
Citation: Papaioannou, A.;

Dimara, A.; Kouzinopoulos, C.S.;

Krinidis, S.; Anagnostopoulos, C.-N.;

Ioannidis, D.; Tzovaras, D.

LP-OPTIMA: A Framework for

Prescriptive Maintenance and

Optimization of IoT Resources for

Low-Power Embedded Systems.

Sensors 2024, 24, 2125. https://

doi.org/10.3390/s24072125

Academic Editor: Klaus Moessner

Received: 12 February 2024

Revised: 20 March 2024

Accepted: 22 March 2024

Published: 26 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

LP-OPTIMA: A Framework for Prescriptive Maintenance
and Optimization of IoT Resources for Low-Power
Embedded Systems
Alexios Papaioannou 1,2,* , Asimina Dimara 1,2,3 , Charalampos S. Kouzinopoulos 1 , Stelios Krinidis 1,2,
Christos-Nikolaos Anagnostopoulos 3, Dimosthenis Ioannidis 1,* and Dimitrios Tzovaras 1

1 Centre for Research and Technology Hellas, Information Technologies Institute, 57001 Thessaloniki, Greece;
adimara@iti.gr (A.D.); kouzinopoulos@iti.gr (C.S.K.); krinidis@mst.ihu.gr (S.K.);
dimitrios.tzovaras@iti.gr (D.T.)

2 Management Science and Technology Department, Democritus University of Thrace (DUTH),
65404 Kavala, Greece

3 Intelligent Systems Laboratory, Department of Cultural Technology and Communication,
University of the Aegean, 81100 Mytilene, Greece; canag@aegean.gr

* Correspondence: alexiopa@iti.gr (A.P.); djoannid@iti.gr; (D.I.)

Abstract: Low-power embedded systems have been widely used in a variety of applications, allowing
devices to efficiently collect and exchange data while minimizing energy consumption. However,
the lack of extensive maintenance procedures designed specifically for low-power systems, coupled
with constraints on anticipating faults and monitoring capacities, presents notable difficulties and
intricacies in identifying failures and customized reaction mechanisms. The proposed approach seeks
to address the gaps in current resource management frameworks and maintenance protocols for
low-power embedded systems. Furthermore, this paper offers a trilateral framework that provides
periodic prescriptions to stakeholders, a periodic control mechanism for automated actions and mes-
sages to prevent breakdowns, and a backup AI malfunction detection module to prevent the system
from accessing any stress points. To evaluate the AI malfunction detection module approach, three
novel autonomous embedded systems based on different ARM Cortex cores have been specifically
designed and developed. Real-life results obtained from the testing of the proposed AI malfunction
detection module in the developed embedded systems demonstrated outstanding performance, with
metrics consistently exceeding 98%. This affirms the efficacy and reliability of the developed approach
in enhancing the fault tolerance and maintenance capabilities of low-power embedded systems.

Keywords: prescriptive maintenance;low-power embedded systems; IoT; resources’ optimization;
lightweight machine learning; anomaly detection; malfunction detection

1. Introduction

The widespread adoption of low-power embedded systems has resulted in an impor-
tant shift in the rapidly evolving field of modern technology, radically changing the way
electronic devices operate and interact with their environment [1]. Embedded systems
are currently the backbone of a wide range of applications, from consumer electronics to
industrial automation and even further, since they can easily be integrated into daily life.
The idea of low-power embedded systems, a technical advancement driven by the quest
for efficiency, sustainability, and extended operational lifespan, is at the core of this break-
through trend [2]. In contrast to their conventional counterparts, which often place higher
priority on processing capacity alone, low-power embedded systems carefully balance
energy efficiency with usability.

The fundamental advantage of low-power embedded systems is their ability to meet
the increasing demand for energy-efficient solutions in a variety of fields [3]. In the field of

Sensors 2024, 24, 2125. https://doi.org/10.3390/s24072125 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24072125
https://doi.org/10.3390/s24072125
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-9849-7187
https://orcid.org/0000-0001-9372-7070
https://orcid.org/0000-0001-8829-504X
https://orcid.org/0000-0002-5747-2186
https://doi.org/10.3390/s24072125
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24072125?type=check_update&version=2


Sensors 2024, 24, 2125 2 of 21

consumer electronics, where extended battery life and portability are critical aspects, these
technologies facilitate the creation of wearables, smartphones, and other smart devices
that are easily integrated into our daily lives. Furthermore, low-power embedded systems
are essential for process optimization and energy conservation in industrial environments
where dependability and efficiency are essential [4]. These systems serve as the basis for
networks that are connected in the context of the Internet of Things (IoT), allowing devices
to exchange data efficiently while consuming less energy. This offers novel opportunities in
the fields of smart city development, healthcare, and environmental monitoring, in addition
to improving the sustainability of IoT applications [5].

There are several significant limitations and challenges with the current methods of
maintenance and resource optimization for low-power embedded systems that require
awareness [6]. Initially, it should be noted that there are currently no comprehensive
maintenance procedures designed especially for low-power systems [6]. The accuracy
needed to anticipate and prevent faults in these energy-efficient systems is frequently
lacking in current approaches, which could result in increased maintenance costs and
downtime. Another significant concern is monitoring capabilities, as current instruments
are unsuitable for identifying anomalies or performance degradation in advance [7]. This
restriction could cause a delay in responding to potential problems, which would be
harmful to their overall reliability.

Furthermore, it remains challenging to handle common problems and malfunctions
in low-power systems, as response mechanisms may not be tailored to the specific power-
efficient features of these systems [8]. Another challenge is the complex nature of low-
power system failure detection, where current techniques often fail to produce fast and
reliable identification [9]. The challenge of seamlessly integrating user activities into the
resource management framework is difficult, and as low-power embedded systems expand
in a variety of applications, scaling problems emerge. Furthermore, the environment is
made more complex by the absence of defined protocols and procedures, which requires
coordinated efforts to create a unified framework for resource optimization and prescriptive
maintenance [10]. Overcoming these obstacles is critical to improving the scalability,
efficiency, and dependability of low-power embedded systems.

The maintenance of such devices is essential in the rapidly evolving world of today’s
technology. A new era of prolonged battery life, portability, and process optimization
has been brought about by the widespread use of low-power embedded systems across a
range of industries. However, regardless of their importance, there are certain noticeable
shortcomings in the way these systems are currently maintained and resource-optimized,
especially when considering the IoT as a whole. The lack of extensive maintenance pro-
cedures designed specifically for low-power systems, in conjunction with constraints in
anticipating faults and monitoring capacities, presents notable difficulties and intrica-
cies in identifying failures and customized reaction mechanisms, as previously discussed.
The aforementioned challenges indicate the need for an integrated attempt to establish a
consistent framework for resource optimization and prescriptive maintenance.

In response to the identified challenges in maintaining and optimizing low-power em-
bedded systems, this paper proposes an innovative approach to prescriptive maintenance
and resource optimization. Within the broader context of the IoT, the suggested approach
seeks to address the gaps in current resource management frameworks and maintenance
protocols for low-power systems. Exploiting available data streams, the approach employs
a bi-fold procedure to identify potential malfunctions. It then adopts a proactive approach,
ensuring that issues are resolved promptly by either informing the end-user or by setting
automatic corrective steps to “cure” the failure. Furthermore, the present study stresses the
importance of increasing the lifespan of these systems and proposes periodic prescriptions
intended to extend the operational life of low-power embedded systems as part of the
prescriptive maintenance plan. By incorporating these elements into the approach, this
paper not only addresses the immediate challenges but also contributes to the overall
resilience and sustainability of low-power systems. The main novelties of this work are:



Sensors 2024, 24, 2125 3 of 21

• A bifold procedure, leveraging available data streams to identify potential malfunc-
tions in low-power embedded systems;

• A proactive stance in handling potential malfunctions by implementing corrective
measures;

• The proposal of a prescriptive maintenance strategy that includes periodic prescrip-
tions to address and mitigate issues before they escalate;

• A novel resource optimization framework;
• The integration of user activities into the resource management framework enhances

the overall usability and adaptability of low-power embedded systems.

Moreover, for the evaluation of the proposed prescriptive maintenance and resource
optimization approach, three different novel, autonomous reduced-instruction-set-computer-
(RISC)-based embedded systems have been specifically designed and developed.

The remainder of the paper is structured as follows: Section 2 presents a thorough
analysis of studies, articles, and pertinent work that has been previously conducted in
this field. Section 3 presents the architecture of the proposed embedded systems and the
methodology of the paper, which involves the implementation of a bifold procedure for
identifying malfunctions in low-power embedded systems, along with proactive measures
and periodic prescriptions to address issues. Finally, the experimental results section
(Section 4) involves a setup of the suggested methodology utilizing various low-power
system configurations along with the evaluation results of the proposed methodology.

2. Related Work

A prescriptive edge-to-edge IoT network management architecture with micro-services
was proposed in [11] for multiple smart edge devices. The proposed architecture utilized:
the collection and processing of sensors’ raw data by edge artificial-intelligence-(AI)-based
lightweight services; the monitoring of the edge and IoT network performance while
considering various automated self-healing actions; and the detection of potential and fatal
errors on edge devices as well as IoT entities, including sensors, actuators, and devices,
using long short-term memory (LSTM) and autoencoder (AE) machine learning (ML)
networks. A convolutional neural network (CNN), CNN-based LSTM autoencoder ML
method was presented in [12] to detect anomaly points in different operating parameters
of a Raspberry Pi, to ensure that the edge device will be operating smoothly and that the
end-user will be informed to take some actions to prevent breakdowns. Five different
parameters were studied: central processing unit (CPU) temperature and usage, disk and
virtual memory usage, as well as power consumption.

A predictive maintenance system for Industry 4.0 using ML methods on the edge was
presented in [13]. The system, executed on a Raspberry Pi, acquired simulated voltage,
current, and light intensity data from a programmable logic controller (PLC) controller
through message queuing telemetry transport (MQTT). The random forest method was
subsequently used on the collected data to predict error values. An embedded platform
for monitoring and predictive maintenance of mining motors was presented in [14]. The
platform was based on the STM32F429 MCU, a MAX2085 IC for RS-485, and a DP83848C
PHY chip for Ethernet communication. To perform motor fault diagnosis at the edge, based
on the characteristic frequency and the current signal of the motor, a combination of a
Butterworth filter, a fast Fourier transform (FFT) method, and envelope spectrum analysis
was used. A similar platform for the predictive maintenance of coal mine decelerators
based on vibration acceleration, vibration speed, and temperature was detailed in [15].

Moreover, significant work exists in the literature on low-power embedded systems.
The initial design of a miniaturized, autonomous embedded system for environmental
sensing was presented in [16]. The system was based on a Cortex-M0 microcontroller
unit (MCU) with the AEM10941 PMIC, the BME680 environmental sensor, and the RSL10
and SX1261 ICs for bluetooth low energy (BLE) and LoRa wireless communication, re-
spectively. An autonomous LoRaWAN node for environmental monitoring of buildings
was presented in [17]. The node used a LoRa SX1276 transceiver, together with an Ambiq



Sensors 2024, 24, 2125 4 of 21

Apollo2 MCU based on a Cortex-M4 core, a BME680 environmental sensor, and a Fujitsu
ferroelectric random access memory (FRAM). The node was programmed to make periodic
environmental measurements, including temperature, relative humidity, and air pressure,
at 10-minute intervals using BME680; the results were transmitted wirelessly via SX1276
with a spreading factor of SF7BW125 and +8 dBm RF output power, allowing the coverage
of a small building. An autonomous BLE node was presented in [18]. The node used the
ST BLUENRG-2 BLE SoC as a load, together with an STM32L0-based MCU from ST for
ambient light sensing. A system with very similar characteristics and the addition of ST
HTS221 for moisture and temperature sensing was detailed in [19]. An autonomous BLE
sensor node designed for the monitoring of physical parameters, including temperature,
humidity, and resistivity, in reinforced concrete was presented in [20]. The autonomous
node was designed to be embedded into a concrete cavity and could be powered using
wireless power transmission. The transmission of the measurements was performed via
the QN9080 BLE SoC.

Table 1 summarizes the related work on error detection methods and maintenance
strategies followed. The terminology used includes distinctions related to the embedded
system or edge device, the integration of sensors, the power characteristics, the employed
maintenance strategy, the monitoring level, and the detection method. The “embedded
system” refers to the underlying hardware architecture, with options such as a Raspberry
Pi (Rpi) or a custom designed system, like the ones proposed in this work. The term
“integrated sensor” refers to sensors embedded in the system. A “sensor node” refers to
discreet sensors connected wirelessly to the system.

Table 1. Summary of related work.

Work Embedded System Low Power Maintenance Strategy Monitoring Level Detection Method

[11] Rpi NO Prescriptive Embedded system
Sensor nodes LSTM

[12] Rpi NO Prescriptive Embedded system
Sensor nodes LSTM

[13] Rpi NO Predictive Sensor nodes Random Forest

[14] Custom YES None Embedded system
Butterworth filter,
FFT and envelope
Spectrum analysis

[15] Custom YES None Embedded system
Butterworth filter,
FFT and envelope
spectrum analysis

This work Custom YES Prescriptive
Embedded system
Sensor nodes
Integrated sensors

AE-LSTM

As it may be observed from this section, the present work is distinct in all respects. It
utilizes the capabilities of a customized embedded system, operates in a low-power setting,
applies prescriptive maintenance, and monitors integrated sensors as well as the edge. This
work varies from the presented publications in that it addresses a wide range of topics,
including system architecture, power efficiency, maintenance strategy, and monitoring
techniques. With an emphasis on low-power systems and effective sensor integration, this
level of detail positions the work being presented as a comprehensive and cutting-edge
solution for edge-to-edge IoT network management.

3. Methodology

The methodology used for the resource management system involves a comprehen-
sive approach to optimizing system performance on low-power autonomous embedded
systems. First, the architecture and dependencies of three different such systems, designed



Sensors 2024, 24, 2125 5 of 21

and developed specifically for this work, are presented. Then, the proposed resource
management system is extensively detailed.

3.1. Architecture and Dependencies of Autonomous, Low-Power Embedded Systems

For the work of this paper, three novel, autonomous embedded systems have been
designed and developed, with an emphasis on low power consumption. Each system
consists of an ARM MCU, the MB85RC64TAPN-G-AMEWE1 non-volatile FRAM for data
storage, the BME680 environmental sensor for temperature and humidity measurements,
and the RSL10 BLE System-on-Chip (SoC) for short-range wireless communication. For
energy generation, distribution, and storage, the following components were used: An
AEM10941 PMIC from E-peas, two EXL1-1V20-SM cells by Lightricity with a total active
surface of 2 cm2 and the Powerstream GEB201212 battery with a capacity of 10 mAh. All
sensing and communication integrated circuits (ICs) are connected to the MCU via the
I2C interface. An overview of the common architecture layer of the proposed embedded
systems is depicted in Figure 1.

Figure 1. High-level architecture of the embedded systems.

The systems utilized different MCUs in 100-pin packages, each based on a different
processor core, as listed in Table 2.

Table 2. Specifications and electrical characteristics of STM32 MCUs.

Model Core Frequency Flash RAM Shutdown Standby Stop Run

STM32L496VG Cortex-M4 80 MHz 1 MB 320 KB 25 nA 108 nA 2.57 µA 91 µA/MHz (LDO)
37 µA/MHz (SMPS)

STM32H743VG Cortex-M7 480 MHz 2 MB 1 MB - 2.95 µA 290 nA 275 µA/MHz
STM32U5A5VJT Cortex-M33 160 MHz 4 MB 2.5 MB 150 nA 195 nA 2 µA 18.5 µA/MHz

All three MCUs feature brown-out reset (BOR) circuitry, a feature designed to handle
temporary drops in the power supply voltage. When the voltage drops below a certain
threshold but does not completely reach zero, it can lead to erratic behavior or data
corruption in the system. The BOR circuit monitors the power supply voltage, and when it
falls below a specified level, it triggers a reset of the microcontroller or device.

After a system or a power reset, the MCUs begin execution in run mode, or CRun mode
in the case of STM32H743VG. In these modes, full power is provided via the embedded
voltage regulators (or by an external power supply where applicable) to the core domain
(VCORE), commonly consisting of the CPU, the digital peripherals, and the memories.
Moreover, multiple low-power execution modes exist to reduce power consumption during
idle periods, with different compromises each in terms of consumption, startup time, and
number of available wake-up sources, as detailed below.



Sensors 2024, 24, 2125 6 of 21

Different errors in software and hardware can cause different exceptions to occur,
including the following [21,22]:

• HardFault. Generic fault conditions existing for all classes of fault that cannot be han-
dled by any of the other exception mechanisms. Typically, it is used for unrecoverable
system failures

• MemManage. handles memory protection faults that are determined by the memory
protection unit (MPU) or by fixed memory protection constraints for both instruction
and data memory transactions.

• BusFault handles memory-related faults, other than those handled by the MemMan-
age fault, for both instruction and data memory transactions. Typically, these faults
arise from errors detected on the system buses.

• UsageFault. handles non-memory-related faults caused by instruction execution. A
number of different situations cause usage faults, including undefined instruction,
invalid state on instruction execution, error on exception return, word or halfword
memory accesses to an unaligned address, or division by zero.

Specific technical characteristics of each MCU are detailed below.

3.1.1. STM32L496VG MCU

The STM32L496VG MCU is a Cortex-M4 core based on the ARMv7E-M architecture
with a maximum frequency of 80 MHz, a 1 MB flash and 320 KB of SRAM. It has a 25 nA
quiescent current and 37 µA/MHz energy consumption in run mode when a switched
mode power supply (SMPS) is used.

Apart from the run mode, the MCU implements the following low-power modes [23]:
sleep mode with CPU clock off and all peripherals being able to run and wake up the
MCU; low-power run mode when the system clock frequency is reduced below 2 MHz;
low-power sleep mode entered from the low-power run mode; three different stop modes
that achieve the lowest power consumption while retaining the content of SRAM and
registers; standby mode that allows to achieve the lowest power consumption with BOR;
and shutdown mode allows to achieve the lowest power consumption without BOR.

The microcontroller features three types of reset, where “reset” refers to the process of
returning to a predefined initial state of the embedded system:

• Power reset
• System reset
• Backup domain reset

A power reset is generated as a consequence of BOR as well as when exiting from
standby or shutdown modes. BOR sets all registers, apart from the registers of the backup
domain, to their respective reset values. When exiting standby mode, all registers in the
VCORE domain are set to their reset value. Registers outside the VCORE domain are not
impacted. When exiting shutdown mode, a BOR is generated, resetting all registers except
those in the backup domain.

A system reset sets most registers to their reset values. It is generated when, among
others: an external reset occurs (via the NRST pin); a window or independent watchdog
event occurs; or a software reset occurs. Each of these works by pulling the NRST line
low for 20 µs. A software reset can be triggered via the NVIC_SystemReset() system
function that sets the SYSRESETREQ bit of the application interrupt and reset control
register (AIRCR) (see [24] for more details). The control/status register (RCC_CSR) is set
by the hardware to indicate the cause of the software reset.

The MCU features a backup domain that includes an LSE oscillator, an RTC, 32× 32-bit
backup registers of the RTC, and a RCC backup domain control register (RCC_BDCR). The
backup registers (RTC_BKPxR) are not reset by system reset or when the device wakes up
from standby mode. A backup domain reset can be used to set all registers of the backup
domain to their reset values. This type of reset can be generated through software triggered
by setting the RCC_BDCR register.



Sensors 2024, 24, 2125 7 of 21

3.1.2. STM32H743VG MCU

The STM32H743VG MCU is based on the much more powerful Cortex-M7 core and
the ARMv7E-M architecture. It has a CPU frequency of up to 480 MHz, a 2 MB flash,
and 1 MB of RAM; it includes a double-precision FPU and 32 Kb of L1 cache. It has a
hefty power consumption in comparison to the Cortex-M4 cores, requiring approximately
275 µA/MHz during run mode.

The system operating mode depends on the CPU subsystem modes (CRun, CSleep,
CStop), the D2 domain modes (DRun, DStop, DStandby), and the system (D3) autonomous
wakeup domain [25]. The CPU subsystem modes are: CRun, where the CPU and CPU
subsystem peripherals are clocked; CSleep, where the CPU clocks are stalled and the
CPU subsystem peripherals are clocked; and CStop, where the CPU and CPU subsystem
peripheral clocks are stalled. For the D1/D2 domain modes: DRun, where the domain
bus matrix is clocked; DStop, where the domain bus matrix clock is stalled; and DStandby,
where the respective domain is powered down. For the D3 domain, the system can be in
either run, stop, or standby mode.

The STM32H743VG MCU features the following types of reset:

• Power-on/off reset
• System reset
• Local resets

The power-on/off reset is activated when the input voltage (VDD) is below a threshold
level. This is the most complete reset since it resets the whole circuit, except the backup
domain. The system reset is similar to that of the M4 core above. For the local resets, the
CPU can reset itself via the CPURST bit in the RCC_AHB3RSTR register. Moreover, some
resets also depend on the domain status, as detailed in [25]. The RCC_RSR register can be
used to determine the cause of the reset.

3.1.3. STM32U5A5VJT MCU

The STM32U5A5VJT MCU is based on the Cortex-M33 core and the ARMv8-M archi-
tecture, including a single-precision FPU. It packs significantly more performance character-
istics compared to STM32L496VG, with a CPU frequency of up to 160 MHz, 4 MB of flash
memory, and 2.5 MB of SRAM. At the same time, it is more energy efficient than the M4
cores, with approximately 18.5 µA/MHz of energy consumption in low-power run mode.
The STM32U5A5VJT MCU features identical modes and reset types to STM32L496VG [26].

3.2. Resource Management

The resource management layer in the low-power system plays a crucial role in
optimizing system performance, minimizing latency, reducing energy consumption, and
proactively detecting potential malfunctions. This layer is designed to efficiently monitor
and manage system resources through a combination of services, applications, and tools
(Figure 2).

The data control mechanism (DCM) is an essential process that performs real-time
assessment of available data streams and is at the center of this layer. This process, which is
guided by particular system settings and dependencies, determines decisions based on data
analysis insights. Its primary objective is to analyze data streams and detect the existence
of issues. When an issue is detected, the system takes immediate action, either by warning
the user or by performing automated healing actions. The malfunction detection method
(MD), which uses AI methods for sophisticated anomaly identification, is a complementary
component of the data control system. The process makes use of specific information to
conduct a thorough analysis of data streams. The objective is to identify anomalies that
might indicate a system vulnerability. When a malfunction is detected, the user is alerted
or executes automated healing actions.



Sensors 2024, 24, 2125 8 of 21

Figure 2. Resource management flow chart.

Finally, the periodic controller (PCTRL) process operates in cycles to maintain the
continuous health and functionality of the system. This part does two functions: it notifies
users of potential periodic activities that need to be performed and, when needed, it
operates independently to execute preventive actions. The system may sustain stability and
efficiency over time by combining periodicity with proactive actions, offering a proactive
approach to system management and user interaction.

3.3. Data Control Mechanism

DCM incorporates several key features to ensure efficient and optimized system
performance. Firstly, it is programmed to prevent power consumption from surpassing
the lowest threshold by actively monitoring resource usage. Furthermore, the system
is equipped with awareness of connections to both autonomous and non-autonomous
components. Its capability is targeted at checking the presence or absence of connections
with these components. The mechanism leverages the presence or absence of these links
to inform its decision-making process. In Table 3, the overall description of the DCM is
illustrated. The description is used to track the specific malfunctions or issues monitored by
the DCM, each marked as dcmNumber indicating the respective issues. The malfunction/
issue describes the problem, while the type indicates the type of action. Each prescription
(i.e., DCM prescription deciphered dcm) might be an automated action performed directly
from the DCM, called “ACT” or a prescription that is sent to the user as a message,
called “MSG”.



Sensors 2024, 24, 2125 9 of 21

Table 3. Data control mechanism monitoring and prescriptions.

Number Malfunction/Issue Type Prescription

dcm1 Over current consumption
threshold ACT System reset

dcm2 Over current consumption
threshold after restart MSG

{“alertType”: “System Alert”,
“message”: “Overcurrent Threshold Exceeded After Restart.
Please check”.}

dcm3 No connection to sensor
node ACT System reset

dcm4 No connection to sensor
component ACT System reset

dcm5 No connection to sensor
node after restart MSG {“alertType”: “System Alert”,

“message”: “No connection to sensor node A after restart. Please check”.}

dcm6 No connection to integrated
sensor after restart MSG

{“alertType”: “System Alert”,
“message”: “No connection to integrated sensor A after restart.
Please check”.}

dcm7 Erratic behavior or
data corruption MSG {“alertType”: “System Alert”,

“message”: “System voltage too low. Increase voltage!”}

dcm8 Drops in the power
supply voltage below threshold ACT System reset

dcm9 Restart due to
BOR MSG {“alertType”: “System Alert”,

“message”: “System restarted. Data corruption prevented!”}

dcm10 Error during execution of
System software (UsageFault) MSG {“alertType”: “System Alert”,

“message”: “System restarted. Error prevented”.}

dcm11 Bus Memory fault
(BusFault) MSG {“alertType”: “System Alert”,

“message”: “System memory fault. Check firmware or data execution”}

dcm12 Bus Memory access violation
(MemManage) MSG {“alertType”: “System Alert”,

“message”: “SMemory access violation. Please check firmware”.}

dcm13 Bus unrecoverable system
failures (HardFault) MSG {“alertType”: “System Alert”,

“message”: “System restarted due to unrecoverable error. Please check!”}

3.4. Periodic Controller

The periodic controller (PCTRL), integrated as another fundamental component within
the resource management system, operates as an essential element of the prescriptive main-
tenance strategy. PCTRL is specifically designed to implement periodic prescriptions
while offering efficiency in resource management. This process plays a crucial role in
ensuring the continuous health and efficiency of the low-power system. Periodic prescrip-
tions encompass a range of proactive actions and maintenance tasks that contribute to the
prevention of potential issues and the optimization of overall system performance. The
PCTRL automatically generates prescriptions that are considered suitable for automated
implementation as part of its automated capabilities. By implementing routine activities,
these automated prescriptions maintain the stability of the system. Moreover, the PCTRL
generates prescription (PC) notifications for prescriptions that need end-user intervention
or actions that cannot be completed automatically. End users then receive these messages,
which include brief and precise instructions on what has to be done.

Table 4 outlines the periodic prescriptions generated by the PCTRL. It includes an
action (ACT) for a monthly software reset to maintain system stability (‘pc1’) and a message
(MSG) for biannual updates and upgrades, notifying users about the scheduled process
(‘pc2’). Moreover, the system automatically sends a prescription to the user, serving as
a timely reminder for the necessity of updating the system (‘pc3’). To securely update the
system firmware, wolfBoot [27] can be used, an open-source secure bootloader for Cortex-M
cores that can be integrated into the system by partitioning the on-board flash memory. Monthly
wolfBoot updates are seamlessly integrated into the system, ensuring optimal performance
and security with each iteration (‘pc4’). Finally, the pc5 prescription serves as a reminder
to users that a periodic system update has been successfully performed. This proactive



Sensors 2024, 24, 2125 10 of 21

communication ensures transparency and reassures users about the ongoing maintenance
efforts to keep the system running smoothly. Table 4 provides clarity on the types of
prescriptions, their frequencies, and the specific actions or messages associated with each.

Table 4. Periodic Controller prescriptions.

Description Type Frequency Prescription

pc1 ACT Monthly Software reset to maintain system stability.

pc2 MSG Biannual
{“alertType”: “Prescription”,
“message”: “Periodic system update and upgrade scheduled. Please prepare for
the process”.}

pc3 MSG Variable {“alertType”: “Prescription”,
“message”: “Please update you system”.}

pc4 ACT Monthly wolfBoot

pc5 MSG Monthly {“alertType”: “Prescription”,
“message”: “Periodic system update performed”.}

Periodical resets for the low-power system are essential to ensuring the reliability
and stability of the microcontroller’s operations. Periodic resets allow the system to revert
to a known state, therefore decreasing the likelihood of problems like data corruption or
accumulated errors. This procedure contributes to sustained performance by preserving
the integrity of the microcontroller’s operations and averting extended operations that
could result in problems. Periodic upgrades are also essential for introducing new features,
security advancements, and improvements, keeping the low-power system up to date and
optimized for changing problems and requirements. The low-power system’s long-term
dependability and functioning are supported by frequent upgrades and resets.

3.5. Malfunction Detection

The MD module is an element operating upstream of DCM. It plays a pivotal role in
the early detection of operational errors, identifying the implemented system as a proactive
system. This module acts as a preventive mechanism, enhancing the system’s ability to
identify and address anomalies before they affect data control processes. Its proactive
nature significantly contributes to the overall robustness and reliability of the system by
preemptively mitigating potential malfunctions.

This module employs a lightweight AE model designed to promptly detect potential
malfunctions within the system. In Table 5, an overview of the examined malfunctions is
provided, along with corresponding prescriptions (md) communicated to the user. The
assessment involves four operational parameters associated with heap and stack memory,
RAM memory, current power consumption, and CPU cycle count.

Table 5. Malfunction Detection Prescriptions.

Code Malfunction/Issue Prescription Type Prescription

md1 Insufficient Heap and
Stack Memory MSG

{“alertType”: “System Alert”,
“msg”: “Insufficient Heap and Stack Memory detected.
Please check and optimize.”}

md2 Low RAM Availability MSG {“alertType”: “System Alert”,
“msg”: “Low RAM detected. Please check and optimize”.}

md3 High Current
Power MSG {“alertType”: “System Alert”,

“msg”: “High Current Power Consumption. Please check sensors”.}

md4 Unusual CPU Cycle
Count MSG {“alertType”: “System Alert”,

“msg”: “Unusual CPU Cycle Count. Please check and optimize”.}

3.5.1. Autoencoder

AE is a type of neural network designed to acquire a condensed representation from
input data, functioning as an unsupervised learning method that leverages self-supervised



Sensors 2024, 24, 2125 11 of 21

training techniques. Comprising an input layer, an output layer, an encoder, and a decoder
neural network, along with a latent space, this architecture involves the encoder compress-
ing input data from the input layer into the latent space and, subsequently, the decoder
decompressing it for transmission to the output layer.

The primary goal of the autoencoder is to reduce the dimensions of input data while
maintaining essential information regarding the data structure. Specifically, given an
input x ∈ Rm, the encoder compresses x into an encoded representation z = e(x) ∈ Rn.
The decoder then reconstructs this representation into an output x′ = d(z) ∈ Rm. The
autoencoder is trained by minimizing the reconstruction error, defined by the equation:

L =
1
2 ∑

x
∥x − x′∥2. (1)

The LSTM autoencoder, convolutional autoencoder, and vanilla autoencoder are only
a few of the various autoencoder types that have been suggested in the literature. The
LSTM autoencoder consists of LSTM modules in both the encoder and decoder modules.
LSTMs are well suited for time series forecasting or anomaly detection due to their ability
to learn patterns in data over long sequences [28]. In general, an encoder-decoder model in
anomaly detection applications learns the representation of the data using only the normal
sequences, as stated in [29], and then reconstructs the data using the trained model. When
the model is fed with an abnormal sequence, it might not be reconstructed well, leading to
a high error.

3.5.2. AE-LSTM

Figure 3 describes the proposed AE-LSTM. Sequences of x ∈ Rn∗c are used as input
in the proposed method, where n is the number of instances in time t and c is the number of
features for each instance. The input consists of metrics recorded every second, including
heap and stack size, the number of CPU clock cycles, RAM usage, and current power
consumption in mA.

Figure 3. Anomaly detection method based on Reconstruction Errors (AE-LSTM).

Before being fed into the AE, the input data (i.e., heap and stack size, the number of
CPU clock cycles, RAM usage, and current power consumption) undergoes a preprocessing
phase. This involves replacing missing values with previous values, and a scaling method
is applied to bring features that are not in percentage form (CPU clock cycles and current



Sensors 2024, 24, 2125 12 of 21

power consumption) into a specific interval. Missing values in a dataset are instances
where no data value is stored for the variable in an observation. Specifically, the approach
to dealing with missing values involves replacing them with the most recent values [30]
when they are less than 25% of the data within the predefined monitoring granularity.
This method addresses potential data loss due to various errors, such as connection or
power issues, ensuring the integrity and continuity of the dataset for the AE analysis. This
decision is made on the basis that large gaps in the data, more than 25% missing values,
would significantly degrade the quality and accuracy of the data analysis [31]. If the gap
is greater than this threshold, it is omitted. By clearly defining this threshold and the
associated action of omitting data exceeding this gap, it is ensured that the autoencoder
and any subsequent analyses are based on reliable and robust data. This strategy improves
the model’s ability to identify anomalies while ensuring the data fed into the model is of
high quality and consistency, enhancing the overall reliability of the system’s monitoring
and predictive maintenance capabilities.

The standardization method was used to shift the distribution of data to have a mean
of zero and a standard deviation of one. The following equation describes the method:

xscaled =
x − mean

StandardDeviation
(2)

Subsequently, the scaled data is then transformed into [samples, time steps, and features]
in order to be used as input in the AE.

The encoder layer can be described in detail using the following equation:

hi = fθ(xscaled) = s(
j=1

∑
n

Winput
ij xscaled j + binput), (3)

where xscaled is the input vector with xscaled ∈ Rn∗c, θ is the parameter {Winput, binput}, W
is the encoder weight matrix with dimension m ∗ d, (m < d), and b is the bias.

Following this, the decoder layer can be described as follows:

x′i = g′θ(h) = s(
j=1

∑
n

Whidden
ij hj + bhidden), (4)

where the parameter set of the decoder is θ = {Whidden, bhidden}.
LSTM, introduced by Hochreiter and Schmidhuber in 1997 [32], represents a distinctive

form of recurrent neural network (RNN). Comprising interconnected units at each level,
it features one or more memory cells, along with input, output, and forget gates. The
fundamental concept of LSTM is outlined as follows:

it = σ(Wixt
scaled + Viht−1 + bi), (5)

f t = σ(W f xt
scaled + V f ht−1 + b f ), (6)

ot = σ(Woxt
scaled + Voht−1 + bo), (7)

ct = f t ⊙ ct−1 + it ⊙ tanh(Wcxt
scaled + Vcht−1 + bc), (8)

ht = ot ⊙ tanh(ct), (9)

where t is the time step, ht the hidden state at time t, xt
scaled the data at time t, ht−1 the

hidden state at previous time, it the input gate, f t the forget gate, ot the output gate,
and ct is a memory cell. Additionally, W ∈ Rd∗k , V ∈ Rd∗d, b ∈ Rd, σ is the sigmoid



Sensors 2024, 24, 2125 13 of 21

function, ⊙ denotes the element-wise product, and k is a hyper-parameter that represents
the dimensionality of hidden vectors.

In the context of the AE-LSTM architecture described in Figure 3, a seamless integra-
tion of AE principles and LSTM is achieved. The encoder layer encapsulates the essence
of the AE by compressing the input data into a latent representation. This encoded infor-
mation is then further processed by the LSTM layer, facilitating the capture of temporal
dependencies and intricate patterns within the sequential data. Subsequently, the decoder
layer reconstructs the information from the hybridized representation. The LSTM, with its
input, forget, and output gates, effectively contributes to both learning and generating se-
quences based on the compressed features derived from the AE. This approach, leveraging
the strengths of both autoencoders and LSTMs, enriches the model’s ability to capture and
reproduce intricate patterns in sequential data.

The reconstruction error serves as a metric for evaluating the fidelity of the model’s
output compared to the original input sequences. The mean absolute error (MAE) was
used as the metric to calculate the reconstruction error. Mathematically, the MAE for a
given instance at time t is expressed as the average absolute difference between the input
sequence x(t) and its reconstructed output x̂(t):

MAE(t) =
1
c

c

∑
i=1

∣∣∣xscaled
(t)
i − x̂(t)i

∣∣∣, (10)

where c is the number of features in each instance.
Additionally, to classify data points as either normal or anomalous, a threshold value

needed to be established. Given that the output of the MAE adheres to a normal distribution,
the following equation was employed to calculate the threshold value [12]:

Threshold_value = µ(MAE) + k ∗ σ(MAE), (11)

where µ represents the mean of the MAE, k the confidence value, and σ the standard
deviation of the MAE. Using the features of the normal distribution, this method defines a
threshold that includes a certain proportion of the data. By fine-tuning the value of the k,
the model’s sensitivity to anomalies can be adjusted, offering a flexible and data-driven
method for establishing an effective threshold for anomaly detection.

3.5.3. Implementation of AE in Low-Power Embedded Systems

Deploying machine learning models on resource-constrained microcontrollers is a
challenging process, and converting a TensorFlow LSTM model to TensorFlow Lite (TFLite)
is a pivotal step in this process. The proposed AE-LSTM was trained on TensorFlow version
2.14.0. The conversion to TFLite was achieved using the keras file, the TFLite Converter in
Python, and unfolding each LSTM layer using unidirectional LSTM [33].

Furthermore, to enhance the performance of the exported TFLite model in terms of
execution time and memory size, a quantization technique was implemented. Two distinct
methods for neural network quantization were considered: post-training quantization
(PTQ) and quantization-aware training (QAT) [34]. The primary distinction between PTQ
and QAT lies in the stage at which the scale is computed. In PTQ, the quantized model is
derived after the network has been trained and is typically constrained to FP16 or INT8
quantization. On the other hand, in QAT, the quantized model is computed during the
training phase, preserving significantly more accuracy in the results compared to PTQ. For
this study, QAT and 8-bit integers were specifically chosen, with the 8-bit integer being the
lowest supported value by the library. Finally, the fine-tuned TFLite model was integrated
into the microcontroller using the X-CUBE AI 8.1.0 module provided by STM [35].

4. Experimental Results

In the results section, a comprehensive analysis of the experimental findings, en-
compassing both real and simulated datasets within the embedded systems context, is



Sensors 2024, 24, 2125 14 of 21

presented. The results focus on MD, showcasing the efficacy of the proposed methodology.
The outcomes demonstrate robust performance in accurately identifying and address-
ing malfunctions, validating the practical applicability of our approach to enhancing the
reliability of embedded systems.

4.1. Experiment Setup and Results

The evaluation of the proposed methodology was conducted on three different au-
tonomous, miniaturized embedded systems. The schematic of the evaluation system is
presented in Figure 1. The three different evaluation systems utilized the STM32L496VG,
STM32H743VG, and STM32U5A5VJT microprocessors, respectively. Figure 4 depicts a pro-
totype of the embedded system utilizing the STM32L496VG MCU. The operating frequency
of the MCUs was 4 MHz.

Figure 4. Prototype of the miniaturized embedded system based on the Cortex-M4 core.

4.2. Data Set

Real and simulated data were created for the training and evaluation phases of the mal-
function detection module. A total of 30,000 instances were collected, with 10,000 instances
from each of the three different platforms. These data represented the normal operational
conditions of the system and were utilized for the training process of the malfunction
detection module. For the test set, 500 anomaly instances for each platform were generated
using simulations based on the four scenarios described in Section 4.2.2. All instances had
a granularity of one second.

4.2.1. Real Data

Real data were collected from three STM32 MCUs, capturing features associated with
heap and stack memory, RAM availability, current power consumption, and CPU cycle
count. Heap and stack memory, along with RAM availability data, were obtained through
the linker script. To measure CPU cycles, the CYCCNT register was initialized for cycle
counting, and the cycle count was recorded by marking the start and end of the targeted
code segment. The elapsed cycles were then calculated for a precise assessment of the
computational load. Additionally, the current power consumption was collected using the
INA219 sensor [36]. The heap and stack memory, as well as RAM availability, are measured
in percentage (%), while the current power consumption is in milliamperes (mA), and the
CPU cycle count is an integer value.

4.2.2. Simulated

Four different scenarios (SC) were simulated for each monitored system feature (heap
and stack memory, RAM usage, power consumption, and CPU cycle count). In each
scenario, one of the four monitored features was modified to assess the effectiveness
of the proposed malfunction detection algorithm. Table 6, illustrates the description of
each scenario, the potential causes of malfunctions, and the system features affected by
these malfunctions.



Sensors 2024, 24, 2125 15 of 21

• Heap and Stack Size Error: In this scenario, the application encounters a heap and
stack size error when the allocated memory during runtime exceeds the available heap
space. Additionally, errors occur when the stack overflows due to extensive nesting of
function calls or because of sensor input, such as receiving false values from a sensor.

• RAM Usage: In this scenario, errors occur in monitoring RAM usage when free allo-
cated memory is not executed properly or is missing. Additionally, buffer overflows
in pointers lead to the same problem with RAM usage.

• Current Consumption: In this scenario, an error occurs in current consumption when
a damaged temperature sensor (BME 680) is connected to the platform.

• CPU Cycle Count: In this scenario, stack overflow is induced by recursive function
calls, leading to a deviation between the normal CPU cycle count and the simulated
situation. This discrepancy indicates the occurrence of an error in the system.

Table 6. Simulated scenarios for system errors.

sc1 sc2 sc3 sc4

Descr.
Function call nesting
or overflow is occurred
due to input of a sensor

Uninitialized variables
or buffer overflows

Unexpected
power-related issues

Count deviating from
expected clock
cycle values

Possible
Causes

• Dynamic memory
allocation

• Recursive function calls

• Failure to free
allocated memory

• Buffer overflows in
arrays or pointers

• Incorrect peripheral
or sensor configurations

• Hardware issues

• Recursive function calls
• Incorrectly configured

interrupt priorities

Features
Affects Heap and Stack memory Ram Usage Power Consumption CPU Cycle Count

4.3. Results

In this section, the evaluation of the Malfunction Detection module is presented
using real and simulated data. Additionally, there is a thorough analysis and comparison
with state-of-the-art (SoA) methods, including AE with dense layers, one-class support
vector machine (OC-SVM), and Isolation Forest (IF). Finally, a detailed analysis of the
segmentation of each component of the proposed AE-LSTM model is presented, offering
comprehensive statistics for RAM and ROM memory usage, along with the corresponding
execution times and energy consumption.

4.3.1. Malfunction Detection Results

The experimental results of two different variations of the AE-LSTM method (with
one layer in the encoder and the decoder (1-1) and with two layers in the encoder and
the decoder (2-2)) and a comparison with SoA methods are presented in Table 7. The
experiments were conducted under various confidence values in each case.

In the evaluation of AE models (Dense and LSTM), three different confidence values
(k) were employed, leading to different threshold values as presented in Equation (11). In
the case of OC-SVM, different values of the nu parameter were employed, where nu serves
as an upper bound on the fraction of margin errors and a lower bound on the fraction
of support vectors relative to the total number of training examples. Distinct values for
the contamination parameter were set to control the threshold for the decision function,
determining when a scored data point should be considered an outlier. QAT quantization
(8 bits) was used in all models. For the evaluation of the methods, precision, recall, accuracy,
F1 score, and the multiply-accumulate operation (MACC) were employed as metrics to
assess the performance and computational complexity of each method.

Across all confidence values, the AE-LSTM(2-2) consistently outperforms all other AE
models, as well as OC-SVM and IF. Specifically, the best-performing AE-LSTM(2-2) was
observed at k = 8, exhibiting precision close to 0.985, recall and accuracy close to 0.999, an F1
score close to 0.990, and a MACC of 16484. The second-best model was the AE-LSTM(1-1),
showing a slight reduction in all evaluation metrics and a higher reduction in MACC, close



Sensors 2024, 24, 2125 16 of 21

to 78.42%. The best OC-SVM was observed at nu = 0.8, with all evaluation metrics lower
by approximately 3% in each metric. However, the MACC of the OC-SVM was much
higher than that of the highest AE model (AE-LSTM(2-2)), approximately 174% higher. For
achieving an optimal trade-off between model size and evaluation metrics, the AE-LSTM
(1-1) model was selected as the optimal.

Table 7. Comparison of the proposed AE-LSTM model with SoA.

Confidence
Value Model Precision Recall Accuracy F1 Score MACC

k = 6

AE-Dense (1-1) 0.919 0.985 0.964 0.955 420
AE-Dense (2-2) 0.925 0.998 0.978 0.965 1636
AE-LSTM (1-1) 0.940 0.998 0.978 0.965 3556
AE-LSTM (2-2) 0.945 0.998 0.997 0.974 16,484

nu = 0.005 OC-SVM 0.918 0.945 0.956 0.945 45,267
Contamination = 0.002 IF 0.915 0.935 0.946 0.935 1144

k=7

AE-Dense (1-1) 0.949 0.985 0.965 0.974 420
AE-Dense (2-2) 0.949 0.985 0.965 0.974 1636
AE-LSTM (1-1) 0.965 0.998 0.998 0.984 3556
AE-LSTM (2-2) 0.975 0.998 0.998 0.990 16,484

nu = 0.05 OC-SVM 0.938 0.955 0.966 0.956 45,267
Contamination = 0.003 IF 0.935 0.955 0.955 0.945 1144

k = 8

AE-Dense (1-1) 0.949 0.985 0.965 0.974 420
AE-Dense (2-2) 0.955 0.995 0.965 0.979 1636
AE-LSTM (1-1) 0.985 0.998 0.998 0.985 3556
AE-LSTM (2-2) 0.985 0.999 0.999 0.990 16,484

nu = 0.08 OC-SVM 0.955 0.965 0.975 0.965 45,267
Contamination = 0.005 IF 0.950 0.960 0.965 0.955 1144

Bold row indicates the best-performing model. Underlined row indicates the selected model.

The results for two variables, current power consumption and RAM usage, are de-
picted in Figures 5 and 6. The blue lines represent the actual values obtained from the
microprocessors during normal operating conditions, while the orange lines show the
results of the AE-LSTM(1-1) using the actual values as input. Any deviation between these
two lines indicates that the retrieved values are considered anomalies, signifying potential
malfunctions.

Figure 5. Real and reconstructed time series of the current power consumption using the AE-LSTM(1-
1) model.



Sensors 2024, 24, 2125 17 of 21

Figure 6. Real and reconstructed time series of the Ram usage using the AE-LSTM(1-1) model.

The green line represents simulated data used as the test set, which includes anomaly
points. The purple lines illustrate the reconstructed lines using the AE-LSTM(1-1). Addi-
tionally, bar plots for each variable present the reconstruction error using the MAE metric,
along with lines indicating the threshold value (dashed green). This threshold is selected
using the three-sigma statistical rule.

As observed, the proposed method is capable of identifying the majority of anomaly
points at the onset of the error phase. Specifically, on Figure 5 at 524 s, an increase in the loss
MAE is observed, indicating that errors begin to occur. At this point, the loss MAE exceeds
the predefined threshold, and these points are annotated as anomaly points. Around 560 s,
the error starts to diminish, indicating that it is resolved. Consequently, the loss MAE
decreases, and the values fall within the predefined threshold. Similar results are observed
in Figure 6; from 190 s to 202 s, the loss MAE exceeds the predefined threshold and is
annotated as an anomaly point. The clear distinction between actual and reconstructed
values, coupled with the effective identification of anomalies, underscores the robustness
and accuracy of the proposed AE-LSTM(1-1) method in anomaly detection.

4.3.2. Evaluation in the Embedded Systems

The evaluation of the embedded systems involved the examination of SoA and AE
anomaly detection methods across three distinct platforms: STM32L496VG (L4),
STM32H743VG (H7), and STM32U5A5VJT (U5). Key metrics, including model infer-
ence processing time (Proc. Time), flash and RAM memory occupancy (%), current power
consumption, and energy consumption, were utilized to assess the performance of each
method on these diverse hardware platforms. Table 8 illustrates the performance analysis
for each microprocessor.

In the case of the H7 microprocessor, the AE-Dense(1-1) method demonstrated the
fastest inference time and the lowest energy consumption. However, a notable trade-off
was observed in terms of F1-score and accuracy, which were considerably lower compared
to the selected AE-LSTM(1-1) model. Despite having an execution time of approximately
13.2 milliseconds, higher than the model with the fastest inference time, the AE-LSTM(1-1)
remained the preferred choice for real-time applications. This preference is attributed to the
overall superior performance of the AE-LSTM(1-1), emphasizing the significance of metrics
beyond inference time and energy consumption. The F1-score and accuracy metrics play
crucial roles in assessing the model’s ability to accurately identify anomalies, making the
AE-LSTM(1-1) more suitable for real-time solutions despite a slightly longer execution time.

Similar results were observed on the remaining two microprocessors, where the
selected model exhibited an inference time slightly higher than that on the H7 platform.
This minor increase in execution time can be attributed to the less favorable specifications
of the other microprocessors. In terms of accuracy, F1-score, and overall anomaly detection
capabilities, the AE-LSTM(1-1) remained the best solution for real-time detection.



Sensors 2024, 24, 2125 18 of 21

Table 8. Performance metrics of the anomaly detection models on different platforms.

Platform Model
Proc Time
(ms)

Flash Memory
Occupied (%)

Ram Memory
Occupied (%)

Current Power
Consumption (mA)

Energy
(mJ)

L4

Dense AE (1-1) 1.328 ms 1.047% (10.73 KB) 0.359% (1.56 KB) 0.635 mA 8.4 × 10−4 mJ
Dense AE (2-2) 4.168 ms 1.585% (16.24 KB) 1.996% (6.39 KB) 0.635 mA 0.003 mJ
AE LSTM (1-1) 17.829 ms 3.208% (32.85 KB) 0.925% (2.93 KB) 0.655 mA 0.038 mJ
AE LSTM (2-2) 61.866 ms 8.287% (84.86 KB) 1.428% (4.57 KB) 0.657 mA 0.131 mJ
OC-SVM 83.832 ms 12.061% (123.51 KB) 0.387% (1.24 KB) 0.687 mA 0.231 mJ
IF 3.547 ms 4.474% (45.83 KB) 0.400% (1.28 KB) 0.697 mA 0.008 mJ

H7

Dense AE (1-1) 1.172 ms 0.536% (10.73 KB) 0.151% (1.56 KB) 4.812 mA 0.005 mJ
Dense AE (2-2) 3.354 ms 0.812% (16.24 KB) 0.620% (6.39 KB) 4.821 mA 0.016 mJ
AE LSTM (1-1) 13.2 ms 1.642% (32.85 KB) 0.284% (2.93 KB) 4.853 mA 0.215 mJ
AE LSTM (2-2) 47.2 ms 4.243% (84.86 KB) 0.443% (4.57 KB) 4.876 mA 0.668 mJ
OC-SVM 77.458 ms 6.175% (123.51 KB) 0.120% (1.24 KB) 4.878 mA 1.211 mJ
IF 3.174 ms 2.293% (45.82 KB) 0.124% (1.28 KB) 4.865 mA 0.015 mJ

U5

Dense AE (1-1) 1.271 ms 0.268% (10.73 KB) 0.063% (1.56 KB) 0.685 mA 7.5 × 10−4 mJ
Dense AE (2-2) 3.816 ms 0.406% (16.24 KB) 0.260% (6.39 KB) 0.685 mA 0.008 mJ
AE LSTM (1-1) 17.032 ms 0.821% (32.85 KB) 0.119% (2.93 KB) 0.689 mA 0.039 mJ
AE LSTM (2-2) 58.28 ms 2.121% (84.86 KB) 0.186% (4.57 KB) 0.674 mA 0.140 mJ
OC-SVM 74.245 ms 3.082% (123.51 KB) 0.051% (1.24 KB) 0.679 mA 0.185 mJ
IF 3.654 ms 1.143% (45.83 KB) 0.052% (1.28 KB) 0.670 mA 0.008 mJ

Underlined row indicates the selected model.

Table 9 provides a detailed energy breakdown of the AE-LSTM(1-1) model across the
three different platforms: H7, U5, and L4. The table includes the overall processing time,
energy consumption, and a detailed breakdown of time and energy at different layers of the
model. For the H7 platform, the model’s execution time was 13.2 ms, with the majority of
energy consumed in the 1st LSTM layer of both the encoder and decoder. Similarly, for the
U5 and L4 platforms, the processing time was 17.032 ms and 17.829 ms, with corresponding
energy consumption of 0.039 mJ and 0.038 mJ, respectively. The breakdown reveals that the
encoder and decoder 1st LSTM layers are the dominant contributors to energy consumption,
emphasizing the significance of optimizing these layers for energy efficiency. The inclusion
of intermediate nodes also contributes to a small fraction of energy usage.

Table 9. Energy Breakdown of the AE-LSTM(1-1).

Platform Layers Proc Time
(ms)

Energy
(mJ)

L4

AE-LSTM (1-1) 17.829 ms 0.038 mJ
• Encoder 1st LSTM 8.076 ms 0.017 mJ
• Decoder 1st LSTM 9.143 ms 0.020 mJ
• Intermediate nodes 0.609 ms 0.001 mJ

H7

AE-LSTM (1-1) 13.2 ms 0.215 mJ
• Encoder 1st LSTM 6.095 ms 0.096 mJ
• Decoder 1st LSTM 6.681 ms 0.113 mJ
• Intermediate nodes 0.461 ms 0.006 mJ

U5

AE-LSTM (1-1) 17.032 ms 0.039 mJ
• Encoder 1st LSTM 7.715 ms 0.018 mJ
• Decoder 1st LSTM 8.734 ms 0.020 mJ
• Intermediate nodes 0.582 ms 0.001 mJ

4.4. System Requirements and Constraints

The comprehensive evaluation of the LP-OPTIMA framework across varying hard-
ware specifications underscores the STM32L496VG (L4) as an essential baseline for anal-
ysis. This microcontroller, with its Cortex-M4 core, 1MB of flash memory, and 320 KB of
RAM, represents the lower threshold of system capabilities within the examination scope.
As the system with the smallest flash and RAM capacities among the evaluated MCUs,
STM32L496VG encapsulates the minimum requirements for effective deployment of the
LP-OPTIMA framework. Its operational parameters may provide a testbed for assessing the



Sensors 2024, 24, 2125 19 of 21

framework’s performance under constrained resources. Moreover, the framework’s energy
consumption metrics on the STM32L496VG highlight its capacity to maintain energy effi-
ciency in resource-limited environments. This is pivotal for low-power embedded systems,
where power conservation is paramount. Finally, by establishing the STM32L496VG (L4) as
the baseline, invaluable insights into the framework’s scalability are gained. Performance
improvements observed as we transition to more capable MCUs (STM32H743VG and
STM32U5A5VJT) validate the framework’s adaptability to a broader spectrum of hardware
platforms. All the above are summarized in Table 10 based on results and information
presented in Tables 2 and 8.

Table 10. LP-OPTIMA Framework Performance Analysis Across STM32 Platforms.

Metric/Platform STM32L496VG (L4-Baseline) STM32H743VG (H7) STM32U5A5VJT (U5)

Processor Core Cortex-M4 Cortex-M7 Cortex-M33

Frequency 80 MHz 480 MHz 160 MHz

Flash Memory 1 MB 2 MB 4 MB

RAM 320 KB 1 MB 2.5 MB

Processing Time
(ms) 17.829 13.2 17.032

Flash Memory
Occupied (%) 3.208% 1.642% 0.821%

RAM
Occupied (%) 0.925% 0.284% 0.119%

Current Power
Consumption (mA) 0.655 4.853 0.689

Energy (mJ) 0.038 0.215 0.039

Performance
Insight

Optimal balance between
performance and resource
usage. Suitable for real-time
applications with constrained
resources.

Enhanced performance with
increased power usage.
Suitable for applications
requiring faster processing
and higher reliability.

Efficient energy use
with minimal resource
occupancy, demonstrating
scalability to more
powerful systems without
significant energy cost.

Constraints

- Max energy: 0.04 mJ
- Min processing speed: 15 ms
- Max flash occupancy: 4%
- Max RAM occupancy: 1%

- Max energy: 0.22 mJ
- Min processing speed: 10 ms
- Max flash occupancy: 2%
- Max RAM occupancy: 0.3%

- Max energy: 0.04 mJ
- Min processing speed: 15 ms
- Max flash occupancy: 1%
- Max RAM occupancy 0.2%

5. Conclusions

This research addresses the challenges of maintenance and resource optimization for
low-power embedded systems. The proposed approach introduces a trilateral framework
involving periodic prescriptions, automated control mechanisms, and an AI malfunction
detection module. The evaluation of the AI malfunction detection module, particularly
the AE-LSTM(1-1) model, demonstrated outstanding performance across various metrics,
with precision, recall, accuracy, and F1 score consistently exceeding 98%. The results of the
MD module were compared with state-of-the-art methods, including AE with dense layers,
OC-SVM, and Isolation Forest.

The evaluation extended to real-life testing on three different embedded systems based
on various ARM Cortex cores. The selected AE-LSTM(1-1) model demonstrated superior
performance in terms of accuracy, F1 score, and overall anomaly detection capabilities,
making it the preferred choice for real-time applications despite a slightly longer execution
time. The research also provided a detailed breakdown of energy consumption for the
AE-LSTM(1-1) model across different hardware platforms. The results highlighted the
importance of optimizing the first LSTM layers in both the encoder and decoder for
energy efficiency.

Moving forward, future research can enhance the proposed framework for low-power
embedded systems. Firstly, the integration of dynamic prescriptions based on real-time



Sensors 2024, 24, 2125 20 of 21

system conditions presents an opportunity for adaptive maintenance strategies, potentially
optimizing resource utilization more effectively. The continuous refinement of machine
learning models remains a crucial area of exploration. Investigating advanced techniques
and architectures could lead to even more accurate and efficient anomaly detection models
for low-power embedded systems. However, it is crucial to acknowledge certain limitations.
The evaluation focused on three specific ARM Cortex cores, and future work should
encompass a broader range of hardware platforms to ensure the generalizability of the
proposed framework.

Author Contributions: Conceptualization, A.P., A.D. and C.S.K.; methodology, A.P., A.D., C.S.K.,
S.K., C.-N.A. and D.I.; software, A.P., A.D. and C.S.K.; validation, S.K., C.-N.A., D.I. and D.T.; formal
analysis, A.P., A.D. and C.S.K.; investigation, A.P., A.D. and C.S.K.; resources, A.P., A.D., C.S.K.,
S.K., C.-N.A., D.I. and D.T.; data curation, A.P., A.D. and C.S.K.; writing—original draft preparation,
A.P., A.D. and C.S.K.; writing—review and editing A.P., A.D., C.S.K., S.K., C.-N.A., D.I. and D.T.;
visualization, A.P., A.D., C.S.K., S.K., C.-N.A., D.I. and D.T.; supervision, S.K., D.I. and D.T.; All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Acknowledgments: This work is partially supported by the PRECEPT project, funded by the EU
H2020 under grant agreement No. 958284.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Ye, L.; Wang, Z.; Liu, Y.; Chen, P.; Li, H.; Zhang, H.; Wu, M.; He, W.; Shen, L.; Zhang, Y.; et al. The challenges and emerging

technologies for low-power artificial intelligence IoT systems. IEEE Trans. Circuits Syst. Regul. Pap. 2021, 68, 4821–4834. [CrossRef]
2. Souza Junior, M.E.T.; Freitas, L.C.G. Power electronics for modern sustainable power systems: Distributed generation, microgrids

and smart grids—A review. Sustainability 2022, 14, 3597. [CrossRef]
3. Dhanagopal, R.; Muthukumar, B. A model for low power, high speed and energy efficient early landslide detection system using

IoT. Wirel. Pers. Commun. 2021, 117, 2713–2728. [CrossRef]
4. Nurelmadina, N.; Hasan, M.K.; Memon, I.; Saeed, R.A.; Zainol Ariffin, K.A.; Ali, E.S.; Mokhtar, R.A.; Islam, S.; Hossain, E.; Hassan,

M.A. A systematic review on cognitive radio in low power wide area network for industrial IoT applications. Sustainability 2021,
13, 338. [CrossRef]

5. Xie, H.; Jiang, M.; Zhang, D.; Goh, H.H.; Ahmad, T.; Liu, H.; Liu, T.; Wang, S.; Wu, T. IntelliSense technology in the new power
systems. Renew. Sustain. Energy Rev. 2023, 177, 113229. [CrossRef]

6. Vitolo, P.; De Vita, A.; Di Benedetto, L.; Pau, D.; Licciardo, G.D. Low-power detection and classification for in-sensor predictive
maintenance based on vibration monitoring. IEEE Sens. J. 2022, 22, 6942–6951. [CrossRef]

7. Ratnam, K.S.; Palanisamy, K.; Yang, G. Future low-inertia power systems: Requirements, issues, and solutions-A review. Renew.
Sustain. Energy Rev. 2020, 124, 109773. [CrossRef]

8. Milano, F.; Dörfler, F.; Hug, G.; Hill, D.J.; Verbič, G. Foundations and challenges of low-inertia systems. In Proceedings of the
2018 Power Systems Computation Conference (PSCC), Dublin, Ireland, 11–15 June 2018; pp. 1–25.

9. Liu, J.; Gao, W.; Dong, J.; Wu, N.; Ding, F. Low-Power Failure Detection for Environmental Monitoring Based on IoT. Sensors
2021, 21, 6489. [CrossRef] [PubMed]

10. Chauhan, P.; Gupta, S. Challenges and Future Perspectives of Low-Power VLSI Circuits: A Study. In Modern Electronics Devices
and Communication Systems: Select Proceedings of MEDCOM 2021; Springer: Berlin/Heidelberg, Germany, 2023; pp. 561–569.

11. Dimara, A.; Vasilopoulos, V.G.; Papaioannou, A.; Angelis, S.; Kotis, K.; Anagnostopoulos, C.N.; Krinidis, S.; Ioannidis, D.;
Tzovaras, D. Self-healing of semantically interoperable smart and prescriptive edge devices in IoT. Appl. Sci. 2022, 12, 11650.
[CrossRef]

12. Papaioannou, A.; Dimara, A.; Michailidis, I.; Stefanopoulou, A.; Karatzinis, G.; Krinidis, S.; Anagnostopoulos, C.N.; Kosmatopou-
los, E.; Ioannidis, D.; Tzovaras, D. Self-protection of IoT Gateways Against Breakdowns and Failures Enabling Automated
Sensing and Control. In Proceedings of the IFIP International Conference on Artificial Intelligence Applications and Innovations,
León, Spain, 14–17 June 2023; Springer: Berlin/Heidelberg, Germany, 2023; pp. 231–241.

13. Franco, I.T.; de Figueiredo, R.M. Predictive Maintenance: An Embedded System Approach. J. Control Autom. Electr. Syst. 2023,
34, 60–72. [CrossRef]

http://doi.org/10.1109/TCSI.2021.3095622
http://dx.doi.org/10.3390/su14063597
http://dx.doi.org/10.1007/s11277-019-06933-7
http://dx.doi.org/10.3390/su13010338
http://dx.doi.org/10.1016/j.rser.2023.113229
http://dx.doi.org/10.1109/JSEN.2022.3154479
http://dx.doi.org/10.1016/j.rser.2020.109773
http://dx.doi.org/10.3390/s21196489
http://www.ncbi.nlm.nih.gov/pubmed/34640809
http://dx.doi.org/10.3390/app122211650
http://dx.doi.org/10.1007/s40313-022-00949-4


Sensors 2024, 24, 2125 21 of 21

14. Hu, W.; Zhou, L.; Du, J.; Li, S.; Kong, C. Mine motor predictive maintenance monitoring equipment and algorithm design based
on STM32. In Proceedings of the 2020 IEEE 9th Joint International Information Technology and Artificial Intelligence Conference
(ITAIC), Chongqing, China, 11–13 December 2020; Volume 9, pp. 1845–1849.

15. Huang, M.T.; Li, S.; Xue, Y.; Li, S.Y. Design of embedded hardware platform for predictive maintenance of coal mine reducer. In
Proceedings of the 2020 5th International Conference on Mechanical, Control and Computer Engineering (ICMCCE), Harbin,
China, 25–27 December 2020; pp. 1079–1082.

16. Kouzinopoulos, C.S.; Tzovaras, D.; Bembnowicz, P.; Meli, M.; Bellanger, M.; Kauer, M.; De Vos, J.; Pasero, D.; Schellenberg, M.;
Vujicic, O. AMANDA: an autonomous self-powered miniaturized smart sensing embedded system. In Proceedings of the 2019
IEEE 9th International Conference on Consumer Electronics (ICCE-Berlin), Berlin, Germany, 8–11 September 2019; pp. 324–329.

17. Meli, M.; Brütsch, M.; Stajic, S.; Böbel, M.; Lorenz, D.; Hegetschweiler, L.; Karanassos, D.; Kouzinopoulos, C.S. Low light energy
autonomous LoRaWAN node. In Proceedings of the 2020 IEEE 5th International Symposium on Smart and Wireless Systems
within the Conferences on Intelligent Data Acquisition and Advanced Computing Systems (IDAACS-SWS), Dortmund, Germany,
17–18 September 2020; pp. 1–6.

18. La Rosa, R.; Dehollain, C.; Burg, A.; Costanza, M.; Livreri, P. An energy-autonomous wireless sensor with simultaneous energy
harvesting and ambient light sensing. IEEE Sens. J. 2021, 21, 13744–13752. [CrossRef]

19. La Rosa, R.; Dehollain, C.; Costanza, M.; Speciale, A.; Viola, F.; Livreri, P. A Battery-Free Wireless Smart Sensor platform with
Bluetooth Low Energy Connectivity for Smart Agriculture. In Proceedings of the 2022 IEEE 21st Mediterranean Electrotechnical
Conference (MELECON), Palermo, Italy, 14–16 June 2022; pp. 554–558.

20. Sidibe, A.; Loubet, G.; Takacs, A.; Dragomirescu, D. A multifunctional battery-free bluetooth low energy wireless sensor node
remotely powered by electromagnetic wireless power transfer in far-field. Sensors 2022, 22, 4054. [CrossRef] [PubMed]

21. ARMv7-M Architecture Reference Manual. Available online: https://developer.arm.com/documentation/ddi0403/ed/ (accessed
on 5 February 2024).

22. ARMv8-M Architecture Reference Manual. Available online: https://developer.arm.com/documentation/ddi0553/latest/
(accessed on 5 February 2024).

23. STMicroelectronics RM0351 Reference Manual. Available online: https://www.st.com/resource/en/reference_manual/rm0351-
stm32l47xxx-stm32l48xxx-stm32l49xxx-and-stm32l4axxx-advanced-armbased-32bit-mcus-stmicroelectronics.pdf (accessed on 5
February 2024).

24. STMicroelectronics PM0214 Programming Manual. Available online: https://www.st.com/resource/en/programming_manual/
pm0214-stm32-cortexm4-mcus-and-mpus-programming-manual-stmicroelectronics.pdf (accessed on 5 February 2024).

25. STMicroelectronics RM0433 Reference Manual. Available online: https://www.st.com/resource/en/reference_manual/dm003
14099-stm32h742-stm32h743-753-and-stm32h750-value-line-advanced-arm-based-32-bit-mcus-stmicroelectronics.pdf (accessed
on 5 February 2024).

26. STMicroelectronics RM0456 Reference Manual. Available online: https://www.st.com/resource/en/reference_manual/rm0456-
stm32u5-series-armbased-32bit-mcus-stmicroelectronics.pdf (accessed on 8 February 2024).

27. wolfBoot Secure Bootloader. Available online: https://www.wolfssl.com/products/wolfboot/ (accessed on 8 February 2024).
28. Staudemeyer, R.C.; Morris, E.R. Understanding LSTM–a tutorial into long short-term memory recurrent neural networks. arXiv

2019, arXiv:1909.09586.
29. Nguyen, H.D.; Tran, K.P.; Thomassey, S.; Hamad, M. Forecasting and Anomaly Detection approaches using LSTM and LSTM

Autoencoder techniques with the applications in supply chain management. Int. J. Inf. Manag. 2021, 57, 102282. [CrossRef]
30. Al-Jamali, N.A.S.; Al-Saedi, I.R.; Zarzoor, A.R.; Li, H. A new imputation technique based a multi-Spike Neural Network to

handle missing data in the Internet of Things Network (IoT). IEEE Access 2023, 11, 112841–112850. [CrossRef]
31. Mamat, N.; Razali, S.M. Comparisons of various imputation methods for incomplete water quality data: A case study of the

langat river, Malaysia. J. Kejuruter. 2023, 35, 191–201. [CrossRef] [PubMed]
32. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
33. TensorFlow. TensorFlow Lite Models: Convert RNN. Available online: https://www.tensorflow.org/lite/models/convert/rnn (

accessed on 8 February 2024)
34. Papaioannou, A.; Kouzinopoulos, C.S.; Ioannidis, D.; Tzovaras, D. An Ultra-low-power Embedded AI Fire Detection and Crowd

Counting System for Indoor Areas. ACM Trans. Embed. Comput. Syst. 2023, 22, 1–20. [CrossRef]
35. X-CUBE AI Module from STM. Available online: https://www.st.com/en/embedded-software/x-cube-ai.html (accessed on 6

Februray 2024).
36. Texas Instruments. INA219 Datasheet; Texas Instruments: Dallas, TX, USA, 2015.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/JSEN.2021.3068134
http://dx.doi.org/10.3390/s22114054
http://www.ncbi.nlm.nih.gov/pubmed/35684684
https://developer.arm.com/documentation/ddi0403/ed/
https://developer.arm.com/documentation/ddi0553/latest/
https://www.st.com/resource/en/reference_manual/rm0351-stm32l47xxx-stm32l48xxx-stm32l49xxx-and-stm32l4axxx-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/rm0351-stm32l47xxx-stm32l48xxx-stm32l49xxx-and-stm32l4axxx-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/programming_manual/pm0214-stm32-cortexm4-mcus-and-mpus-programming-manual-stmicroelectronics.pdf
https://www.st.com/resource/en/programming_manual/pm0214-stm32-cortexm4-mcus-and-mpus-programming-manual-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/dm00314099-stm32h742-stm32h743-753-and-stm32h750-value-line-advanced-arm-based-32-bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/dm00314099-stm32h742-stm32h743-753-and-stm32h750-value-line-advanced-arm-based-32-bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/rm0456-stm32u5-series-armbased-32bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/rm0456-stm32u5-series-armbased-32bit-mcus-stmicroelectronics.pdf
https://www.wolfssl.com/products/wolfboot/
http://dx.doi.org/10.1016/j.ijinfomgt.2020.102282
http://dx.doi.org/10.1109/ACCESS.2023.3323435
http://dx.doi.org/10.17576/jkukm-2023-35(1)-18
http://www.ncbi.nlm.nih.gov/pubmed/37283663
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
https://www.tensorflow.org/lite/models/convert/rnn
http://dx.doi.org/10.1145/3582433
https://www.st.com/en/embedded-software/x-cube-ai.html

	Introduction
	Related Work
	Methodology
	Architecture and Dependencies of Autonomous, Low-Power Embedded Systems
	STM32L496VG MCU
	STM32H743VG MCU
	STM32U5A5VJT MCU

	Resource Management
	Data Control Mechanism
	Periodic Controller
	Malfunction Detection
	Autoencoder
	AE-LSTM
	Implementation of AE in Low-Power Embedded Systems


	Experimental Results
	Experiment Setup and Results
	Data Set
	Real Data
	Simulated

	Results
	Malfunction Detection Results
	Evaluation in the Embedded Systems

	System Requirements and Constraints

	Conclusions
	References

