains a challenge [8].

In this study, we will investigate a reduced number of imaging slices Nz for faster
acquisition without necessarily affecting the in-plane resolution or SNR that could addition-
ally be combined with parallel imaging and/or compressed sensing. This reduction is only
applicable under the regard that those sparsely acquired slices are sufficiently descriptive
for clinical examination. In the cardiac domain, such a sparse stack of slices is frequently ac-
quired along the heart’s short axis to examine the left-ventricular properties that have been
proven to contain valuable information for clinical experts [9]. Descriptive imaging planes
are also crucial for automated deep learning techniques, which often achieve impressive
results but ultimately rely on the data input.

We hypothesize that computer-assisted techniques can benefit from tailoring the slice
selection to the automated post-processing task (see Figure 1). For demonstration, we build
upon a recent work that explored the challenging task of reconstructing the full cardiac
shape from a set of 2D echo views [10]. For MRI, we constrain the acquisition’s field of
view to two sparse slices and learn the optimal slice view orientation for accurate shape
reconstruction based on coarse localizer information. The definition and selection of optimal
imaging planes [1,9,11] for this task may be different from human intuition, especially when
deep learning methods are involved. Despite our study being linked to MRI acquisition
and (shape) reconstruction, our method is unrelated to image reconstruction from K-space
signals. It operates in the image domain after applying the inverse Fourier transform.

Cardiac view selection 
according to standardized 

protocols (manually)

Expert analysis

Deep learning-
based analysis

Are selected views optimal for 
deep learning tasks as well?

High-resolution shape 
reconstruction

High-resolution 3D cine 
acquisition usually intractable 

(MR physics constraints)

Optimize views for optimal 
performance of target 

reconstruction task

Coarse localizer 
acquisition 

Coarse localizer 
acquisition 

Our approach

Current practice and research question

Figure 1. Current practice and research question (top): The performance of deep learning-based
post-processing methods is restricted by the input data quality, and standardized clinical protocols
may be sub-optimal for automated downstream tasks. Our approach and problem setup (bottom):



Sensors 2024, 24, 2296 3 of 13

Examining cardiac function in high spatial and temporal resolution is desirable, but MR physics
constrains the quality of volumetric MR cine acquisitions. We aim to determine optimal descriptive
imaging planes for volumetric shape reconstruction from only two view planes.

1.2. Shape Reconstruction and Imaging Plane Optimization

Volumetric shape reconstruction has been previously explored for various medical
imaging modality applications. In ultrasound imaging, there is an interest in reconstructing
3D volumes from 2D slice acquisitions of free-hand sweeps. In [12], this was solved by an
LSTM model that combined sequential 2D imaging features with accelerometer parameters.
Jokeit et al. [13] demonstrated that 3D bone shapes could be reconstructed from standard
planar X-ray radiographs using a CycleGAN network. In a similar work, bone structures
were reconstructed from sparse view segmentations using neural shape representations [14].
In the cardiac domain, left ventricle shapes were successfully reconstructed from sparse
short-axis and long-axis image stacks using deformable mesh priors [15]. Stojanovsi et
al. [10] performed reconstruction of the full cardiac shape from multiple slices. To overcome
the lack of paired slice and 3D target data, the authors simulated US intensity images for
slices that were extracted from a 3D ground-truth mesh. Their approach uses an efficient
variant of the Pix2Vox model presented in [16] and will be considered for performance
comparison in Section 2.6.

Optimal imaging planes have been considered in [17], where an orthopedic scanning
guide for diseases in 3D ultrasound applications was developed. The method relies on a two-
stream classification pipeline to predict the probe movement direction and the presence of the
desired target view. In the context of MRI, a target view classification network was proposed to
determine the optimal MR image slice for detecting lumbar spinal stenosis [18]. The authors
selected the optimal image slice from multiple given slices and evaluated the classification
outcome for several network architectures and hyperparameters. Cardiac segmentation of
the left ventricle and atrium with joint prediction of standard clinical view planes has been
previously explored by Chen et al. [19], who aimed to translate findings from automated
segmentations into clinical routine protocols. For optimal valvular heart disease assessment,
14 slice orientations were defined using a cardiac MRI reference scan [20]. Odille et al. [21]
reconstructed the left ventricular shape by fitting a b-spline model to slice segmentations
obtained from motion-corrected high-resolution intensity data. They compared pre-defined
configurations of 3–6 sparse slices to evaluate the impact of view plane choices on the shape
reconstruction quality. To the best of our knowledge, none of the previously proposed methods
studied the joint optimization of view planes and volumetric reconstruction.

1.3. Contribution

While previous studies focused on detecting clinical standard imaging planes [15,18,20],
we hypothesize that the slice view orientation should be optimized in a task-driven manner
and propose the following contributions:

1. In a challenging target scenario, we reconstruct the full cardiac shape of five structures
from only two slices.

2. We study the joint optimization of shape reconstruction and view-plane orientation to
derive optimal sparse slice configurations.

3. The optimized slice configurations lead to superior reconstruction quality compared
to standard clinical imaging planes, which we demonstrate for synthetic and clinically
acquired cardiac MRI data.

2. Materials and Methods

Our pipeline mimics the MRI acquisition process (see Figure 1): From a low-resolution
scout scan, a coarse anatomical shape is generated by image segmentation. We analyze
this coarse segmentation to identify standard clinical view planes and optimize the image
plane slicing for cardiac shape reconstruction.
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2.1. Extraction of Clinical Views

Experts follow a semi-automated routine to determine cardiac view planes [22]: Firstly,
the left ventricle is localized in the scout scan, then pseudo-two-chamber (2CH) and four-
chamber (4CH) views are extracted. Based on these views, a stack of short-axis (SA)
images is retrieved, which is a prerequisite to acquiring accurate 2CH and 4CH views. We
extract the mentioned views from the coarse image segmentation by analyzing the inertial
moments J of the cardiac chamber shapes to construct orthonormal bases for an affine
reorientation matrix P,

J =

J11 J12 J13
J12 J22 J23
J13 J23 J33

 Jii =
∫

m

(
x2

j + x2
k

)
dm Jij = −

∫
m

xixjdm i, j ∈ [1, 2, 3] (3)

where m is the shape’s (voxel) mass, ijk are the spatial indices, and x is the distance vector
from the point mass to a reference point [23]. The resulting imaging planes are visualized
in Figure 2.

AX COR SAG p2CH p4CH SA 4CH 2CH

Figure 2. Clinical cardiac views are automatically extracted from the segmentation maps of a coarse
scout scan. Axial (AX), coronal (COR), and sagittal (SAG) views are obtained directly from the
volume. According to [22], pseudo-two-chamber (p2CH) and four-chamber (p4CH) are then used to
plan short-axis (SA) views from which, in turn, accurate 2CH and 4CH views can be retrieved. We
mimic this process by analyzing the inertial moments of segmented cardiac chambers.

2.2. Slicing View Optimization

As described in Figure 3, we optimize for affine matrices M that maximize the recon-
struction accuracy. We first generate N affine matrices M to define the slicing orientation.
This work explores the extreme scenario of studying only N = 2 slice locations. Subse-
quently, we apply a reconstruction model to process the extracted slices. The deep learning
architecture is laid out more specifically in Figure 4. To obtain optimizable slice orientations,
we feed the segmentation of a (low-resolution) scout image scan Vin into an acquisition
model Ai. The model comprises two operators: Oi aligns the input optimally to yield the
oriented volume Vor. From this volume, the operator C extracts a 2D slice S per matrix M:

Oi : {Vin : Ω3D → R} → {Vor : Ω3D → R}, i = 1, . . . , N (4)

C : {Vor : Ω3D → R} → {S : Ω2D → R} (5)

The formulation of Oi is inspired by Jaderberg et al. [24] and uses a spatial transformer
network to sample an oriented 2D plane from a 3D volume. The network consists of a
CNN localization network with learnable parameters θOi that maps the input volume
Vin to six rotational parameters api = (api1, . . . , api6)

T and three translational parameters
tpi with 3 × Ntp parameters, where Ntp is chosen relative to the target offset space (see
Section 2.7). From api, the rotational components of a 3D affine matrix Mi are generated
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using the continual representation from [25]. The translational vector ti = (ti1, ti2, ti3)
T is

formulated as:

tij =
2.0
Ntp

⟨so f tmax
(
tpij

)
,
(
0, 1, . . . , Ntp

)
⟩ − 1.0, tpij ∈ RNtp , j ∈ [1, 2, 3] (6)

The 3D affine matrix Mi is then used to create a grid for the differentiable spatial
transformer sampling layer. A slicing operator, C, extracts the center slice of the aligned
volume. We want to stress that for every 3D input shape volume, a separate set of api is
predicted. This enables us to take any segmented input volume and find the correct slicing
orientation for the subsequent scans using the same pre-trained model.

M
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Figure 3. Method overview: From a coarsely segmented scout scan (1), we analyze the cardiac shape,
construct affine matrices P representing the standard clinical views, and optimize a neural network
to predict a rigid transformation matrix M. This matrix is returned to the scanner to yield optimal
slicing parameters for the volumetric shape reconstruction.
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Figure 4. Architecture of the proposed pipeline: The acquisition models (left) optimize the two
slicing views (center). The final shape is reconstructed from the stacked slices with a non-symmetric
2D-3D encoder-decoder (right) that contains grouped convolutions in the 2D layers. The 2D-3D skip
connections and bottleneck in the reconstruction model are realized using a grid-sample operation
that embeds the 2D features in the 3D feature space using the inverse of two affine matrices M1,2.
(best viewed digitally).

2.3. Reconstruction Model

For a given set of N optimized 2D image slices S from the acquisition model, we aim
to reconstruct the full volumetric cardiac shape Vre:

R : {S : Ω2D → R}N → {Vre : Ω3D → R} (7)

Aiming for a mapping Ω2D 7→ Ω3D, we configure the model to contain a 2D encoder
and a 3D branch, where the inverse of Mi is used at the skip connections and the bottleneck
to re-embed the 2D slices in 3D space (see Figure 4 and Section 2.7).
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2.4. Joint Optimization

Given the above models, we obtain N optimized slices, by jointly training the parame-
ters of N acquisition models θO1,...,N and one reconstruction model ψR:

Vor1 , . . . , VorN = O1
(
Vin, θO1

)
, . . . , ON

(
Vin, θON

)
(8)

S1, . . . , SN = C(Vor1), . . . , C(VorN ) (9)

Vre = R
(
S1, . . . , SN , ψRi

)
(10)

In a simplified setup, where Vre and Vin have the same spatial resolution, we would
require Vre ≡ Vin for an optimal reconstruction. This mapping could be fulfilled by learning
an identity function but is restricted since we feed the data through two bottlenecks that are
reducing information by extracting a sparse slice and compressing the shape representation:

L
(

θO1,...,N , ψR

)
= ℓ

(
Rψ ◦ C ◦ Oθ,1(Vin), . . . , Rψ ◦ C ◦ Oθ,N(Vin), Vre ≡ Vin

)
(11)

In our pipeline, the slice bottleneck is particularly interesting, as the reoriented slices
S1, ..., N reveal information about the importance of individual structures for the reconstruc-
tion. In an application-oriented setting, the scout scan Vin has a lower spatial resolution
than the output Vre. When passing the predicted affine matrix Mi to the MRI control
panel, the optimized view can be captured in higher resolution to provide more detailed
information for the reconstruction (see Figure 3).

2.5. Datasets

We performed initial experiments with synthetic cardiac MRI scans generated with
XCAT [26] and MRXCAT 2.0 [27]. In this dataset with free-breathing protocol, each scan
consists of 100 image frames with 1 mm spatial and 50 ms temporal resolution. The XCAT
software provided ground-truth anatomical label maps, whereas texturized MRI simula-
tions were derived from these maps using MRXCAT 2.0. The data were split into 24 training
(male phantom) and 16 testing samples (female phantom). To show the effectiveness of
our method, a percentage of [25% . . . 75%] of cardiac phase frames was excluded from
the training set to reserve frames of the systolic phase for testing. In subsequent experi-
ments, we used the MMWHS dataset [28] containing 20 labeled, static, nearly isotropic
MRI volumes with the following structures: myocardium (MYO), left ventricle (LV), right
ventricle (RV), left atrium (LA), and right atrium (RA). The dataset contains significant
shape variations, including patients with cardiovascular diseases such as “cardiac function
insufficiency, cardiac edema, hypertension [. . . ] arrhythmia, atrial flutter, atrial fibrilla-
tion, artery plaque, coronary atherosclerosis, aortic aneurysm, right ventricle hypertrophy
[, and] dilated cardiomyopathy” [28]. The data were split into training and test data using
3-fold cross-validation.

2.6. Experimental Setup and Evaluation

Firstly, in Experiment I, we performed full cardiac shape reconstruction and com-
pared the performance of our model to Pix2Vox (P2V, [16]) and a leaner variant Efficient
Pix2Vox (EP2V, [10]), specifically designed for cardiac-slice-to-volume reconstruction (see
Section 1.2). In this experiment, we simplified the multi-chamber reconstruction task to a
binary shape reconstruction task to match the experimental setup of [10].

Secondly, in Experiment II, we extended the reconstruction task to multiple cham-
bers and investigated the impact of simultaneous view-plane optimization on the recon-
struction performance. We conducted an extensive ablation study transitioning from
elementary to more elaborate scenarios. This transition involved replacing ground-truth
annotations with automated segmentations as well as replacing high-resolution scout scans
(1.5×1.5×1.5 mm3/vox) with lower-resolution scout scans (6.0×6.0×6.0 mm3/vox)—a
very coarse setting compared to the settings used in [29]. Note that these high-resolution
scout scans are not available in clinical settings. Shape reconstruction was performed with
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just two high-resolution 2D views with 1.5×1.5 mm2/vox in all scenarios, which can be
acquired quickly and enables analysis with high temporal resolution.

Standard clinical views, such as 2CH and 4CH views (see Figure 2) were extracted
from the scout input using the method described in Section 2.1. For the MMWHS dataset,
we employed 3-fold cross-validation to address significant shape variations in the dataset.
We assessed the reconstruction performance with the 95th percentile of the Hausdorff
distance (HD95) and Dice score metrics.

2.7. Implementation Details

Our acquisition model is a convolutional neural network (CNN) consisting of layers
with instance normalization, average pooling, and a final fully connected layer. The last
layer maps the input features to six api and 3 × Ntp values. The affine matrices Mi are
then constructed using the continual representation of [25] for rotational components and
Equation (6) for translational components, restricting translational shifts to ±20%. The
parameter count Ntp = 51 was chosen to be 40 % of the spatial input volume length. In
preliminary experiments, we attempted to predict the three translational components for
every slice with three parameters but experienced instabilities. Mapping the parameters
described in Equation (6) resulted in stable training and improved scores.

The one-hot encoded slice shape output is concatenated channel-wise (see Figure 4,
center) and then fed to the reconstruction network. The reconstruction model is a U-Net
based on [30], which we configure to consist of a 2D encoder and a 3D decoder by replacing
the convolution and normalization layers while keeping the exact kernel sizes. To prevent
the U-Net model from sharing information across slices in the encoder, we used grouped
convolutions with independent groups per input slice.

The 2D features were re-embedded to the 3D space using the a grid-sampling operator
with the inverse affine matrices Mi

−1 for every slice to enable the concatenation of 2D and
3D features at the skip connections. Every block of the reconstruction model (see Figure 4)
comprises two (transpose) convolutional operations, followed by instance normalization
and LeakyReLU nonlinearities. During joint training, we used the AdamW optimizer [31]
(η = 0.001, β1 = 0.9, β2 = 0.999, decay = 0.01) for the reconstruction model and a batch size
of B = 4. The acquisition models were optimized using AdamW (η = 0.002, decay = 0.1)
and cosine annealing scheduling with warm restarts [32]. As a loss function, we employed a
combination of Dice loss and cross-entropy [30]. We found that simultaneously optimizing
both slices resulted in unstable training and, therefore, followed a two-stage approach.
First, the slice output of the acquisition model S1 = C(O1(Vin)) was duplicated and stacked
across the channel dimension while optimizing the parameters of the CNN. Then, the
parameters of model O1(·) were fixed, and only the parameters of O2(·) were optimized.
In both stages, the models were trained for 80 epochs. We always performed a final
reconstruction network training from scratch, where the models O1, O2, and thus the
input slices S1, S2 were fixed. Rotation and scaling augmentation were applied to the
input and output shapes to reduce the overfitting of the reconstruction model. For image
segmentation, we utilize the U-Net model pipeline of [30], trained on 2D image slices with
downsampling augmentation to ensure accurate segmentations for low-resolution and
high-resolution inputs.

3. Results
3.1. Experiment I

The evaluation of reconstruction model performance on the full cardiac shape is
shown in Table 1 for the synthetic cine data and in Table 2 for the clinically acquired data.
We observed lower Dice scores and higher HD95 errors for the MMWHS dataset, which
contains largely varying pathological deformed shapes. Applied to the MRXCAT dataset,
our model achieved the lowest HD95 errors in all scenarios and the best Dice score for
the p2CH and p4CH slice view inputs. It thus outperformed P2V and EP2V in four of six
scores. The P2V model [16] reached the best Dice score when reconstructing MRXCAT data
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from 2CH and SA views, whereas its efficient variant, EP2V [10], reached the best Dice
value on 2CH and 4CH views (see Table 1). When applied to the MMWHS data, our model
reached the highest performance in five of six scores, and was only outperformed by EP2V,
which presented a lower HD95 error in the case of 2CH and SA view inputs (see Table 2).

Table 1. Binary shape reconstruction performance of P2V, EP2V, and our method (see Section 2.3) on
the synthetic cardiac data of the MRXCAT dataset.

Synthetic Cine MRXCAT Data HD95 in mm ↓ Dice in % ↑
1st View 2nd View Model µ ± σ µ ± σ

p2CH p4CH
P2V [16] 6.7 ± 2.9 95.4 ± 3.2

EP2V [10] 7.2 ± 4.6 94.3 ± 4.5
Ours 4.7 ± 1.7 96.6 ± 1.4

2CH 4CH
P2V [16] 7.7 ± 5.5 93.6 ± 6.8

EP2V [10] 5.6 ± 2.4 96.2 ± 2.1
Ours 5.2 ± 2.8 95.9 ± 2.2

2CH SA
P2V [16] 4.6 ± 1.1 97.1 ± 0.8

EP2V [10] 6.2 ± 4.5 95.1 ± 4.8
Ours 4.3 ± 2.4 96.4 ± 2.4

Table 2. Binary shape reconstruction performance of P2V, EP2V, and our method (see Section 2.3) on
the clinically acquired cardiac data of the MMWHS dataset.

Clinically acq. MMWHS Data HD95 in mm ↓ Dice in % ↑
1st View 2nd View Model µ ± σ µ ± σ

p2CH p4CH
P2V [16] 20.1 ± 6.2 83.0 ± 5.0

EP2V [10] 22.1 ± 7.2 80.0 ± 7.8
Ours 20.0 ± 6.4 86.4 ± 4.1

2CH 4CH
P2V [16] 21.8 ± 5.9 82.5 ± 4.3

EP2V [10] 22.1 ± 8.4 81.5 ± 7.2
Ours 18.1 ± 6.5 87.6 ± 3.5

2CH SA
P2V [16] 22.6 ± 7.7 82.6 ± 5.4

EP2V [10] 20.8 ± 8.1 83.3 ± 5.2
Ours 23.7 ± 6.7 85.4 ± 4.5

3.2. Experiment II

We report the results of an extensive ablation study for multi-chamber shape recon-
struction with our model on the synthetic MRXCAT dataset in Table 3 and the clinical
MMWHS dataset in Table 4, respectively. We compared three ablation scenarios for ev-
ery dataset, indicated by whitespace in the tables. The top group of values represents
the first and most elementary scenario in which high-resolution scouts and ground-truth
annotations were considered. The highest HD95 errors were observed for reconstructions
based on the p2CH and the p4CH views typically extracted at the start of cardiac routine
acquisitions (8.5 and 22.5 mm).

The error was reduced to 6.9 and 14.1 mm for true 2CH and 4CH views (Figure 2).
Reconstruction from 2CH+SA yielded errors of 7.6 and 16.0 mm. Randomly chosen views
resulted in errors of 8.0 and 17.1 mm (RND, mean out of six runs). Optimizing the views
reduced HD95 errors to a lowest of 6.2 and 11.9 mm (−0.8 and −2.2 mm compared to true
2CH and 4CH views). An improvement could likewise be observed for the Dice scores,
which improved to 86.9 and 82.7 % after optimization.
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Table 3. Multi-chamber shape reconstruction performances for the synthetic cardiac data of the
MRXCAT dataset. The scenario’s difficulty increases from the top to the bottom. Bold values indicate
the best values obtained within a scenario group of comparable scout resolution and label map
settings (ground-truth (GT) or automated segmentation (SG)). Views are indicated by their names,
with RND and OPT indicating random selection (mean out of six runs) and the proposed optimization,
respectively.

Synthetic Cine MRXCAT Data HD95 in mm ↓ Dice in % ↑
Type of: Scout—Slices 1st View 2nd View MYO LV RV LA RA µ ± σ MYO LV RV LA RA µ ± σ

1.5 mm3 GT—1.5 mm2 GT p2CH p4CH 6.2 5.3 11.9 5.3 13.9 8.5 ± 14.7 82.4 90.0 84.2 90.6 83.4 86.1 ± 8.5
1.5 mm3 GT —1.5 mm2 GT 2CH 4CH 6.5 7.1 8.0 5.1 7.7 6.9 ± 2.0 79.9 86.8 83.5 90.7 85.2 85.2 ± 5.9
1.5 mm3 GT—1.5 mm2 GT 2CH SA 6.5 7.2 8.6 6.9 8.7 7.6 ± 2.6 79.3 86.5 83.9 88.6 82.9 84.2 ± 6.2
1.5 mm3 GT—1.5 mm2 GT RND RND 7.2 8.4 9.6 8.0 6.9 8.0 ± 5.4 78.9 86.3 84.9 87.1 88.6 85.2 ± 7.0
1.5 mm3 GT—1.5 mm2 GT >OPT< >OPT< 6.3 6.6 7.1 4.6 6.3 6.2 ± 2.0 80.7 87.8 86.3 91.0 88.9 86.9 ± 5.4
6.0 mm3 GT—1.5 mm2 GT 2CH 4CH 6.3 7.3 10.3 5.1 7.6 7.3 ± 3.0 79.1 86.9 80.7 91.3 86.4 84.9 ± 6.7
6.0 mm3 GT—1.5 mm2 GT >OPT< >OPT< 6.8 7.2 6.8 6.6 7.4 7.0 ± 1.8 78.7 85.7 87.3 88.7 87.2 85.5 ± 6.0
6.0 mm3 SG—N/A N/A N/A (5.3) (5.3) (5.5) (5.6) (5.8) (5.5 ± 0.3) (79.6) (91.5) (90.1) (85.5) (86.5) (86.6 ± 4.2)
6.0 mm3 SG—1.5 mm2 SG 2CH 4CH 10.3 10.2 31.7 7.3 7.7 13.5 ± 17.4 68.6 82.1 82.4 86.0 85.9 81.0 ± 8.0
6.0 mm3 SG—1.5 mm2 SG >OPT< >OPT< 9.4 9.8 10.0 11.7 7.7 9.7 ± 3.0 69.9 81.8 84.0 76.4 87.4 79.9 ± 8.7

Table 4. Multi-chamber shape reconstruction performances for the MRI-acquired cardiac data of the
MMWHS dataset. The scenario’s difficulty increases from the top to the bottom. Bold values indicate
the best values obtained within a scenario group of comparable scout resolution and label map
settings (ground-truth (GT) or automated segmentation (SG)). Views are indicated by their names,
with RND and OPT indicating random selection (mean out of six runs) and proposed optimization.

Clinically acquired MMWHS data HD95 in mm ↓ Dice in % ↑
Type of: Scout—Slices 1st View 2nd View MYO LV RV LA RA µ ± σ MYO LV RV LA RA µ ± σ

1.5 mm3 GT—1.5 mm2 GT p2CH p4CH 7.7 8.2 30.3 27.6 38.7 22.5 ± 25.4 78.7 88.3 69.4 75.7 65.4 75.5 ± 16.2
1.5 mm3 GT—1.5 mm2 GT 2CH 4CH 6.8 8.2 19.5 8.9 27.1 14.1 ± 10.2 81.8 88.7 77.2 86.5 74.9 81.8 ± 9.5
1.5 mm3 GT—1.5 mm2 GT 2CH SA 7.8 10.2 16.5 13.8 31.6 16.0 ± 10.0 79.9 87.7 77.0 79.7 61.3 77.1 ± 12.1
1.5 mm3 GT—1.5 mm2 GT RND RND 12.0 13.9 18.0 18.1 23.2 17.1 ± 10.0 69.3 82.1 80.4 78.0 75.5 77.1 ± 9.2
1.5 mm3 GT—1.5 mm2 GT >OPT< >OPT< 8.6 9.7 15.1 13.8 12.1 11.9 ± 3.9 79.7 87.8 79.8 81.1 85.0 82.7 ± 6.5
6.0 mm3 GT—1.5 mm2 GT 2CH 4CH 7.5 8.1 18.9 11.0 22.7 13.6 ± 9.2 81.0 89.4 78.9 85.2 76.4 82.2 ± 8.6
6.0 mm3 GT—1.5 mm2 GT >OPT< >OPT< 8.9 10.2 14.8 16.2 14.4 12.9 ± 7.2 77.1 86.1 81.0 81.3 81.1 81.3 ± 9.3
6.0 mm3 SG—N/A N/A N/A (10.8) (12.8) (16.3) (12.8) (13.0) (13.2 ± 11.5) (72.3) (87.6) (81.7) (80.0) (81.0) (80.5 ± 9.3)
6.0 mm3 SG—1.5 mm2 SG 2CH 4CH 17.1 19.1 51.4 64.8 103.8 51.2 ± 50.7 56.2 71.6 56.3 35.2 38.8 51.6 ± 25.2
6.0 mm3 SG—1.5 mm2 SG >OPT< >OPT< 35.0 32.7 39.9 53.9 51.6 42.6 ± 23.4 43.8 69.0 56.5 39.6 61.3 54.0 ± 19.6

Figure 5 demonstrates that the highest scores were reached after the second stage of
optimization (Section 2.7). In the second ablation scenario, reconstruction from realistic low-
resolution scouts and ground-truth annotations was examined (see center groups of Tables 3
and 4). We only considered the best-performing clinical 2CH+4CH views from the first
scenario for further comparison. For MRXCAT, 7.3 mm HD95 error of 2CH+4CH views was
reduced to 7.0 mm (−0.3 ) with optimization. While the MMWHS dataset demonstrated a
comparable error reduction (−0.7 mm), inferior Dice scores were observed. The last scenario
added automated segmentation to the pipeline, resulting in the most application-oriented
setting. For the MRXCAT data, HD95 errors increased compared to the ground-truth
setting of scenario two, resulting in 13.5 mm for 2CH+4CH clinical views and 9.7 mm for
optimized views. This was not reflected by Dice scores, for which 2CH+4CH clinical views
outperformed the optimized views with 81.0 % compared to 79.9 % respectively. For the
MMWHS data, the reconstruction error increased significantly to 51.2 mm for 2CH+4CH
and 42.6 mm for optimized views. We additionally report volumetric segmentation results
for the coarse scout scans. Note that for acquiring the scout scans, 32 captured slices
instead of one slice are needed at a lower in-plane resolution (1/4 per x-, y-axis), increasing
acquisition time and making it unsuitable for a direct comparison; hence, the values are
enclosed in brackets.
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Figure 5. MMWHS Dice scores throughout two-stage training, considering the views 2CH+4CH
as reference. After optimizing the first view, the reconstruction quality is on par with the reference.
Optimizing the second view outperforms the reference.

The slicing reorientation obtained for the runs of Tables 3 and 4 (OPT+OPT) is depicted
in Figure 6. Notably, the first view was reoriented from the coronal view to an equivalent
of the clinical 4CH view in the first 20 epochs, indicating that the 4CH view contains the
most information for reconstruction.

Training and inference were performed on a single NVIDIA TITAN RTX 24 GB graph-
ics card. Each stage of optimization took ∼29 min. Inference took 677 ms for the entire
pipeline to reconstruct volumes of 128×128×128 vox from two 128×128 pix slices. Each
acquisition model contained 2.8 M parameters, the segmentation model contained 20.7 M
parameters, and the reconstruction model contained 15.5 M parameters.

Epoch 0 Epoch 10 Epoch 20

Epoch 0

Epoch 80

Second view

First view

Figure 6. View reorientation during joint training. A heatmap overlay visualizes the orientation
across the training batch (left, first column per epoch). Two individual batch samples are displayed
in the second and third columns. The first view (top) is optimized during the first optimization stage
and then fixed in the second optimization stage, in which the second view (bottom) is optimized.
Notably, the first view was reoriented from the coronal view to an equivalent of the clinical 4CH view
in the first 20 epochs. Views are also depicted in 3D, where view planes of epoch 0 were reoriented to
view planes of epoch 80, as indicated by the arrows.

4. Discussion

We presented a novel approach to enhance the volumetric reconstruction of cardiac
structures from sparse slice acquisitions using joint view-plane location and orientation op-
timization to overcome scan-time limitations for high-resolution 3D shape reconstructions.
We tested our approach on a synthetic, dynamic cine dataset (MRXCAT) and a static dataset
(MMWHS) that included significant shape variation caused by pathological deformations.

In the binary cardiac shape reconstruction experiment, our reconstruction model
outperformed two related methods with lower HD95 error in five of six scenarios and
higher Dice performance in four of six scenarios. Improving on the related methods, we
then performed multi-chamber reconstruction and joint optimization of the input views.
In an extensive ablation study, we showed that the joint optimization of slicing views
could consistently reduce HD95 reconstruction errors across all six of the ablation scenarios
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we performed (MRXCAT: −0.7 mm, −0.3 mm, −3.8 mm, MMWHS: −2.2 mm, and −0.7 mm,
−8.6 mm), whereas two scenarios demonstrated a drop in Dice scores.

For the MRXCAT dataset, a promising low error rate of 9.7 mm HD95 was achieved for
multi-chamber reconstruction after view optimization, despite the fact that only a subset of
cardiac phases was seen during optimization. This indicates that the reconstruction model
learns a generalized shape representation. Visualizing the views of an entire test batch
using the heatmap overlay (Figure 6), it is noticeable that views are reoriented consistently
to yield optimal reconstruction properties (also refer to Figure 5). For the MMWHS dataset,
slice optimization reduced HD95 errors in all scenarios. A significant performance drop
was witnessed when slice segmentation was integrated into the pipeline. Here, the slice
view segmentation model limits the capability of reconstructing the 3D shape successfully.
Pre-training the segmentation model is challenging, as MMWHS data have a large shape-
variability and varying contrasts. Moreover, the segmentation model must generalize to
arbitrarily oriented 2D slice views that are not constrained to axial, coronal, and sagittal
view planes. Training the segmentation model on a larger dataset using the identified
optimized slice orientations and spatiotemporal data will certainly further enhance the
model’s robustness.

5. Conclusions

We showed that five cardiac structures could be reconstructed with <13 mm HD95 and
>80 % Dice when reconstructing from only two optimized views regarding ground-truth
label map inputs. In future work, we plan to investigate the quantification of possible
reconstruction errors to assess the applicability of our method in clinical settings. Moreover,
the reconstruction from more than two image planes and the determination of the optimal
tradeoff between the reconstruction accuracy and the time needed to acquire the slices
remains to be explored. The proposed image plane optimization could furthermore be
applied to other target tasks, such as pathology classification. Summarizing our approach,
we would like to motivate the medical deep learning community to investigate the integra-
tion of (slicing) acquisition parameters into their pipelines to improve computer-assisted
analysis further.
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Abbreviations
The following abbreviations are used in this manuscript:

2CH two-chamber
4CH four-chamber
AX axial
CMR cardiac magnetic resonance imaging
CNN convolutional neural network
COR coronal
CT computed tomography
GT ground-truth
HD95 95th percentile of the Hausdorff distance
LSTM long short-term memory
LA left atrium
LV left ventricle
MRI magnetic resonance imaging
MYO left myocardium
N/A not applicable
OPT optimized
p2CH pseudo two-chamber view
p4CH pseudo four-chamber view
RV right ventricle
RA right atrium
RND random
SA short axis
SAG sagittal
SNR signal-to-noise ratio
TR repetition time
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