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Abstract: The availability of a sufficient number of annotated samples is one of the main challenges
of the supervised methods used to classify crop types from remote sensing images. Creating these
samples is time-consuming and costly. Active Learning (AL) offers a solution by streamlining
sample annotation, resulting in more efficient training with less effort. Unfortunately, most of the
developed AL methods overlook spatial information inherent in remote sensing images. We propose
a novel spatially explicit AL that uses the semi-variogram to identify and discard redundant, spatially
adjacent samples. It was evaluated using Random Forest (RF) and Sentinel-2 Satellite Image Time
Series in two study areas from the Netherlands and Belgium. In the Netherlands, the spatially explicit
AL selected 97 samples achieving an overall accuracy of 80%, compared to traditional AL selecting
169 samples with 82% overall accuracy. In Belgium, spatially explicit AL selected 223 samples and
obtained 60% overall accuracy, while traditional AL selected 327 samples and obtained an overall
accuracy of 63%. We concluded that the developed AL method helped RF achieve a good performance
mostly for the classes consisting of individual crops with a relatively distinctive growth pattern such
as sugar beets or cereals. Aggregated classes such as ‘fruits and nuts’ posed, however, a challenge.

Keywords: spatial autocorrelation; supervised classification; remote sensing; agriculture; scarce
label environments

1. Introduction

Supervised machine learning has experienced tremendous progress in recent years be-
ing increasingly used for classifying crop types from Satellite Image Time Series (SITS) [1,2].
Although deep learning classifiers can successfully identify crops from SITS without re-
quiring the involvement of the image analysts in the selection of the input features [3–8],
traditional supervised machine learning remains a viable alternative [9–11]. Machine learn-
ing methods learn the characteristics of the target crops from training samples collected
through intense field campaigns or expert-based interpretation of very high-resolution satel-
lite images [12]. Unfortunately, annotating a large number of samples is a time-consuming
and expensive task [13]. Consequently, different solutions have been proposed to ad-
dress the challenges associated with the availability of samples: (1) generating labeled
crop samples for the target classification years by using samples from previous years [10];
(2) developing (semi-)automatic solutions to label crop samples [13]; (3) using classifiers
such as Dynamic Time Warping that require a small number of training samples [14,15];
(4) leveraging the information learned by supervised methods in areas where many labeled
samples are available through transfer learning methods [16,17]; and (5) reducing the num-
ber of crop samples to be annotated without decreasing the performance of the supervised
methods [18]. This means that the training samples remain representative of the statistical
distribution of data [19].

Active Learning (AL) is one of the solutions to reduce the number of samples to be
annotated by several orders of magnitude. It helps to select the most informative samples to
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be labeled from a large unlabeled sample set [20]. Two criteria are commonly used to rank
the candidate samples relative to their potential contribution to the classification problem:
uncertainty and diversity. The uncertainty criterion aims to identify the samples that pose
challenges to the supervised methods. The uncertainty of a sample can be quantified
using margin sampling [21], disagreement between a committee of classifiers [22], posterior
probabilities of class membership [23], or entropy [24]. Since the samples selected based
on uncertainty alone may not be well representative of the classes present in the dataset,
the diversity criterion has been introduced in AL studies. Diversity measures ensure class
representativeness among selected samples. These measures include density-weighted
metrics or clustering-based approaches [18]. Euclidean distance or cosine similarity metrics
are the most common similarity measures used to select the most dissimilar samples [25].

AL has been successfully implemented in several remote sensing applications includ-
ing land cover classification with Support Vector Machine and multispectral images [26],
improvement of land cover classification from hyperspectral images using both traditional
AL [23] or AL that accounts for spatial information [27], urban land cover-land use classifi-
cation through object-based image analysis [28]. In terms of application domains, AL has
been used for biophysical parameter estimation [29], tree species mapping [30], crop area
mapping [31], crop type mapping using satellite image time series [32] and hyperspectral
images [33], large-extent cultivated area mapping [31], and poplar plantation mapping at
the national level [18]. Recently, AL has been implemented to reduce the annotation efforts
required by various deep learning algorithms [34,35].

Previous studies focused mainly on AL heuristics that use spectral data to optimize
the collection of samples to be annotated while ignoring the spatial information inherent
in remote sensing images. Nonetheless, AL-based selected samples may be spatially
contiguous and this might result in a redundant sample set. A limited number of studies
accounted for the spatial distribution of samples when implementing AL algorithms.
For example, Demir, et al. [36] included topography and road networks to reduce travel
time when limited resources are available to annotate training samples. Zhang, Pasolli,
and Crawford [33] showed the advantages of both spectral and spatial features extracted
from segmentation maps in the proposed multi-view AL method to map crops from
hyperspectral images. Pasolli, et al. [37] used the Euclidean distance, Parzen window
method, and spatial entropy as spatial criteria to ensure that the selected samples are
spatially representative of the entire study area. The authors combined spectral and spatial
criteria using nondominated sorting. Calculating spatial autocorrelation between samples
within an area is an alternative approach for identifying redundant samples in the space
domain. Different measures can be used to quantify the spatial autocorrelation including
Moran’s I [38], Geary’s C ratio [39], or the semi-variogram. Moran’s I and Geary’s C are
global spatial autocorrelation measures, whereas the semi-variogram shows how spatial
variation changes as a function of the distance between point location pairs. Stumpf,
et al. [40] developed a region-based AL method for landslide mapping that reduces the
samples to be annotated to those situated in a few compact spatial batches. The authors
measured the spatial autocorrelation of gray values within input images using a semi-
variogram analysis to identify the minimum size of sampling windows to capture “spatial
variability beyond locally autocorrelated characteristics”.

In our study, we propose the semi-variogram to compute the spatial autocorrelation
between training samples and discard neighboring samples from the unlabeled but rep-
resentative sample set selected using an AL method applied for crop type mapping from
SITS. The method, referred to as spatially explicit AL, eliminates redundant samples while
achieving results comparable to those obtained by the supervised classifier trained with
a larger number of randomly selected samples. Our method was implemented using a
Random Forest (RF) classifier and tested in two study areas from the Netherlands and
Belgium. We compared our results to the traditional AL approach that does not exploit
spatial information to select the most representative samples for training.
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The remainder of the paper is organized as follows: Section 2 introduces the two study
areas, and the Sentinel-2 SITS used to identify the target crop types. Section 3 is dedicated
to the adopted methodology where we are introducing the concept of the spatially explicit
AL method proposed in our study. Sections 4 and 5 focus on the presentation of the results
and their interpretation. The paper ends with conclusions in Section 6.

2. Study Areas and Datasets

Our research was conducted in two study areas with agricultural land use (Figure 1).
Study Area 1 (SA1) is located in Noord Beveland, a municipality in the province of Zeeland
in the Southwest of The Netherlands. Being a polder resulting from land reclamation,
the area yields fertile soils, and large and regularly shaped parcels, making it suitable for
agriculture. Study Area 2 (SA2) is situated in the municipality of Kortrijk (Flemish), also
known as Courtrai (French/English).
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Figure 1. Spatial location of the two investigated study areas: Study Area 1 (SA1) and Study Area 2
(SA2)—including the crop type distribution in these areas.

The area is located in the Flanders Region in the western part of Belgium, along the
River Leie (Lys) and the Leie–Scheldt Canal. It is one of the important agricultural areas in
the country and contains many farming households. The agriculture parcels in Kortrijk are
much smaller than those from Noord Beveland. To implement the proposed method, we
used the existing datasets on the cultivated crops in the two selected study areas. A total of
54 crop classes for SA1 and 13 crop classes for SA2 were available. However, we reduced
the classes to seven crops for SA1 and eight crop classes for SA2, omitting the classes with
less than five parcels. For SA1, the crop data were obtained from the Base Registration Crop
Parcels agency in the Netherlands (www.PDOK.nl (accessed on 21 March 2024)), and the
parcel boundaries from the Agricultural Area of the Netherlands (AAN). The 1584 parcels
available in the investigated study area represent arable land, grassland, natural area, and
fallow land. Our research focused solely on the 951 crop parcels and seven crop types:

www.PDOK.nl
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cereals; potatoes; beets; onions; orchard; maize; and alfalfa (Table 1). The remaining land
use/land cover classes were grouped into ‘water’ and ‘other’. For SA2, the crop data were
acquired from the Flemish geoportal Geopunt (www.geopunt.be (accessed on 21 March
2024)). The data consist of agricultural parcels associated with cultivated crops. Eight crop
classes were used for the research: maize; grains, seeds, and legumes; potatoes; vegetables,
herbs, and ornamental plants; sugar beets; fodder; flax and hemp; and fruits and nuts
(Table 2). An additional class of ‘other’ areas was added incorporating the remaining land
use and land cover classes available in the study area.

Table 1. Total number of crop parcels available in SA1.

Crop Type Number of Crop Parcels

Cereals 305
Potatoes 157

Beets 117
Onion 68

Orchard 60
Maize 35
Alfalfa 27

Table 2. Total number of crop parcels in SA2.

Crop Type Number of Crop Parcels

Maize 2989
Grains, seeds, and legumes 1533

Potatoes 1386
Vegetables, herbs, and ornamental plants 1365

Sugar beets 573
Fodder 273

Flax and hemp 96
Fruits and nuts 93

For SA1, we used the crop data from 2019, whereas for SA2 we used the data from 2018.
The selection of the year was contingent on the cloud coverage. According to the Royal
Meteorological Institute (KNMI) in the Netherlands, 2019 was a very warm, sunny, and
quite dry year on average, and a decrease in the rainfall compared to the long-term monthly
average was observed in the southwestern part of the country where SA1 is located. On
25 July, the Netherlands had its highest temperature in at least three centuries. This was a
time when most of the crops were at their peak growth. Both May and November were
unusually cool. These were sowing and harvesting months for maize, potatoes, and onions.
In the case of SA2, 2018 was a dry year, with a maximum of 37 ◦C on the 27 of July and of
36 ◦C on the 7th of August. The meteorological information for SA1 was obtained from the
nearby weather station of Vlissingen via the national meteorological service of KNMI, and
the information for Kortrijk from the weather station of Kortrijk via (weer1.com (accessed
on 21 March 2024)).

3. Methods

The main methodological steps include (i) image processing; (ii) sample generation
for SA1 and SA2. (Note that for our study, we used the existing crop-type database to label
the samples selected through AL. In the regions where these data are missing, the users
need to label the data through field campaigns.); (iii) AL-based training sample selection
considering the spectral domain only; (iv) development of a spatially explicit AL strategy
using a semi-variogram; (v) crop type classification, first using a larger number of training
samples, then using only samples identified as being relevant by spectral-based AL and,
finally, using only training samples generated by spatially explicit AL, and (vi) evaluation
of the obtained results (Figure 2).

www.geopunt.be
https://www.weer1.com/
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3.1. Satellite Image Pre-Processing

The SITS used as input in our research consists of a monthly time series of Sentinel-
2 images. The clouds were masked out using the QA60 band. In the next step, the
Normalized Difference Vegetation Index (NDVI) for each Sentinel-2 image was computed
using bands 8 and 4. The temporal profiles of the target crops representing the average
of 50 randomly selected samples in SA1 and 70 randomly selected samples in SA2 are
presented in Figures 3 and 4.
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3.2. Training Sample Preparation

Using the crop parcels described in Tables 1 and 2, 630 point-based samples were
generated for the investigated target classes in SA1 and 900 point-based samples for the
target classes in SA2. For SA1, we selected 70 samples per class using a stratified random
sampling approach, whereas for SA2 we applied the same sampling strategies but selected
100 samples per class. The number of samples for the two investigated study areas differs
because SA2 has more aggregated classes than SA1 (Figure 3) which increases the inter-
class variations as depicted in Figure 4 for ‘vegetables, herbs, and ornamentals’, ‘fruits
and nuts’ and ‘flax and hemp’. Consequently, a larger number of samples is required to
represent these high variations. The samples were further divided into training (70%) and
testing samples (30%). The training and testing sample sets were sampled from different
crop parcels to ensure their spatial independence and, in this way, to reduce the risk of
overestimating the classification performance [3,41].

3.3. Selection of Training Samples Using Active Learning

The components of an active learner consist of a set of classifiers C trained on a small
set of labeled samples L, a query Q, implemented to identify and select the most informative,
i.e., uncertain, labels from a set of unlabeled samples U which are not annotated yet and a
supervisor S, assigning labels to the retrieved samples [42]. The procedure is initialized
by training the selected supervised classifier using the sample set L. In the next step, the
query Q identifies and selects the most informative samples from U using a user-defined
criterion or several criteria. Lastly, supervisor S annotates the retrieved unlabeled samples
that are further added to the L set and used by the supervised classifier for retraining. This
is an iterative procedure that continues until it reaches a user-defined stopping criterion
that can, for example, be defined based on the classification accuracy [43].

Two AL scenarios were implemented in this research. The first AL scenario uses
spectral domain heuristics to query informative samples and is referred to in this paper as
spectral-based AL. These heuristics query unlabeled samples using only their characteristics
in the feature space. As mentioned in the introduction section, some of these heuristics
are posterior probability, least confidence, margin sampling, and entropy [18]. In our
work, we propose using Query By Committee (QBC), where a user-defined number of
learners are trained from a pool of labeled samples, and each learner, i.e., committee
member, votes for the label to which a potential sample belongs. The sample for which
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most of the implemented learners of the committee disagree is selected. This method is
less computationally intensive than other AL approaches [40]. Since a small number of
committee members proved to be efficient in the previous work dedicated to AL [44,45],
we used two committee members represented by two RF classifiers [46].

We divided the 350 samples available for SA1 into a labeled sample set L consisting
of 40 samples and an unlabeled set U containing 310 samples. For SA2, 40 samples (L)
out of 560 available samples were used for initializing the training. In both cases, the L
samples were randomly selected. In the next step, the informative unlabeled samples were
queried from U and the performance of the committee was assessed with an increment
of the number of training samples used to train the model. The prediction accuracy of
the committee was assessed by comparing the predicted class label with the known class
label of the sample. NDVI values of each unlabeled sample were used to determine its
importance using vote entropy (Equation (1)) as a metric for the amount of disagreement
between committee members. As expressed by

x∗VE = argmax
x

− ∑
i

Vyi

C
log

Vyi

C
(1)

where x∗VE = voteentropyforsamplex; yi = possible labels; Vyi = number of votes received
from the committee members; and C = number of members/committee size.

In the second AL scenario, the selection of the informative samples accounted for their
characteristics both in the feature space and in spatial information. This implementation
is referred to as spatially explicit AL throughout our paper and it accounts for the spatial
distribution of the samples assessed by spatial autocorrelation measures. Spatial autocorre-
lation describes the spatial dependency between objects (or variables) and is an expression
of how similarity between objects (or variables) depends on their relative position [47]. It
can be quantified by global or local measures or by a semi-variogram. Global measures,
such as Moran’s I [38] or Geary’s C ratio [39] summarize the level of clustering across
the entire area of interest in one single statistic without identifying where in the area the
similarity occurs. For our work, it is crucial to understand where the (dis)similarity occurs
to select the most relevant, i.e., most informative samples. Therefore, global measures
cannot help. Local measures, such as the Local Indicator of Spatial Association (LISA) [48]
and local Moran’s I [49], indicate the location of clusters explained by the overall global
pattern and give a single statistic for each locality. However, the current research needs
a measure of spatial autocorrelation at the sample level, on a point-to-point basis. The
semi-variogram is a function relating semi-variance to sampling lag, i.e., the distance be-
tween samples [50], and can be used as a characterization of the spatial structure of an area.
When the semi-variance is plotted against the distance between samples, the semi-variance
typically increases until it reaches a plateau. The distance at which the plateau is reached is
called the range and the semi-variance at that point is called the sill, i.e., the total variability
in the data. The semi-variance when the distance between points is zero is called the nugget
and quantifies the randomness of the data [51], accounting for measurement errors and
non-spatial variability.

Only sample pairs further apart than the range can be considered spatially uncorre-
lated. Therefore, only samples further apart than the range were considered in the spatial
component for AL. Different semi-variogram models, namely spherical, exponential, and
Gaussian models were used to model the semi-variogram and capture the spatial vari-
ability of data with distance. The model with the smallest Sum of Squares Error (SSErr),
considering both test areas, was chosen as the best-fitting model. Semi-variograms based
on NDVI values were estimated for each month for both study areas, using at least 30 pairs
of points for each lag distance to obtain a reliable estimate. After several runs, the spherical
model gave the smallest SSErr for most of the semi-variograms. For an impression of the
varying ranges and nuggets of the fitted models, the values for each month are given in
Table 3 for SA1. The range and nugget of the monthly models were used to select the
semi-variogram model for the new spatial component in AL. For each month, the semi-
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variogram model with the lowest nugget value was chosen. For each study area, from the
resulting 12 semi-variograms of the 12 months, the smallest range distance was chosen
as the minimum distance for selecting spatially informative samples, i.e., the minimum
distance above which samples can be considered uncorrelated. Choosing larger range
distances would risk losing potentially informative samples, also this is unfeasible because
of area size limitations. For this reason, the chosen ranges were 417.6 m for SA1 and 529 m
for SA2.

Table 3. Variation of the ranges and nugget values for the crop type samples cultivated in SA1
calculated using semi-variograms fitted for each month. The range identified for May has been
selected to define the minimum distance for selecting spatially informative samples.

Month Range (m) Nugget

January 462.3 0.008
February 477.4 0.005

March 611.2 0.029
April 513 0.029
May 417.6 0.025
June 587.3 0.008
July 905.4 0.043

August 721.1 0.050
September 804.9 0.043

October 733.6 0.033
November 735.3 0.028
December 794 0.018

Therefore, all samples with an in-between distance above these ranges were considered
spatially informative. The learner first queries an informative sample using the entropy and
then assesses the Euclidean distance between the selected sample and the label set. If any
of the Euclidean distances between the selected samples and the labeled sample are below
the semi-variogram range, the point is discarded. The spatially explicit AL method was
implemented to select the most informative samples according to vote entropy and spatial
autocorrelation. For both spectral-based and spatially explicit AL, we used a stopping
criterion that accounts for the increase in the prediction accuracy with each added sample.
Therefore, when the accuracy leveled off, the sample selection procedure stopped.

3.4. Crop Type Classification Using the Random Forest Classifier

Image classification was performed using RF [46]. RF is a very popular classifier in
remote sensing due to its high performance [52]. It consists of several internal decision trees
built using a randomly selected subset of features and training samples selected randomly
through replacement (Breiman, 2001 [46]). This way of selecting training samples and
input features minimizes the correlation between the built decision trees [53]. The classifier
used about 2/3 of the labeled samples for training, and the remaining 1/3 of the samples,
called Out of Bag (OOB) samples, were used to assess the classification accuracy (Breiman,
2001 [46]). RF is mainly sensitive to the number of trees (ntree) and the number of selected
input features (mtry). The ntree was set to 1000, whereas mtry was defined as being the
square root of the total number of input features. Fifty iterations were defined for each
RF model. The reported accuracies were averaged across these iterations. An RF-based
classification was implemented using the NDVI image stack as an input feature for both
study areas. It was first trained using all available annotated samples and then by using
training samples generated from the two AL implementations: spectral-based AL and
spatially explicit AL. The classification results were assessed using the Kappa coefficient,
overall accuracy (OA), User’s Accuracy (UA), and Producer’s Accuracy (PA) [54–56].
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4. Results
4.1. Active Learning Results

In the case of spectral-based AL, the accuracy stopped increasing further after 129 queries,
when committee prediction accuracy reached 99.43% for SA1. A total of 169 crop-type samples
(40 initial samples plus 129 newly selected samples) were selected through this AL strategy
(Table 4). This represents 48% of the entire sample set (350 crop-type samples), excluding
water and other classes. For SA2, the accuracy leveled off after 287 queries, with a committee
prediction accuracy of 95.2%. In this case, a total of 327 samples were selected (40 initial
samples plus 287 newly selected samples) (Table 5). This represents 58% of all available
samples excluding the ‘other’ class.

Table 4. Distribution of training samples per class before applying AL and after applying spectral-
based AL and spatially explicit AL in SA1.

Crop Type Total # of Training Samples # of Training Samples Selected Using
Spectral-Based AL

# of Training Samples Using
Spatially Explicit AL

Alfalfa 50 22 11
Beets 50 28 16
Cereals 50 15 8
Maize 50 25 15
Onions 50 23 16
Orchard 50 15 7
Potatoes 50 41 24
Total 350 169 97

Table 5. Distribution of training samples per class before applying AL and after applying spectral-
based AL and spatially explicit AL in SA2.

Crop Type Total # of Training Samples # of Training Samples Selected
Using Spectral-Based AL

# of Training Samples Using
Spatially Explicit AL

Flax and hemp 70 25 20
Fruits and nuts 70 40 25
Fodder 70 36 25
Grains, seeds, and legumes 70 32 21
Maize 70 56 41
Potatoes 70 58 39
Beets 70 33 30
Vegetables, herbs, and
ornamentals 70 47 22

Total 560 327 223

When using spatially explicit AL, the accuracy leveled off after 57 queries with a
committee prediction accuracy of 90.9% in SA1. Thus, the labeled sample pool consists of a
total of 97 samples (57 newly selected samples plus the 40 initial samples). This represents
28% of the entire available training sample set. For SA2, the accuracy stopped increasing
further after 183 queries with a committee prediction accuracy of 82.14%. A total number
of 223 informative samples were selected representing 40% of the entire training sample
set. Tables 1 and 2 show the sample distribution across target crop types after selecting
informative samples using both AL methods. The samples were not well balanced across
target crop classes, and classes with high interclass similarity, e.g., potatoes and maize
classes from both areas, were given preference in the selection. The distribution of samples
per class for both study areas is presented in Tables 4 and 5.

4.2. Image Classification Results Obtained Using Various Training Sample Sets

Four image classification scenarios were tested: Scenario 1—classification using the
total number of the available training samples; Scenario 2—classification using training
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samples selected by spectral-based AL; Scenario 3—classification using training samples
selected by spatially explicit AL; and Scenario 4—classification using a random selection of
training samples from the labeled sample set, equal to the number of samples selected by
spatially explicit AL. This last experiment was designed to evaluate the benefit of using the
developed AL method to select the most informative training samples over selecting the
same number of samples randomly.

The accuracies obtained for scenario 1 are presented in Tables 6 and 7. For SA1, the
entire 350 crop samples were used for classification obtaining an overall accuracy of 84%
(Table 6). For SA2, a total of 560 training crop samples were used and yielded an overall
accuracy of 65% (Table 7). The total number of testing samples used for this task was 270.

Table 6. Classification results obtained using different classification scenarios developed for SA1:
1—classification results obtained using all samples; 2—classification results obtained using spectral-
based AL; 3—classification results obtained using spatially explicit AL; and 4—classification results
obtained using 97 randomly selected samples.

Classification Scenarios # Samples Kappa Index Overall Accuracy (%)

Scenario 1 350 0.82 84
Scenario 2 169 0.79 82
Scenario 3 97 0.78 80
Scenario 4 97 0.66 70

Table 7. Classification results obtained using different classification scenarios developed for SA2:
1—classification results obtained using all samples; 2—classification results obtained using spectral-
based AL; 3—classification results obtained using spatially explicit AL; and 4—classification results
obtained using 223 randomly selected samples.

Classification Scenarios # Number Kappa Index Overall Accuracy (%)

Scenario 1 560 0.60 65
Scenario 2 327 0.58 63
Scenario 3 223 0.55 60
Scenario 4 223 0.48 54

In the case of the second scenario for SA1, the overall accuracy was 82%. For SA2,
there were a total of 327 samples, which gave an overall accuracy of 63%. For the third
scenario in SA1, the overall accuracy was 80%. For SA2, 223-AL generated samples were
used, which gave an overall accuracy of 60%. The fourth and last classification scenario
was dedicated to randomly selecting the same number of samples as obtained by using AL
and spectral and spatial components. An overall accuracy of 70% was attained for SA1. For
SA2, an overall accuracy of 54% was obtained.

The UA and PA accuracies for all crop-type classes are displayed in Tables 8 and 9 for
SA1 and SA2, respectively.

The accuracies were high for SA1. In SA2, on the other hand, there was much more
variation in the accuracies: some classes had high PA in all three scenarios (grains, seeds,
legumes; and sugar beets), while others had moderate accuracies (flax and hemp; maize;
potatoes; and vegetables, herbs, and ornamentals) or even a low producer accuracy (fodder;
and fruits and nuts).

The proposed AL method yielded promising results for cereals (UA 90% and PA 95%),
alfalfa (UA 86% and PA 95%), and onions (UA 84% and PA 80%), for SA1. The developed
method also performed well in aggregated classes like ‘grain, seeds, and legumes’ (UA
of 87% and PA of 87%) and the ‘fruits and nuts’ classes (UA of 60% and PA of 30%) as
compared to the other approaches. For the ‘vegetables, herbs, and ornamentals’ class, the
increase in UA was outweighed by a larger decrease in the PA.
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Table 8. Comparison of the User’s (UA) and Producer’s (PA) accuracies of crop types calculated and
depicted in % for SA1.

Crop Type Scenario 1 Scenario 2 Scenario 3

UA PA UA PA UA PA

Alfalfa 100 95 100 85 86 95
Beets 75 75 65 75 71 75

Cereals 89 85 79 95 90 95
Maize 93 70 93 70 94 75
Onions 94 75 100 75 84 80
Orchard 75 90 87 95 66 95
Potatoes 77 85 68 75 71 75

Water 100 100 100 100 100 100
Other 64 80 76 65 56 30

Table 9. Comparison of UA and PA of crop types in % accuracies for the three scenarios for SA2.

Crop Type Scenario 1 Scenario 2 Scenario 3

UA PA UA PA UA PA

Flax and hemp 71 83 74 83 67 87
Fodder 39 30 41 30 38 33

Fruits and nuts 59 33 44 27 60 30
Grains, seeds, legumes 87 87 77 90 87 87

Maize 69 60 67 60 49 63
Potatoes 50 53 51 60 46 60

Sugar beets 63 80 66 77 63 73
Vegetables, herbs, ornamentals 63 67 59 57 75 10

Other 73 90 71 83 65 93

5. Discussion

The overall goal of our work was to assess the potential of a spatially explicit AL
strategy for selecting the most informative samples for crop-type mapping from SITS. The
goal of this method is to select the smallest number of samples required to achieve good
classification results. We showed that our spatially explicit AL strategy provides a high
potential for decreasing the time and effort required for sample annotation in the two
study areas. Pasolli et al. (2011) [19] have also emphasized that integrating a spatially
explicit AL in a single-date image classification task obtained higher accuracy than the
AL strategy that solely accounts for spectral information. While Pasolli et al. (2011) [19]
used the Euclidean distance between the unlabeled training samples and support vectors
(SVs) to select samples that are covered by SVs, we proposed a semi-variogram to discard
redundant samples. Stumpf, Lachiche, Malet, Kerle, and Puissant [40] also used the semi-
variogram, but with a different aim: to avoid spatially dispersed distribution of landslide
samples that would otherwise increase the time and costs for field surveys and/or visual
interpretation required to annotate the labels.

Reducing the size of the labeled set makes it more difficult to distinguish the subtle
differences between spectrally similar classes. Several classes in SA1 and SA2 showed high
inter-class similarities (Figures 3 and 4). For example, in SA1, the NDVI time-series-based
crop growth patterns are similar between maize and potatoes. In contrast to these classes,
alfalfa, cereals, and orchard show distinct temporal behaviors. In SA2, maize and potatoes
also have similar crop growth patterns (see Figure 4) which makes them challenging
to distinguish. Previous studies have also highlighted the difficulties of successfully
distinguishing crop types with high inter-class similarities like maize and potatoes [13,14].
Sugar beets or ‘grain, seeds, and legumes’, on the other hand, have a more distinct growth
pattern and consequently, there is less overlap with the other crops and less confusion and
misclassification.
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In general, in SA2, accuracies were lower than in SA1 for all classes and in all sce-
narios. The lower classification accuracy and the smaller reduction in the number of
training samples required for SA2 could be because most of the training sample classes
are aggregated classes, with high intra-class variation hence causing a challenge in the
classification process.

The spatially explicit AL method proposed in our study requires the selection of the
range identified by the semi-variogram. The pairs of samples are spatially uncorrelated
if the in-between distance is larger than the defined range. The selected samples depend
highly on the capability of the implemented semi-variogram to identify the proper range
which in turn helps us to select the most informative samples. If, for example, the range is
too low, redundant samples might still be present in the sample pool. If the range is too
large, the method might discard samples that are informative and essential to achieving
good performance. Spatial Simulated Annealing (SSA) [57,58] could be used to optimize
the spatial sample design.

Spatial heterogeneity caused by variations in environmental conditions and agricul-
tural management practices might lead to variations in crop diversity and crop represen-
tation in the feature space. Therefore, applying the developed AL method to agricultural
regions with multiple spatial patterns, e.g., containing a flat area with large parcels and a
sloping area with smaller, irregular parcels might be challenging since the samples used
to train the machine learning algorithms have to capture the environmental and manage-
ment conditions that operate at different geographic scales. In areas with multiple spatial
patterns, multiple semi-variograms, e.g., per sub-area, need to be generated to capture the
spatial variability. In this way, it becomes difficult to select the most suitable range from
several ranges generated by the sub-area semi-variograms.

In our work, we used the already annotated samples to test the efficiency of the
proposed spatially explicit AL method. Yet, in many areas across the globe, the annotated
labels are missing. In this situation, the samples need to be labeled either through visual
interpretation, given that very high-resolution images are available, or through intense
field campaigns. Our method brings benefits to these scenarios as well since the number of
samples and, hence, the time required to annotate them is considerably reduced.

The proposed AL method will benefit future remote sensing-based applications in
situations when the researchers can sample only a few locations for time and budget-related
restrictions. Contrary to previous studies emphasizing the negative impact of insufficient
training samples on the classification results [40], our study revealed the importance of
spectral and spatial informativeness of samples in implementing classifiers with high
performance.

In addition, this method works well when the training sampling is well-designed.
In the case of SA2, almost all reference classes were aggregated classes, which led to low
classification accuracy even when the entire dataset was used. This low accuracy was
carried on to the developed spatially explicit AL strategy. Despite the overall low accuracy
achieved in SA2, the conclusion that less than half of the training samples can be used
to achieve similar accuracy if sample selection is based on selecting the spectrally and
spatially most informative samples holds for both areas.

Since collecting labeled training samples is an expensive, time-consuming, and la-
borious task, there are only a few countries where crop-type benchmark datasets are
available [59]. Future studies should focus on testing the proposed method in areas where
annotated crop samples are limited such as developing countries.

6. Conclusions

This study demonstrated the importance of training sample selection, showing that
by selecting spectrally and spatially informative samples, the number of training samples
could be reduced to less than half while obtaining similar accuracies. This result was
obtained in an area with large, regular parcels and classes consisting of single crops (SA1)
as well as for an area with smaller parcels and aggregated classes consisting of several
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different crops (SA2). For SA1, the overall classification accuracies were 84% using all avail-
able 350 training samples, 82% using 169 samples selected using spectral-based AL, and
80% using 97 samples selected using spatially explicit AL. Selecting 97 samples randomly,
without using spectral and/or spatial characteristics, yielded an average accuracy of 70%;
therefore, the spatially explicit method gave a higher accuracy for the same number of
samples. For SA2, the overall classification accuracies were 65% using all 560 training sam-
ples, 63% using 327 samples selected through traditional AL, and 60% using 223 samples
selected using spatially explicit AL. Selecting 223 samples randomly resulted in an average
accuracy of 54%.

The proposed AL method reveals that accounting for spatial information is an efficient
solution to map target crops since it facilitates high accuracy with a low number of samples
and, consequently, lower computational resources and time and financial resources for
annotation. Future studies could extend the proposed method to different land cover
mapping tasks. In addition, further research on the use of semi-variograms could be carried
out for sampling design in areas containing sub-areas with different spatial variations
caused by varying environmental conditions and management practices. Instead of the
semi-variogram, other methods could be used for the spatial sample design, such as SSA.
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