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Abstract: An analysis of the membrane organization and intracellular trafficking of lipids often relies
on multiphoton (MP) and super-resolution microscopy of fluorescent lipid probes. A disadvantage of
particularly intrinsically fluorescent lipid probes, such as the cholesterol and ergosterol analogue,
dehydroergosterol (DHE), is their low MP absorption cross-section, resulting in a low signal-to-noise
ratio (SNR) in live-cell imaging. Stimulated emission depletion (STED) microscopy of membrane
probes like Nile Red enables one to resolve membrane features beyond the diffraction limit but
exposes the sample to a lot of excitation light and suffers from a low SNR and photobleaching. Here,
dynamic mode decomposition (DMD) and its variant, higher-order DMD (HoDMD), are applied
to efficiently reconstruct and denoise the MP and STED microscopy data of lipid probes, allowing
for an improved visualization of the membranes in cells. HoDMD also allows us to decompose and
reconstruct two-photon polarimetry images of TopFluor-cholesterol in model and cellular membranes.
Finally, DMD is shown to not only reconstruct and denoise 3D-STED image stacks of Nile Red-labeled
cells but also to predict unseen image frames, thereby allowing for interpolation images along the
optical axis. This important feature of DMD can be used to reduce the number of image acquisitions,
thereby minimizing the light exposure of biological samples without compromising image quality.
Thus, DMD as a computational tool enables gentler live-cell imaging of fluorescent probes in cellular
membranes by MP and STED microscopy.

Keywords: membrane; fluorescence; multiphoton microscopy; STED microscopy; computational
microscopy; polarization; lipids; cholesterol

1. Introduction

Cellular membranes are highly complex assemblies of proteins and lipids which fulfill
many functions as biological barriers in eukaryotic cells. Cell membranes not only com-
partmentalize metabolic processes but also act as signaling platforms harboring intricate
molecular machineries for executing life at the subcellular level. These diverse functions
are reflected in a very complex and diverse composition of not only proteins but also lipid
species in cellular membranes. Phospholipids with differing head groups and acyl chains
constitute the two leaflets of the plasma membrane (PM) and of subcellular membranes,
defining unique territories to orchestrate membrane-associated biochemical processes [1].
The number of double bonds in the acyl chains of phospho- and sphingolipids and the
cholesterol content of membranes also play important roles, as they dictate membrane
fluidity, permeability, and bending flexibility (Figure 1A) [1]. Finally, the lipids in the
bilayer can interact with membrane embedded and attached proteins. For example, the
actin cytoskeleton underlying the inner leaflet of the PM (sketched in Figure 1A) can affect
the diffusion of lipids, as shown by single-molecule tracking and stimulated emission de-
pletion (STED) microscopy coupled to fluorescence correlation spectroscopy (FCS) [2–4]. To
study lipid packing and the dynamics in such complex membrane assemblies, researchers
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often employ the fluorescence microscopy of suitable lipid probes. For example, dyes like
Laurdan or Nile Red (Figure 1B), which embed faithfully into various cellular membranes,
have a large change in dipole moment upon excitation, allowing for the sensitive detection
of water penetration into membranes and thereby lipid packing via solvent-relaxation
studies [5–7]. Probes such as Nile Red are also highly suitable for super-resolution mi-
croscopy like STED, as they are non-fluorescent in water but highly emissive in the lipid
bilayer, such that they can be replenished from the aqueous phase into membranes upon
light-induced photobleaching in the bilayer [8–10]. A challenge here is the tradeoff between
resolution, which gets better for larger intensities of the STED laser, and the photon budget,
which is reduced by photobleaching, thereby limiting the attainable signal-to-noise ratio
(SNR). Fluorescent analogues of specific lipid species, such as cholesterol, can be used
to follow the intracellular trafficking of these lipids in cells. Here, the chemical modi-
fication needed to obtain a fluorescence signal should be kept to a minimum to ensure
sufficient resemblance of the natural lipid counterpart. One strategy is to use small organic
dye molecules, such as 4,4-Difluoro-1,3,5,7,8-Pentamethyl-4-Bora-3a,4a-Diaza-s-Indacene
(BODIPY) or nitrobenzoxadiazole (NBD), covalently linked to cholesterol, allowing for
the visualization of the resulting fluorescent analogues conveniently via epifluorescence,
confocal, or multiphoton (MP) microscopy [11]. The advantages of probes such as BODIPY-
cholesterol (trade name TopFluor-cholesterol) for cellular studies are their high molecular
brightness, relative photostability, and good two-photon absorption, allowing for pro-
longed time-lapse imaging and even super-resolution and single molecule microscopy
(Figure 1B) [11–14]. Since already tiny structural changes in cholesterol change its proper-
ties significantly, a disadvantage of these tagged lipid probes is their limited resemblance
of the natural sterols, making the interpretation of results challenging, and therefore requir-
ing careful control experiments [11,15–17]. An alternative strategy is to use intrinsically
fluorescent cholesterol analogues, which differ from cholesterol only minimally, since they
do not contain attached fluorophores. Instead, analogues such as cholestatrienol (CTL) or
dehydroergosterol (DHE, Figure 1B) contain few additional double bonds in the steroid
ring system, giving them an intrinsic fluorescence while preserving the cholesterol-like
biophysical and cell biological properties [11,15,18]. The disadvantages of these so-called
polyene sterols are their low brightness and high bleaching propensity, as well as the need
for ultraviolet (UV) excitation [11,18]. To image DHE in cells, both UV-sensitive wide-field
and multiphoton (MP) microscopy have been employed [19,20]. We previously compared
both imaging modalities and found that MP microscopy allows for 3D imaging of DHE in
cells, while UV-sensitive wide-field imaging is faster and more suitable for routine investi-
gations and for the discrimination of a probe from autofluorescence [21,22]. A particular
challenge of MP imaging of DHE is the low SNR in each frame, requiring extensive image
acquisition and image averaging to obtain single good-quality images [21]. On the other
hand, using denoising algorithms such as PURE-LET denoising was found to be efficient
in improving the quality of MP images of DHE [23,24]. Whether other routines are also
suitable or even provide a better performance in regard to denoising the MP images of
membrane sterols has not been investigated yet.

MP microscopy does not only allow for live-cell imaging of sterol trafficking; it also
allows us to assess the membrane probe orientation. By using two-photon polarimetry in
which linearly polarized and pulsed infrared lasers are used to excite membrane probes with
different orientations, the angle of membrane-embedded probes can be determined [25–27].
By using two-photon polarimetry, we were able to determine the orientation of BODIPY-
moieties differently linked to cholesterol in model and cell membranes, and we could
correlate probe orientation to the lateral diffusion dynamics of such analogues [13]. For
an analysis of such data, Fourier-based signal decomposition is often employed [13,26–28].
This approach provides an in-depth analysis of the polarization data, even in a pixel-wise
manner, but it does not account for unavoidable photobleaching during image acquisition.



Sensors 2024, 24, 2096 3 of 20

Sensors 2024, 24, x FOR PEER REVIEW  3  of  22 
 

 

a pixel-wise manner, but it does not account for unavoidable photobleaching during im-

age acquisition.   

 

Figure 1. Principle of dynamic mode decomposition of fluorescence microscopy data for analysis of 

lipid probes in cell membranes. Cell membranes consist of a lipid bilayer made of phospholipids 

and sterols in which proteins are embedded (not shown) or adhered to the membrane, as sketched 

here for the cytoskeleton underlying the PM (A). The cartoon was adapted from an atomistic Monte 

Carlo simulation by the author [29]. Membrane properties, such as those listed on the right side, can 

be studied by fluorescence microscopy. Nile Red, dehydroergosterol (DHE), and TopFluor-choles-

terol (TF-Chol) are membrane probes that are often employed to study cell membranes (B). How 

the sterol probes DHE and TF-Chol differ from cholesterol and ergosterol is shown  in green and 

red, respectively. Multiphoton image acquisition of DHE as a function of z-coordinate is used for 

illustration of the DMD workflow (C). Reshaping of the  image tensor is illustrated for a cropped 

part of the image, and the calculation of the DMD modes, amplitudes, and progression along the z-

coordinate is shown. The principle of time-delay embedding is illustrated in (D). See main text for 

further details. 

Dynamic mode decomposition (DMD) is a recently developed signal decomposition 

technique which allows for the dissection of complex dynamic processes, such as fluid 

flow  [30,31]. The method has  its origin  in Koopman operator  theory and  is based on a 

singular-value decomposition (SVD) of the reshaped image data, providing a linear ap-

proximation of the often non-linear dynamics to study, for example, coherent flow pat-

terns [32]. Based on these properties, DMD has also been used in computer vision and for 

the analysis of biomedical image data, for example, for background identification, for im-

age segmentation or motion correction in Magnet resonance imaging (MRI), and for fea-

ture detection in positron emission tomography [33–38]. In live-cell imaging, matrix de-

composition methods such as principal component analysis (PCA), non-negative matrix 

decomposition, or independent component analysis are often used to dissect and analyze 

dynamic processes [39,40]. In contrast, the use of DMD in microscopy is in its infancy and, 

to our knowledge, limited to our recent studies in which we showed the potential of this 

Figure 1. Principle of dynamic mode decomposition of fluorescence microscopy data for analysis of
lipid probes in cell membranes. Cell membranes consist of a lipid bilayer made of phospholipids and
sterols in which proteins are embedded (not shown) or adhered to the membrane, as sketched here
for the cytoskeleton underlying the PM (A). The cartoon was adapted from an atomistic Monte Carlo
simulation by the author [29]. Membrane properties, such as those listed on the right side, can be
studied by fluorescence microscopy. Nile Red, dehydroergosterol (DHE), and TopFluor-cholesterol
(TF-Chol) are membrane probes that are often employed to study cell membranes (B). How the sterol
probes DHE and TF-Chol differ from cholesterol and ergosterol is shown in green and red, respectively.
Multiphoton image acquisition of DHE as a function of z-coordinate is used for illustration of the
DMD workflow (C). Reshaping of the image tensor is illustrated for a cropped part of the image, and
the calculation of the DMD modes, amplitudes, and progression along the z-coordinate is shown.
The principle of time-delay embedding is illustrated in (D). See main text for further details.

Dynamic mode decomposition (DMD) is a recently developed signal decomposition
technique which allows for the dissection of complex dynamic processes, such as fluid
flow [30,31]. The method has its origin in Koopman operator theory and is based on
a singular-value decomposition (SVD) of the reshaped image data, providing a linear
approximation of the often non-linear dynamics to study, for example, coherent flow
patterns [32]. Based on these properties, DMD has also been used in computer vision and
for the analysis of biomedical image data, for example, for background identification, for
image segmentation or motion correction in Magnet resonance imaging (MRI), and for
feature detection in positron emission tomography [33–38]. In live-cell imaging, matrix
decomposition methods such as principal component analysis (PCA), non-negative matrix
decomposition, or independent component analysis are often used to dissect and analyze
dynamic processes [39,40]. In contrast, the use of DMD in microscopy is in its infancy
and, to our knowledge, limited to our recent studies in which we showed the potential
of this method for bleaching-based image segmentation and for the analysis of protein
dynamics and aggregation in living cells upon fluorescence loss in photobleaching (FLIP)
microscopy [41,42].

In this study, we demonstrate the power of DMD for high-fidelity reconstruction and
denoising of MP and STED microscopy data of lipid probes in living cells. We show that
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DMD is on par with other efficient image-denoising methods, allowing for much improved
SNR, even for challenging imaging applications, such as MP microscopy of DHE. Using
a variant of DMD named higher-order dynamic mode decomposition (HoDMD) [43], we
are also able to reconstruct and denoise 3D MP stacks of DHE and account for the small
displacement of cells during image acquisitions. We show that HoDMD also enables one
to reconstruct and analyze two-photon polarimetry data of TopFluor-cholesterol, thereby
enabling a reliable assessment of probe orientation in membranes. Finally, we show that
DMD of STED images of Nile Red not only provides much improved SNR but also allows
us to predict unseen image frames along the optical axis. This enables one to reduce the
light exposure of the samples and thereby to minimize sample damage. Together, our study
demonstrates the large potential of DMD and its variants for the efficient postprocessing
and analysis of live-cell fluorescence imaging data.

2. Materials and Methods
2.1. Cell Culture and Labeling

Immortalized normal human astrocytes (IM-NHAs) were purchased from Innoprot
(cat. no. P10251) and were grown in astrocyte media (Innoprot, cat. no. P60101) in a
humidified atmosphere supplemented with 5% CO2 at 37 ◦C. One day prior to imaging,
the IM-NHAs were plated on glass slides in 35 mm microscope dishes (MatTek, cat. no.
P35G-1.5-50-C). On the day of imaging, the cells were flushed once with M1 media (150 mM
NaCl (Merck, Denmark, cat. no. 1.06404.1000), 5 mM KCl (Merck, cat. no. 104936), 1 mM
CaCl2 (Merck, cat. no. 2382.1000), 1 mM MgCl2 (Merck, cat. no. 1.05833.1000), 5 mM
glucose (Merck, cat. no. 1.08342.1000), and 20 mM HEPES (Sigma-Aldrich, Denmark, cat.
no. H3375-100G), pH adjusted to 7.4) prior the addition of 2 µM Nile Red (Thermo Fischer
Scientific, Denmark, cat. no. N1142) in M1 media, and imaging started immediately after,
at room temperature.

2.2. Multiphoton Imaging of Fluorescent Cholesterol Analogues

All MP imaging data of fluorescent sterols, DHE, and TopFluor-cholesterol were gen-
erated and described in our previous publications, and the image data analyzed here
are entirely from these studies [13,21]. For comparison with DMD methods, PURE-
LET denoising of MP sequences of DHE was implemented using a plugin to ImageJ
(https://bigwww.epfl.ch/algorithms/denoise/, accessed on 20 March 2024) [24]. For that,
standard settings of three cycles and multi-frame analysis over three successive images
were employed.

2.3. STED Microscopy of Nile Red

Confocal and STED microscopy was carried out with an Abberior Facility Line STED
microscope (Abberior Instruments GmbH) with pulsed and circularly polarized lasers,
using a UPlanSApo x100/1.40 NA oil objective and a pinhole size of 1 AU. Fluorescence of
Nile Red was detected in the green channel between 498 and 551 nm, excited at 488 nm;
and a red channel excited at 561 nm, with emission collected between 570 and 720 nm.
Three-dimensional STED stacks were acquired using a 775 nm depletion laser with applied
gating of 750 ps and a measurement width of 8 ns. The 3D stacks were acquired using a
pixel size of 25 nm in xy and 50 nm in z.

2.4. Generation of Cell Phantoms for Benchmarking of DMD Performance

A cell phantom was generated with a Macro script in ImageJ based on the Macro ‘Sphere
Builder’ developed by Drs. Hernan Sandra and Holder Lorens from Heidelberg University
(wsr.imagej.net/macros/Sphere_Builder.txt, accessed on 20 March 2024). The cell phantom
was convolved with the PSF using TensorFlow (https://www.tensorflow.org, accessed on
20 March 2024). Poisson noise-corrupted images were generated using the RandomJ plugin to
ImageJ, generated by Dr. Meijering (University of New South Wales, Australia).

https://bigwww.epfl.ch/algorithms/denoise/
wsr.imagej.net/macros/Sphere_Builder.txt
https://www.tensorflow.org
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2.5. Analysis of MP and STED Microscopy Data by Dynamic Mode Decomposition

DMD is a matrix decomposition method requiring the image data to be gathered
in series, i.e., as function of time, t, in time-lapse microscopy of z-position (i.e., position
along the optical axis, z) in 3D imaging or as function of polarization angle, θ, in the case
of two-photon polarimetry. The latter method is based on rotating a linearly polarized
two-photon laser and recording fluorescence emission at each polarization angle [13,26].
Each of these methods generates a data cube with image coordinates, x and y, and the third
axis representing the independent variables, i.e., t, z, or θ. Before using DMD, each of these
datasets must be reshaped into a large matrix by concatenating the x- and y-coordinate into
a column vector of n = x + y entries for each measurement. This gives one column at each
given instance of time, z-position or polarization angle, i.e., for the independent variables,
t, z, or θ (see Figure 1 for an illustration of this reshaping for the variable z and for t, as
applied to bleaching-based image segmentation and FLIP microscopy, in [41,42]). Thus, for
each instance of the independent variable in the original image sequence, one obtains a
column in a large matrix of the form [32,36]:

X = [x1, x2, · · · , xk, . . . xm] (1)

The index k = 1, . . ., m runs over all acquired images, i.e., snapshots in time, frames
along the optical axis, or fluorescence intensities for each polarization angle. To model
the progression of each of these image series, for example, for a time-series, one can, in
principle, find a differential equation, but that is typically unknown for complex image data.
Therefore, we want to approximate the progression from one image to the next directly
from the data. In discrete time with steps, ∆t, one can define the progression from state
x(k·∆t) = xk to xk+1 as follows:

xk+1 = A·xk (2)

where A is a matrix which describes the advancement of the system from image xk to
image xk+1. This matrix resembles the Koopman or transfer operator for measurements
g(xk) = xk [29]. For the analysis of 3D microscopy and two-photon polarimetry data, one
replaces ∆t by ∆z and ∆θ, respectively. We want to approximate A solely from the given
data. For that, we define the discrete time-shifted states of our system as two new matrices,
X1 and X2 ∈ Rn·(m−1):

X1 = [x1, x2, · · · , xm−1] (3)

and
X2 = [x2, x3, · · · , xm] (4)

With that, the system corresponding to Equation (2) becomes X2 = A·X1, from which
we want to find the matrix, A. In the imaging applications considered here, the data matrices,
X1 and X2, have many more rows n (i.e., pixels for each image) than columns (m − 1) (i.e.,
time points, t; z-stack positions, z; or polarization angles, θ; Figure 1C). Thus, we cannot
invert X1 directly but find A by minimizing the Frobenius norm, ∥·∥F, instead [30]:

A := argmin∥X2 − A·X1∥F = X2·Xinv
1 (5)

where Xinv
1 represents the pseudoinverse of the first snapshot matrix, which we find by

using an SVD of X1 into unitary matrices U ∈ Rn·(m−1) and V* ∈ Rn·n, with singular values
in the diagonal matrix Σ ∈ Rn·(m−1):

X1 = U·Σ·V* (6)

There are, at most, (m − 1) non-singular values and corresponding singular vectors,
and therefore, the matrix A will have, at most, rank (m − 1). Thus, we have maximally m
snapshots, which represent the measurements, i.e., the image acquisitions at a given time, t;
axial position, z; or polarization angle, θ. Accordingly, maximally m dynamic modes can be
determined by classical DMD, which is sometimes called the spectral complexity of the
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system [43]. In practice, one often calculates the modes only up to rank r < (m − 1): one
approximates the system matrix, A, by projecting it onto the left singular vectors, i.e., the
column vectors of U. This gives a much smaller matrix, A’, of maximal size r times r via a
similarity transformation [30,34]:

A’ = U’*·A·U’ = U’*·X2·V’·Σ’−1 (7)

where U’, V’, and Σ’ are rank r approximations of the full matrices, U, V, and Σ. The
complex conjugate transposed matrix is indicated by *, which is equal to the transpose for
a real matrix, as is the case for our imaging data:

A’ = U’T·A·U’ = U’T·X2·V’·Σ’−1 (8)

Since A and A’ are similar, they have the same eigenvalues, and we can analyze the
progression of the full system from one snapshot to the next by analyzing the reduced
matrix, A’. Thus, the similarity transformation of Equation (7) corresponds to a dimension
reduction, reducing the size of the system matrix from A ∈ R(m−1)·(m−1) to A’∈ Rr·r [30].
This step is essential in achieving the denoising performance of DMD, as further shown
below.

To obtain the spectral decomposition of the reduced system matrix, A’, one finds the
eigenvalues, λj, and eigenfunctions, φj, for each DMD mode j by solving the corresponding
eigenvalue problem. This leads to a discrete system:

xk = ∑r
j=1 φj·λk−1

j ·bj (9)

For a continuous system, e.g., in time, one can rescale the eigenvalues according to
ω = ln(λ/∆t), such that Equation (9) can be written as follows [33]:

x(t) = ∑r
j=1 φj·eωj ·t·bj (10)

where x(t) is a vector of images (x, y index omitted for brevity) as a function of time, t,
but for our purpose, the independent variable t could be replaced by z for DMD along the
optical axis (i.e., x(z)) or by θ for decomposing two-photon polarimetry data (i.e., x(θ); see
Figure 1C). Thus, Equation (10) describes here the temporal evolution of each dynamic
mode, φj, which is a function of space, only. The mode amplitudes, bj, are spatial weighting
matrices, i.e., functions of pixel coordinates (x, y), accounting for the initial intensities. DMD
is related to the discrete temporal Fourier transformation (DFT), but in contrast to DFT,
which only decomposes a signal into oscillating modes, DMD also accounts for growing
or decaying signals [44]. In fact, when subtracting the mean before carrying out a DMD
and thereby accounting for continuous intensities’ decreases or increases, DMD becomes
identical to the DFT [44]. The eigenvalues of the DMD in Equation (10), ωj, can therefore
be considered the complex Fourier modes of the system, where the real part describes
the mode’s decay or increase, while the imaginary part describes mode oscillations. An
important condition for employing DMD to spatiotemporal experimental data is that
there are enough snapshots (i.e., measurements) to capture the full spectral complexity
of the data. This is often not the case, particularly when the data contain transients or
other non-linear dynamic contributions, which would require many dynamic modes to
be described accurately. In these cases, the number of linearly independent DMD modes
attainable from the data is not sufficient to capture their full complexity, resulting in a poor
reconstruction quality. This has been shown for even simple systems, such as a standing
wave, but also for highly non-linear and chaotic systems [45]. To overcome this limitation of
standard DMD, the idea of time-lagged embedding can be employed, in which time-lagged
versions of the snapshots are used to increase the dimension of linearly independent basis
functions [43,45].
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Specifically, a particularly attractive variant of DMD, named HoDMD, can be used,
which is based on a higher-order Koopman assumption [43]:

xk+d = A1·xk + A2·xk+1 + .. + Ad·xk+d−1 (11)

where k runs from 1 to m-d, where m again is the number of available snapshots, and d is
the set time delay. After applying the SVD of Equation (6) and the rank-r approximation of
Equations (7) and (8), one uses the representation of Equation (11) to describe the evolution
of the system as follows:

∼
Xk+1 = A′·

∼
Xk (12)

The reduced matrices for the snapshots and the evolution of the system read as
follows [43]:

∼
Xk =


xk

xk+1
. . .

xk+d−1

, A′ =


I 0 . . . 0
0 I . . . 0

. . . . . . . . . 0
A1 A2 . . . Ad

 (13)

Thus, the key idea of HoDMD is to use time-lagged snapshots, which allow us to
obtain sufficient information for reconstructing systems with high spectral complexity from
a limited number of snapshots.

3. Results
3.1. High-Fidelity Reconstruction and Denoising of Multiphoton Microscopy Data by DMD

MP imaging of fluorescent cholesterol analogues, such as DHE, is plagued by a very
low SNR due to the low cross-section for simultaneous absorption of several
photons [20,21,46], as exemplified in Figure 2. This low excitation probability of DHE
from the simultaneous absorption of several photons results in shot noise-limited images,
as the emission of photons follows a Poisson process. As a consequence, the image noise
cannot be considered as additive Gaussian. Applying DMD to an image series of DHE-
stained CHO cells results in a very efficient denoising for each frame. Only one dynamic
mode with a real eigenvalue describing the slight intensity decay due to photobleaching is
sufficient to reconstruct the data with high accuracy (Figure 2A,B). A comparison with a
widely used denoising method, PURE-LET denoising, shows that DMD provides a higher
peak signal-to-noise ratio (PSNR) over the entire image series (Figure 2C). The highly
efficient denoising is a consequence of the simple singular-value spectrum of these MP
image series. Indeed, the snapshot matrix of this image series is dominated by one singular
value capturing the majority of the variation in the data (Supplementary Figure S1). Both
DMD and HoDMD with automatic rank truncation are equally efficient in detecting the
low-rank structure in the image data, allowing for the separation of image content from
noise. This is illustrated in Supplementary Figure S1, where one sees that the image noise
corresponds to a plateau in singular values, which can be efficiently separated from the
image features by the SVD.

Image reconstruction and denoising by DMD is even possible in the case of slight
displacement of subcellular structures during MP imaging. This is shown for a DHE-labeled
hepatocyte-like HepG2 cell in Figure 3. In contrast to still objects, flow-like movement of
subcellular structures is captured in the imaginary part of the eigenvalues and dynamic
modes.
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Figure 2. Reconstruction and denoising of MP image series of DHE-labeled cells. Consecutive raw
images (upper panels) reconstructed using DMD (middle panels) or denoised using PURE-LET
denoising (lower panels) are shown (A). The inset box is shown as a zoomed-in version underneath
the respective panel. Eigenvalues recovered by DMD are plotted on the unit circle (B). The PSNR
is plotted as a function of frame number for the original image series (red line), for the DMD
reconstruction (green line), and for the PURE denoised stack (yellow line) (C). Original data shown
in (A) were generated as described in [21].
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Figure 3. DMD reconstruction of MP images in the presence of vesicle displacement. CHO cells
stained with DHE were imaged on an MP microscope and analyzed using DMD. Raw images are
of low photon counts, as shown in the upper row, while the DMD reconstruction is shown in the
lower row (A). The inset box is shown as a zoomed-in version underneath the respective panel,
with arrows pointing to a moving vesicle. Real and imaginary part of the first mode (B,C) and the
second mode (D,E) as obtained by DMD are shown. Non-zero values in the imaginary part indicate
vesicle displacements, as accurately captured by DMD. Original data shown in (A) were generated as
described in [21].

This is shown in Figure 3B–E, where moving DHE-containing vesicles result in real
and imaginary mode contributions. Again, the real part of the corresponding eigenvalues
describes photobleaching-induced intensity decays, while the imaginary part is due to par-
ticle displacements. These results clearly show that DMD can capture the dynamics of MP
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image time series which have simple dynamic behavior, such as slight acquisition-induced
photobleaching or small object displacements. This supports our previous analysis [41],
here, for a challenging application with very low SNR. To ensure a good performance of
DMD in this case, we used the noise-robust optimal DMD method, in which the error
between the modes and all the snapshots is minimized, a procedure which provides im-
proved estimates of amplitudes in the presence of noise [47,48]. Together, the results of
Figures 2 and 3 demonstrate the efficiency of DMD in denoising Poisson-corrupted images
with very low SNR, which makes the method a suitable post-processing step for live-cell
imaging based on photon-counting detectors.

A particular advantage of MP imaging is the ability to visualize subcellular structures
in all three dimensions. This is due to the intrinsic sectioning capability of the method
combined with the use of infrared light, allowing for deep specimen penetration [46].
To assess the potential of DMD for reconstructing the MP image data of DHE-labeled
cells in 3D, we analyzed HepG2 cell couplets forming a central intercellular membrane
compartment called a biliary canaliculus (BC; Figure 4). The formation of a BC indicates
polarization of the cells, and this compartment resembles the canaliculi biliferi of the liver,
into which the bile fluid is secreted [49]. We showed previously that fluorescent sterols such
as DHE are efficiently transported to the BC in HepG2 cell couplets, resembling the pathway
for cholesterol secretion into the bile [50]. The DHE-labeled BC is clearly visible between
two cells in 3D image series acquired by MP microscopy (Figure 4A). When applying
DMD to these 3D stacks, efficient noise removal is observed; however, the reconstruction
quality is limited, because the algorithm wrongly assigns the BC structure to almost all
frames (Figure 4A upper and middle rows). This is a sign of mode mixing, i.e., the inability
of DMD to correctly dissect the 3D image signal into separate spatial modes and their
associates’ evolution along the optical axis. The limited reconstruction quality of standard
DMD is also clearly seen in the integrated intensity plotted as a function of the frame
number along the 3D stack in Figure 4B. In contrast, using HoDMD with delay embedding
of d = 10 results in a much better reconstruction quality; HoDMD correctly assigns the BC
structure to the central frames only and gives an integrated intensity closely coinciding with
the experimental data (Figure 4A, lower rows; and Figure 4B). The eigenvalue spectrum
reveals that HoDMD but not DMD contains complex eigenvalues with a relatively large
imaginary contribution (compare Figure 5C,D). These complex eigenvalues determined by
HoDMD can capture the non-monotonic progression of the DHE intensity along the optical
axis adequately, thereby preventing mode mixing (Figure 4B). The integrated intensity
additionally drops along the optical axis, which is likely due to the photobleaching of the
sterol probe during acquisition. The overall trend of decaying intensity along the optical
axis is correctly captured by both the standard DMD and HoDMD, but only HoDMD
can account for the precise intensity profile and the specific image features in the 3D
image stack.

This important difference in the performance of both methods resembles that found
previously when describing standing waves, for which standard DMD fails, while HoDMD
gives correct results [43]. The increased data matrix of HoDMD augmented with z-shifted
versions of the 3D image data provides more linearly independent rows to provide pairs
of complex conjugated eigenvalues needed to describe the oscillation in the data, thereby
preventing mode mixing from occurring [30,43]. The ability of the two DMD variants to
dissect 3D intensity profiles was further assessed via an analysis of a theoretical point
spread function (PSF) model of the microscope. For the simplicity of the analysis, we chose
the PSF for an epifluorescence microscope system [51]. The reconstruction of this PSF model
by HoDMD coincides well with the original data, as shown in 2D and 1D intensity profiles
in Supplementary Figure S2. Some deviation is found in out-of-focus intensity profiles,
which, however, have drastically reduced intensity. For proper reconstruction of the data,
more than 20 dynamic modes are included when choosing the automatic truncation method
based on a hard threshold of the singular-value spectrum [52]. The HoDMD reconstruction
provides a correct integrated intensity profile at the in-focus position, while some oscillatory
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behavior is found outside of the focal plane. In contrast, standard DMD completely fails to
reconstruct the PSF profile, again showing that data augmentation via the embedding of
z-shifted snapshots results in a much-improved DMD performance.
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Figure 4. Comparison of DMD and HoDMD in reconstructing 3D MP image stacks of DHE-labeled
cells. HepG2 cells forming an apical biliary canaliculus containing DHE were imaged by MP mi-
croscopy. Montages of unprocessed MP (upper row, ‘Original’), DMD reconstruction (middle row),
and HoDMD reconstruction (lower row) in (A). The integrated intensity is shown for the original
snapshots (blue symbols), the DMD reconstruction (green line), and the HoDMD reconstruction (red
line) in (B). Eigenvalues recovered by DMD (C) or HoDMD (D) are plotted on the unit circle. Original
data shown in (A) were generated as described in [21].
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Figure 5. Comparison of DMD and HoDMD in reconstructing MP polarimetry image stacks of cells
labeled with TF-Chol. CHO cells were stained with TF-Chol after disrupting actin with cytochalasin
D, as described in the Materials and Methods and in [13]. Montages of unprocessed MP (upper row,
‘Original’), DMD reconstruction (middle row), and HoDMD reconstruction (lower row) are shown
with zoomed box underneath each row in (A). The integrated intensity is shown for the original
snapshots (blue symbols), the DMD reconstruction (green line), and the HoDMD reconstructions with
increasing number of delays, d (d = 3, red line to d = 20, yellow line) in (B). Eigenvalues recovered by
DMD (C) or HoDMD (D) are plotted on the unit circle. Original data shown in (A) were generated as
described in [13].

To assess the effects of resolution and image noise on DMD performance, we carried out
additional experiments with synthetic image stacks of a 3D cell phantom (Supplementary
Figure S3). Prior to convolution, to mimic microscope conditions, this phantom contains
very sharp intensity transitions. While this is an extreme scenario, one that is not observed
in experimental data, it allows us to find the limits of DMD methods in reconstructing 3D
image stacks. HoDMD can reconstruct the original data of cell phantoms with only minor
artifacts along the optical axis, particularly when using the full-rank snapshot matrix. In
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contrast, DMD is unable to reconstruct these data. After convolving the phantom image
stack with a theoretical PSF, both DMD and HoDMD with automated rank truncation are
able to reconstruct the input data very well (Supplementary Figure S3). This shows that the
limited resolution obtained in microscopy experiments has a smoothening effect on intensity
transitions, thus facilitating the analysis by DMD. A convolved cell phantom corrupted with
Poisson noise can be reconstructed and denoised by HoDMD, while standard DMD fails to
provide adequate reconstruction quality, particularly along the optical axis (Supplementary
Figure S3). We observed that these different abilities of DMD versus HoDMD to reconstruct
the image data depend on the singular-value spectrum of the image stacks. Convolving a
cell phantom with a theoretical PSF caused a more rapid decay of singular values compared
to non-convolved cell phantoms. It is easier to find a low-rank representation for a matrix
with rapidly decaying singular-value spectrum, and this explains why both DMD variants
can better capture the image features in the convolved cell phantom data. Supporting
that notion, the rank of the image matrix for frame fifty-seven, which exemplifies the
reconstruction quality, as shown in Supplementary Figure S3, is seventy-nine in the non-
convolved phantom image stack but forty-five in the convolved input data. In contrast,
for the first image frame, which does not contain any structure, the rank is zero for the
non-convolved but nineteen for the convolved image. Thus, lowering the image resolution
by blurring redistributes the image information to neighboring planes. This makes it easier
to obtain a reliable low-rank approximation of the Koopman operator matrix, explaining
the better performance of the DMD algorithms on the blurred image data. In convolved 3D
images corrupted with Poisson noise, the singular-value spectrum shows a plateau, as we
observed in the experimental data (e.g., Supplementary Figure S1). HoDMD outperforms
standard DMD in capturing the image features in the noisy 3D cell phantoms adequately.

3.2. Reconstruction of Two-Photon Polarimetry Data of Membrane Probes by HoDMD

The orientation of fluorescent probes in biological membranes can be determined
using polarized two-photon excitation. In this method, named two-photon polarimetry,
the fluorescence response of a probe to excitation by a linearly polarized two-photon
laser as a function of the rotation angle, θ, is recorded [26]. The two-photon polarimetry
measurements of TopFluor-cholesterol in BHK cells after disruption of subcortical actin
enable one to determine the probe orientation in the PM from the sine-shaped fluorescence
response (Figure 5A,B). Both DMD and HoDMD result in efficient denoising of the image
data and account for the overall oscillation in the signal intensity (Figure 5A). There are
two intensity peaks around 100 and 275◦, suggesting that the probe is oriented predomi-
nantly perpendicular to the membrane plane (Figure 5B), as we confirmed using a discrete
Fourier decomposition of the signal [13]. In addition, there is a slight intensity decay due
to photobleaching during recording of the image stacks that cannot be accounted for by
a standard Fourier analysis. In contrast, both DMD and HoDMD identify this intensity
decay, as reflected by eigenvalues slightly smaller than unity giving exponentially decaying
components of the associated ‘dynamics’ (Figure 5C,D). While DMD can capture the overall
orientation-dependent probe fluorescence adequately, it overestimates the intensity decay,
resulting in a too large drop in amplitude for the second peak around 260◦, as inferred
from the integrated intensity as a function of the polarization angle (Figure 5B, green line).
There are two oscillatory and two exponentially decaying dynamic modes determined by
DMD, as can be seen from the eigenvalue spectrum (Figure 5C) and the plots of the modes
as a function of the polarization angle (Supplementary Figure S4). In contrast, HoDMD
accurately captures both intensity peaks when either six or nine shifts are used (d = 6, 9;
Figure 5B, cyan and violet line). Due to the delay embedding, HoDMD provides seven
eigenfunctions to dissect and reconstruct the data, while standard DMD only provides four
modes (Figure 5C,D and Supplementary Figure S4). For higher values, e.g., d = 20, HoDMD
can capture even slight intensity variations along the stack, but since the data are noisy, this
likely resembles overfitting (Figure 5B, yellow line).
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In summary, delay-embedding of microscopy image stacks allows for a spatiotem-
poral dissection and high-fidelity reconstruction of the image data using HoDMD. The
reconstructed microscopy data contain less noise than the original recordings thanks to
the rank truncation of the approximated Koopman operator [43]. That is, only relevant
modes describing the evolution of the image data along the z-axis are retained, while
contributions to the signal with small singular values are discarded. The latter effect is very
useful for removing noise-induced artefacts in the microscopy data, as illustrated by the
MP microscopy data shown above.

3.3. Reconstruction of 3D-STED Microscopy Image Stacks by DMD

STED microscopy of Nile Red provides information about subcellular membranes
with increased resolution compared to confocal microscopy [9,10]. This is achieved by the
use of a red-shifted donut-shaped STED laser, which efficiently shuts off the fluorescence
of molecules in the periphery of the area excited by the illumination laser. The focal
volume can be narrowed down by increasing the power of the STED laser, and in our
implementation, this is achievable in all three dimensions (3D-STED).

When labeling human astrocytes with Nile Red, individual vesicles; lipid droplets; and
mitochondria, including mitochondrial ultrastructure, can be discerned in 3D-STED image
stacks of subcellular regions (Figure 6). Both DMD and HoDMD can almost perfectly recon-
struct these data, as seen by the visual inspection of the reconstructed stacks, as well as from
the quantification of the mean squared error (MSE) and structural similarity index measure
(SSIM) between selected image frames (Figure 6A,B). The reason for the comparably good
performance of both DMD methods lies in the rapidly decaying singular-value spectrum
for these data (see Supplementary Figure S5). This allows for finding a good low-rank
approximation of the matrix A in Equation (2) and for extracting the dominant modes,
because the majority of the relevant image information is contained in few singular values.
For both DMD and HoDMD, STED image stacks have reduced noise levels, and the shape
of organelles is well preserved after reconstruction, also along the optical axis (Figure 6B,C).
The integrated intensity of the reconstructed image stacks calculated along the optical
axis is very well aligned with that of the raw data, showing that both DMD and HoDMD
have a good performance in regard to reconstructing STED image data (Figure 6D). Also,
both methods find similar eigenvalues and dynamic modes, with HoDMD being slightly
more accurate due to its ability to identify additional eigenfunctions of the approximated
Koopman operator compared to DMD (Figure 6B–D and Supplementary Figure S6).

3.4. Interpolation of Missing Frames in 3D-STED Microscopy Image Stacks by DMD

The dynamic modes determined by DMD methods represent basis functions in a vector
space whose linear combinations allow us to describe the progression of image data from
one frame to the next. Therefore, this representation should also allow for the prediction of
the image frames not available in the original data. To test this idea, we reconstructed the
same 3D-STED image stack as described above, but with only every third frame in the input
data. Thus, the new snapshot matrix, X’1, contains only every third column compared to the
original snapshot matrix, X1, which consisted of 40 columns (i.e., reshaped image frames;
see Equation (3)). Applying DMD, we aim for not only reconstructing the down-sampled
STED image stack but also for interpolating the missing frames using the predictions based
on the inferred transition matrix, A’ (see Equations (8)–(10)). As shown in Figure 7A, DMD
can interpolate the missing frames with high quality. The reconstruction is of only slightly
lower accuracy compared to that achievable by linear interpolation of the missing frames,
as inferred from the MSE and SSIM of selected views of the 3D stacks in Figure 7B,C. The
integrated intensity of the DMD reconstructed volume resembles the original STED image
stack containing all frames closely. The linear interpolation of missing frames is again
slightly more accurate (Figure 7D). To further compare both methods, we calculated the
MSE and SSIM just for the interpolated frames along the entire stack and found that linear
interpolation is more accurate in the first half of the STED images (Figure 7E). In the second
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half of the reconstructed volume, the MSE values for both interpolation methods approach
each other, while DMD scores higher for the SSIM. The difference between both quality
measures could be due MSE being more sensitive to noise levels. Since DMD is denoising
the data, it can have higher MSE values compared to linear interpolation.
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Figure 6. Comparison of DMD and HoDMD in reconstructing 3D-STED image stacks. Human astro-
cytes were labeled with Nile Red and imaged on a STED microscope in 3D. Montages of unprocessed
MP (upper row, ‘Original’), DMD reconstruction (middle row), and HoDMD reconstruction (lower
row) are shown with zoomed box underneath each row in (A). Comparison of a selected frame (#20)
in the original data, the DMD, and the HoDMD reconstruction with calculated MSE and SSIM relative
to the original image (B). Bar, 1 µm. Two selected xz-profiles at y-position 90 and 190 are shown for
the original image stack, as well as for the DMD and HoDMD reconstruction, respectively (C). All
images are identically scaled between 0 and 250 in a 32-bit format. The integrated intensity is shown
for the original snapshots (blue symbols), the DMD reconstruction (green line), and the HoDMD
reconstruction with a delay of d = 4 (red line) (D). The inset is a zoomed-in version of the rectangular
box to highlight differences between DMD and HoDMD reconstructions.
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Figure 7. DMD is able to predict image frames, allowing for image interpolation in 3D-STED
microscopy. The original image stack consisting of 40 frames was down-sampled to 14 frames by
removing every third image (A). DMD is able to recreate the 40 frames in the reconstruction by
predicting the missing frames, resulting in an only slightly lowered image quality compared to the
reconstruction of the full image stack (B). This is also visible along the optical axis (C). The integrated
intensity along the optical axis of the full 3D-STED image stack (blue symbols) and the down-sampled
image stack (red symbols) is compared to the intensity of the linearly interpolated down-sampled
stack (yellow line) and of the DMD reconstruction/interpolation of this stack (D). The arrow points
to frame 20 shown in (B), which is predicted by DMD, as it was not part of the input data. Bar, 1 µm.
MSE and SSIM for the interpolated frames are shown along the optical axis (E).
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SSIM is more sensitive to image distortions, and here, both methods show a compa-
rable performance, particularly in the second half of the reconstructed volume. The axial
resolution in our 3D-STED system is about 110–120 nm in the red channel. The original
images were sampled every 50 nm, while the down-sampled stack contained images only
every 150 nm. Thus, both interpolation methods can restore Nyquist sampling without
compromising image quality significantly.

4. Discussion

Live-cell fluorescence imaging of membrane dynamics is an important tool to under-
stand lipid and protein trafficking and to discern signaling processes in living cells. Cellular
membranes are highly heterogeneous and can flexibly adapt to the complex requirements
of their environment. A fundamental challenge in the imaging of membranes and, in
particular, of membrane lipids is the need to label the studied molecules without altering
their behavior. This demand often poses limitations on the fluorescent moieties requiring
sensitive monitoring with an optimized photon budget. At the same time, there is the wish
to increase the optical resolution, thereby obtaining insight into membrane dynamics at the
nanoscale. Here, techniques such as STED microscopy are very powerful, but they pose
additional demands on the used fluorescent probes, namely efficient photoswitching for
extended times without photodegradation. Decreasing the incident light dose used for
probe excitation is a valid strategy to alleviate these problems, but that comes at the price of
a reduced signal-to-noise ratio for the obtained image stacks. Denoising the image data is
therefore an essential step in the analysis of the live-cell microscopy of membrane dynamics.
Various approaches have been developed for image denoising in microscopy, including
total variation and sparse reconstruction, Fourier-space and wavelet-based denoising (e.g.,
in [53–56]), and dictionary-based approaches [57]. Deep learning methods for denoising
are based on convolutional neural networks (CNNs), even in the absence of ground-
truth data [58], variational autoencoders [59], and diffusion-based probabilistic generative
models [60]. Here, we show that DMD—particularly HoDMD—is a suitable alternative
to such methods in the case that the image data consist of stacks in which frames were
acquired over time, as in time-lapse microscopy; along the optical axis, as in 3D imaging;
or for different orientations of the excitation light, as in fluorescence polarimetry. We show
that the coherent structures acquired by these microscopy modalities can be adequately
captured by the DMD variants. The SVD with rank truncation results in the retainment of
relevant modes, while efficiently removing image noise, even for very challenging condi-
tions, such as MP microscopy of weakly fluorescent membrane probes, like DHE. Using
synthetic cell phantoms, we show that the singular-value spectrum of the image data is an
important factor for the performance of the DMD variants; lowering the image resolution
relative to the spatiotemporal sampling rate will cause a more rapid decay of the singular
values, which facilitates a DMD analysis of the microscopy data. This observation is in
line with previous studies, showing that DMD fails if the data contain abrupt changes or
transients, which we have in the synthetic non-convolved data [45]. On the other hand, we
show that, for down-sampled 3D image stacks containing smooth image features, DMD
is able to not only reconstruct and denoise the image data but also to interpolate missing
frames. This important property will allow one to reduce the exposure time of the sample
by acquiring fewer frames along the optical axis, since a full 3D volume can be generated
by up-sampling the image data via DMD reconstruction. In this regard, however, DMD
performance is not better than linear image interpolation, and both methods can be used
to reduce the sampling frequency of 3D image volumes, thereby allowing for gentler 3D
microscopy with less light-induced damage for the sample. Further improvements of
DMD could be directed towards constraining the search for eigenfunctions of the Koopman
operator by including information about the physics of the underlying processes. This
approach has been successfully employed as a variant of DMD for the analysis of mechani-
cal systems and fluid dynamics [61]. Physics-informed DMD could employ a physically
meaningful description of the matrix A for each of the aforementioned scenarios, e.g.,
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for the advancement of the image structures in fluorescence polarimetry or 3D imaging.
Informing computational models with the underlying physics is an emerging approach
for improving image recovery in various microscopy modalities [62], and we believe that
the same strategy applied to DMD can contribute to its widespread use in the bioimaging
community in the future.

5. Conclusions

Cell membranes are heterogeneous and highly dynamic protein–lipid assemblies,
whose investigation via quantitative microscopy techniques profits from advanced compu-
tational tools. In this article, we show that DMD and its variant HoDMD can be used to
decompose, denoise, reconstruct, and interpolate the multidimensional fluorescence imag-
ing data of membrane probes. This allows for high-fidelity non-linear and super-resolution
microscopy with reduced light exposure, thereby preventing artefacts introduced by cell
stress due to extensive illumination.

Supplementary Materials: The following supporting information can be downloaded at https://www.
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S3: DMD and HODMD of a 3D Phantom, Figure S4: Dynamic modes of two-photon orientation
of TF-Chol in cell membranes, Figure S5: Singular-value spectrum of the 3D-STED data, Figure S6:
Dynamic modes of 3D-STED microscopy data.
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