
Citation: Bouse, L.; King, S.A.; Chu, T.

Simplified Indoor Localization Using

Bluetooth Beacons and Received

Signal Strength Fingerprinting with

Smartwatch. Sensors 2024, 24, 2088.

https://doi.org/10.3390/s24072088

Academic Editor: Riccardo

Carotenuto

Received: 29 February 2024

Revised: 19 March 2024

Accepted: 22 March 2024

Published: 25 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Simplified Indoor Localization Using Bluetooth Beacons and
Received Signal Strength Fingerprinting with Smartwatch
Leana Bouse 1,2,* , Scott A. King 1,2 and Tianxing Chu 1,3

1 Department of Computer Science, Texas A&M University-Corpus Christi, 6300 Ocean Drive,
Corpus Christi, TX 78412, USA; scott.king@tamucc.edu (S.A.K.); tianxing.chu@tamucc.edu (T.C.)

2 Innovation in Computing Research, Texas A&M University-Corpus Christi, 6300 Ocean Drive,
Corpus Christi, TX 78412, USA

3 Conrad Blucher Institute for Surveying and Science, Texas A&M University-Corpus Christi, 6300 Ocean Drive,
Corpus Christi, TX 78412, USA

* Correspondence: lbouse@islander.tamucc.edu

Abstract: Variations in Global Positioning Systems (GPSs) have been used for tracking users’ locations.
However, when location tracking is needed for an indoor space, such as a house or building, then an
alternative means of precise position tracking may be required because GPS signals can be severely
attenuated or completely blocked. In our approach to indoor positioning, we developed an indoor
localization system that minimizes the amount of effort and cost needed by the end user to put
the system to use. This indoor localization system detects the user’s room-level location within a
house or indoor space in which the system has been installed. We combine the use of Bluetooth Low
Energy beacons and a smartwatch Bluetooth scanner to determine which room the user is located
in. Our system has been developed specifically to create a low-complexity localization system using
the Nearest Neighbor algorithm and a moving average filter to improve results. We evaluated our
system across a household under two different operating conditions: first, using three rooms in the
house, and then using five rooms. The system was able to achieve an overall accuracy of 85.9% when
testing in three rooms and 92.106% across five rooms. Accuracy also varied by region, with most
of the regions performing above 96% accuracy, and most false-positive incidents occurring within
transitory areas between regions. By reducing the amount of processing used by our approach, the
end-user is able to use other applications and services on the smartwatch concurrently.

Keywords: indoor tracking; Bluetooth Low Energy; smartwatch; mobile tracking; indoor positioning
systems

1. Introduction

There are many applications in our daily lives which rely on tracking a user’s location
through mobile technology, such as car navigation, fitness tracking, and even emergency
services. It is estimated that by the year 2050, 25% of the population will be aged 65 or
older [1]. Older adults prefer to remain in their own home as they age [2], but certain
health conditions can cause this to be potentially hazardous. ambient assisted living (AAL)
technology can allow older adults to safely stay in their homes as they age, and indoor
positioning is one area of AAL which can help during emergency situations [3]. If an older
adult experiences a fall in their home, reliable indoor positioning could aid in the individual
receiving help sooner.

Variations in Global Positioning Systems (GPSs) have been used for tracking users’
locations. However, when location tracking is needed for an indoor space, such as a house
or building, then an alternative means of precise position tracking may be required because
GPS signals can be severely attenuated or completely blocked. Indoor positioning systems
have many approaches to solving this problem. However, many of these approaches
require an extensive and time-consuming setup that would be difficult and expensive for
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the average end user of ambient assisted living technology. Having many calibration points,
as many other approaches do [4–8], is one of the factors which makes it time-consuming,
particularly if the system requires re-calibration. Approaches that use a form of received
signal strength indicator (RSSI) need to be re-calibrated occasionally, as signal broadcasting
power levels can drift and change over time [9].

As is the case for many existing solutions for indoor tracking, the initial installation,
setup, and configuration of the system can potentially be very time-consuming and compli-
cated for an end user who has only moderate experience with the pertinent technologies.
Many of the current approaches to indoor localization utilize smartphones or other de-
vices for tracking the position and movement of the user. Our approach is designed to
be less computationally intensive while still achieving a competitive level of accuracy in
performance on a smartwatch.

In our approach, we developed an indoor localization system that minimizes the
amount of effort needed by the end user to put the system to use. This indoor localization
system detects the user’s room-level location within a house or indoor space in which the
system has been installed. Our primary goal is to find a solution which reduces power
consumption and reduces the complexity so that this app can be used in conjunction with
other AAL apps on the same device.

The developed indoor localization system uses Bluetooth Low Energy (BLE) beacons
that were placed throughout a house. An Android-based smartwatch was worn by the user
to scan and receive ambient BLE signals. Our approach focuses on detecting the user’s
location at the region level as opposed to detecting the specific coordinate of the user within
a house. This approach is useful when it is only needed to know in which room of a house
the user is located. To accomplish this, we use a fingerprint-based method and the Nearest
Neighbor algorithm to determine which region the user is most likely located in within the
test environment.

Our contributions to the field of indoor localization systems include (1) a system with
a low number of reference points and access points, (2) a system with a low-complexity
algorithm that maintains an accuracy rate above 90%, and (3) a system which requires a low
amount of time and effort for a user to set up and maintain. Our system has been developed
specifically to create a low-complexity localization system using the Nearest Neighbor
algorithm and a moving average filter to improve results. By reducing the amount of
processing used by our approach, the end user is allowed to use other applications and
services on the smartwatch concurrently. We have focused on reducing the amount of
hardware and time-consuming steps needed for the initial setup of our system, which
creates an easier overall experience for a potential end user.

The structure of this paper is divided into six sections: introduction, literature review,
methods, evaluation, results, and conclusions. (1) We introduce the subject and our ap-
proach to the issue. (2) We review the current literature on the common approaches for
indoor tracking and localization. (3) We move on to the methods of how we developed our
system. We also discuss the equipment used, how the hardware is set up, and the different
stages of operation for the system. (4) We detail our evaluation of the system, including the
environment, how the data are collected, and the analysis technique used. (5) We review
the results of our evaluation, and (6) our paper concludes with the conclusions section.

2. Literature Review

The literature reveals that many approaches for indoor tracking using Bluetooth have
similar experimental environments. A common setting for experiments is a computer
laboratory or similar type of room with the only obstacles being tables, chairs, and com-
puters [10–12]. These laboratories were typically used by not only those conducting the
experiment but also other individuals in the same communal workspace. There were
also electronic devices using Wi-Fi, Bluetooth, and other wireless communications that
could potentially cause interference in the experiments’ Bluetooth Low Energy beacons
in the same workspace. Some experiments were spread across multiple rooms and the
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adjoining corridors, with beacons distributed evenly throughout the space [4,11,13,14].
One particular experiment was conducted along a single, long corridor, with the Bluetooth
beacons distributed evenly along it [15]. The locations described in these approaches
combined a mixture of controlling the environment in terms of exact placement and layout
and including enough uncontrolled factors to simulate a realistic environment. Some
of these uncontrolled factors included individuals working in the environment on other
projects, active electronics unrelated to the performed research, and potential interference
from these devices’ wireless communications. One approach, however, deviated from this
typical experimental setup by taking place in a custom-made “Smart Lab” [16]. The lab
was modeled after a 25-square-meter efficiency apartment. It was divided into a bedroom,
kitchen, work area, and living room. The different areas were separated by walls that
almost reached the ceiling.

A paper on activity recognition used Radio Frequency Identification (RFID) to localize
where the user was in relation to several objects in an area [17]. Although the objective
of this work was to determine what activity a user was performing, the approach is very
similar to many indoor localization techniques. This work used RFID tags (to localize
several objects in an area) and four antennae surrounding the area. The RSSI (Received
Signal Strength Indicator) from each antenna was used to calculate the location of each
different object. Additionally, the individual in the testing scenarios had an RFID-tagged
bracelet on each wrist. The proximity of the wrist tags to the object tags was used to
determine what activities were being executed by the user.

Another approach for activity monitoring which could also be used for indoor local-
ization utilized infrared sensors. In one approach, a house was equipped with multiple
infrared sensors in various locations in the house [18]. The focus of the sensors was not
to interpret what actions were being performed by residents but to monitor the level of
activity in areas of the house. These sensors were connected through a home area network
to which they uploaded their sensor readings at set times during the day.

Radio Frequency Identification tags have also been implemented for fall detection in
ways that may have potential for indoor localization. One approach used carpet embedded
with sheets of RFID tags to create a binary image of objects above the carpet using the RSSIs
between the tags in the carpet and RFID readers placed near the ceiling [19].

In our approach, we use the Nearest Neighbor method to determine what set of
pre-established RSSI readings are most similar to the live RSSI readings collected by the
watch. One approach utilized the Euclidean Distance Correction algorithm for an indoor
tracking system using Bluetooth [20]. Their approach shows to be beneficial in comparison
to only using the original Euclidean distance formula. Another work that uses Bluetooth
for indoor tracking focused on using a method called fingerprinting to determine the
distance [14]. Sample windows are an important consideration in working with fingerprint-
ing and moving average filters as the received signal strength can fluctuate drastically. In
addition to reading fluctuation, a different study explored the range and transmit power of
Bluetooth Low Energy beacons [11]. Although the focus of this research was not entirely on
indoor tracking, they provided valuable information regarding how objects and obstacles
can impact signal strength and range. Other approaches for improving how distance is
determined using Bluetooth received signal strength used the Bluetooth signal propagation
model with Kalman filtering to accommodate for RSSI signal drift [9].

An approach which works very similarly to our work [21], reverses the Bluetooth
receiver and Bluetooth scanner. This approach has Raspberry Pi beacons which receive the
RSSI from a specific user’s device, filtering using the MAC address of the user’s device.
They were able to achieve up to 91% accuracy with their approach. These researchers also
went on to include this approach in a plug load management system, called Plug-Mate [22].
They used their indoor tracking approach to determine which rooms or areas are not being
used and to reduce the power consumption when it is empty.

Approaches which use Wireless Sensor Networks (WSNs) in place of Bluetooth can
also use RSSI analysis to achieve indoor localization. One work used the RSSI from a
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WSN for their localization [23]. They used a Support Vector Regression (SVR) approach, as
well as an SVR+Kalman filter (KF) approach, and were able to demonstrate in a simulated
environment that it preforms better than a trilateration approach.

An approach for occupancy detection in emergency situations had a similar method
to our work in localizing occupants; however, the processing was performed remotely [3].
A remote control server received the RSSI values and beacon IDs through the internet
and determined through a support vector machine (SVM) model what area the user was
located in.

Some of the approaches used the addition of Inertial Measurement Units (IMUs) and
the context of the area to increase the accuracy of RSSI-based algorithms [5,24,25]. These
approaches used the IMUs to determine how far the user was moving and how likely it
was that they were able to reach the RSSI-predicted location in the amount of time passed.
For example, if the RSSI-based localization algorithm determined that the previous location
and the current location were on opposite sides of the house, the IMU would be able to
determine how likely this is to be true. Many of the researchers show an improvement in
their approaches.

A similar approach is using spatio-temporal analysis of the user’s recent activity and
the understanding of surrounding Points of Interest, such as the Next POI recommendation
approach [26], which uses a unified neural network framework. Although this approach is
not confined to indoor tracking, the concept could be applied to it.

Another work on POI-based localization for vehicles had a similar approach [27]. The
paper used a gradient-based model for POI prediction for commercial vehicles based on
GPS data and validation by the vehicle drivers during the preliminary stages of the research.

There are also approaches to indoor tracking and indoor localization that use Wi-Fi
instead of Bluetooth [5–7,24,28,29]; however, the approach is very similar and involves
comparing the RSSIs of Wi-Fi broadcasters from different positions in an area. One of the
issues that can be encountered with these approaches is that reading Wi-Fi data consumes
more battery usage when compared to Bluetooth [30].

All approaches include calibration for many reference and/or access points before the
tracking period can be conducted. This type of approach can make it difficult in the initial
setup as well as any re-calibration that might be needed. Our goal is a system that is more
accessible for elderly people to use, and reducing the complexity or effort/time needed can
make it easier on the end user. The less external assistance a user needs in managing the
system, the more accessible it is.

In a majority of papers surveyed, data from reference points were collected while the
user was stationary. Although collecting RSSI data while moving around the room, or from
multiple RPs in a region might produce better results, our goal was to develop an approach
which included minimal setup.

3. Methods

The indoor localization in our approach focuses on determining which room or region
of the study area (referred to as the “house” or “home”) the user is in, as opposed to
determining the exact position of the user. The testing area, or house, is divided into
areas which we refer to as regions. Each region contains one BLE beacon, which acts as an
access point (AP). Each region has one reference point (RP), which is used for creating the
fingerprint for that region.

The house is separated into regions in which one beacon is placed. An example of a
region is a room, such as a kitchen, living room, or bedroom. Each region has an associated
region profile, which is used in establishing expected RSSI values for that region. The user
is equipped with an application on a wearable smart device, which continuously receives
the RSSIs from all beacons within range. The system uses this information to determine in
which region the user is most likely positioned.
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3.1. Equipment

Our research was designed to require as little hardware as possible to minimize costs
and installation efforts in a home. As such, there are two main types of equipment used in
our approach: a commercially available smartwatch and multiple Raspberry Pi devices.

The device we used for our smartwatch was the ASUS ZenWatch 2 [31] by ASUSTeK
Computer Inc. (Taipei, Taiwan), which supports Bluetooth Low Energy. It runs the An-
droid operating system and uses an Android application which we developed to allow
the smartwatch to act as the BLE scanner. Alternatively, this system can also work on
any Android-supported smartwatch, regardless of manufacturer. The only hardware re-
quirement is that it contain Bluetooth Low Energy. With minor changes to the Android
application, this approach would also work on a smart phone or any other Android device
with Bluetooth Low Energy.

The Raspberry Pi in our work is used as the Bluetooth Low Energy (BLE) beacon.
It is essentially a small computer that is approximately 85 mm × 56 mm × 17 mm in
size, not including external casings. The model we use is the Raspberry Pi 3 B+ [32]. The
primary component which we are interested in is the support for Bluetooth Low Energy.
The BLE beacon has an approximate range of 23 m in an indoor location [11] and there is
no proprietary software needed for our beacon. We use one Raspberry Pi per region in
our experiments.

The purpose of these beacons is to broadcast an advertising packet over Bluetooth,
which will be detected by a custom app running on the smartwatch. Each beacon broadcasts
its device address along with its advertising packet, which is used by the app to differentiate
between each beacon. The app stores information regarding all beacons in the house, which
we refer to as the Beacon Network.

3.2. Regions

An important decision is determining how many beacons are required in the house
and how they should be placed. Our current approach is to allow for one BLE beacon
per region. Although the Raspberry Pi 3 B+ has an average range of 23 m, for best signal
strength a beacon should be placed at least every 5–15 m [11]. The range of the BLE beacon
decreases significantly when there are large obstructions, such as walls or large furniture,
between the beacon and the BLE scanner. For our purposes, where regions are typically
defined as a room in a house, this can be a benefit. This can allow for more unique sets of
Bluetooth signal readings gathered by the smartwatch. However, obstructions within a
region must still be taken into consideration. For example, if a beacon is placed along the
wall next to a corner and the BLE scanner is on the other side of the corner, then there is
significantly reduced reception. This may impact the accuracy of the indoor localization
system. If a room is not larger than 5–15 m but contains corners, then additional beacons
may be needed. With these concerns in mind, for our approach, we place beacons so that
they are at the maximum distance from each other.

Each region has a corresponding region profile, which consists of the average readings
of each beacon within range. These readings are initially gathered during a calibration
phase. Each region’s profile is unique. For instance, the average RSSI for beacon ‘A’ will be
different when the user is standing in the kitchen compared to standing in the bedroom.

3.3. Hardware Setup

The setup of the hardware for our system is a simple process. The Raspberry Pi devices
that we use as beacons are labeled with a beacon number with which each is associated.
The user simply plugs the beacon into a power outlet in the region for that beacon. For
example, Beacon 1 would be placed in Region 1. Preferably the beacon would be placed in
a position farthest from other beacons. This allows more variations in RSSIs from region to
region. The user then runs a file on the Raspberry Pi device which ensures the Bluetooth
Low Energy broadcasts an advertising packet which contains the beacon’s MAC address.
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Although there is a preference for placing the beacon farthest from other beacons, for
example, in the farthest corner of the room, there is no requirement for it to be placed in
a specific place. Provided there are no significant obstructions to block the beacon, the
beacon can be placed where it is convenient for the user.

Once this is completed, the user then opens the indoor tracking application on their
smartwatch, and they are ready to begin the calibration and tracking phases.

3.4. Offline Phase

The offline phase of our system consists of calibrating the beacon profiles, which
are used in the online phase to determine the location of the user. The calibration phase
records the standard Bluetooth Signal Strength of all beacons from each room. From these
recordings, we construct the fingerprints from each beacon.

3.4.1. Fingerprinting

The indoor localization is based on the fingerprinting method using the Received Sig-
nal Strength (RSS) of the Bluetooth LE beacons within range. This is a common method used
for indoor positioning systems and works for multiple types of signals, such as Bluetooth,
Wi-Fi, and Radio Frequency Identification (RFID). Fingerprinting essentially compares the
current RSSIs of all beacons within range to sets of known RSSI values throughout a speci-
fied area [14]. Though this method can be used for either Wi-Fi or Bluetooth localization,
we will be using Bluetooth Low Energy to reduce battery consumption [30].

This approach operates on a simple overall concept: there are multiple signal broad-
casters placed throughout a house, ideally at least one to each room. In our case, we use
Bluetooth Low Energy beacons as our signal broadcasters. Each beacon has a unique
identification (ID) number. When the user stands in each region of the house, they wear
a device which acts as a BLE receiver. For each location in the house, the signal strength
from each of the beacons will be different. Figure 1 illustrates an example of the readings
collected from a specific beacon while in different regions. We can see in each of the regions
that there is a distinctive difference in RSSI ranges for the same beacon, varying depending
on where the user is in the home. We finally compare the current signal strengths of all the
beacons to a list of known signal strengths recorded in different positions throughout the
house for localization purposes.

Figure 1. Example of RSSI readings of Beacon 1 while in different regions of the testing area. The
mean is indicated as a red solid line and the RSSI signal as a fluctuating blue line.
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Fingerprinting can be broken down into two primary parts: access points and reference
points.

Access points (APs) are the stationary points which are broadcasting the signal that is
received by the user’s device. In our work, the Bluetooth beacons act as our access points.
Our beacons continuously broadcast a Bluetooth Low Energy advertising packet to all
devices receiving Bluetooth packets within range. The packet contains the MAC address
of the beacon that is broadcasting. The smart device has a record of all the beacons in the
beacon system, along with the MAC address for each.

Reference points (RPs) are the known positions throughout the testing area where
the RSSI values from all of the APs within range in the beacon system are recorded. The
collection of RSSI values for a reference point is referred to as the fingerprint. The RP’s
fingerprint is calculated during the calibration phase. In our work, each region contains
one reference point and one access point. The reference point we use is typically in the
center of the region. During the calibration process, the user will stand in place for 180 s.
Then, the user is prompted by the application to relocate to the next region. This calibration
process is repeated for each region in the system.

In addition to focusing on the algorithms and hardware used for this research, reducing
the number of access points or reference points is also a concern. Although there have
been approaches with less than 50 reference points [6,7], there have been approaches with
over 100 [4,8], or even over 2000 [5] reference points. Because our approach is focused on
room-based or region-based localization, we are able to utilize only one AP and one RP per
region in the household.

3.4.2. Calibration

Each of the beacons continuously broadcasts a Bluetooth LE advertising packet that
contains the beacon’s MAC address. The smartwatch application has a list stored of all
beacons, with their ID number, MAC address, standard assigned name (“Living Room”,
“Kitchen”, etc.), and the region to which they belong. Each region has a calibration profile
with which it is associated. The MAC address, beacon number, and standard assigned
name are currently hard-coded into the smartwatch application for the development and
evaluation stage of our research. However, this information can easily be set with user
input in the application.

The calibration process begins when the user activates the calibration mode on the
smartwatch. The user is instructed to move to the center of the first region and to press a
button indicating they are ready to begin. The smartwatch application collects and stores
the RSSI readings of all beacons within range for a duration of 180 s. Once the calibration
has been completed for that region, the user is prompted to move on to the next region and
repeat the same process.

Once the process has been completed for each region, the profile is calculated. For
each region, the collection of RSSI readings is grouped by beacon ID in ascending order by
their timestamps. Then, each beacon ID group is used to gather data for the fingerprint.
These data consist of the mean, variance, standard deviation, and average timestamp for
all the readings. Algorithms 1 and 2 demonstrate this calibration process.

In our approach, each region profile has one fingerprint for every beacon in the system.
The fingerprint consists of the mean and standard deviation of the collection of RSSI values
for that beacon ID grouping. An example of the profile for Region 0 can be seen in Table 1.

Once the offline phase calibration has been completed, the region profiles are saved to
the device.
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Table 1. Example of stored values for calibrated profile for Region 0.

Region ID Beacon ID Mean Var

0 0 −68.9613 1.6663
0 1 −85.3924 1.6692
0 2 −92.8077 1.4341
0 3 −95.0083 1.5450
0 4 −87.68789 1.7625

Algorithm 1 Region calibration

1: procedure CALIBRATE(Boolean f ilter, DataFrame RSSI)
2: for each region_id i do
3: for each beacon_id j do
4: if f ilter == TRUE then
5: RSSI[i][j] = MovingAvg(RSSI, 2)
6: profile[i][j] = getFingerprint(i, j, RSSI[i][j])
7: return pro f ile

Algorithm 2 Calculate fingerprint for a set of RSSI values of a beacon

1: procedure GETFINGERPRINT(Int region_id, Int beacon_id, DataFrame RSSI)
2: fingerprint[‘mean’] = RSSI[’RSSI’].mean()
3: fingerprint[‘timestamp’] = RSSI[’timestamp’].mean() ▷ Average the timestamps
4: if region_id == beacon_id then
5: fingerprint[‘weight’] = 0.75
6: else
7: fingerprint[‘weight’] = 1.0
8: return f ingerprint

3.5. Online Phase

After all of the beacons have been calibrated, the user can then enter the tracking
phase. In this phase, the indoor localization app scans for all of the registered BLE beacons
and reads their RSSI values. The app then takes these readings and compares them to each
beacon’s profile. Whichever profile is closest to the current readings will determine which
beacon the user is closest to—and therefore in which room or area of the house the user
is located.

3.5.1. RSSI Sampling

There are a few steps to take to determine which beacon is closest to the user and
therefore in which area of the house they are located. The first step is to determine the width
of the RSSI sampling window. When the BLE scanner reads the RSSIs from the beacons,
regardless of whether the user is moving, the strength of the signal does not remain steady.
The signal fluctuates in strength but does show a clear trend in values depending on the
distance between the user’s smartwatch and the beacon. However, if only a single RSSI
reading is considered it could very easily produce the wrong result. A window size that
is too short can result in not enough data. Likewise, a window that is too long can result
in possible “smudging”, which is common if a user is walking from one room to another,
or even between more than two rooms, in the span of one sample window. In this case,
smudging would be when readings from two or more rooms are collected in the same
sample window for averaging. This can result in inaccurate location predictions.

3.5.2. Tracking

During the tracking phase, the localization application gathers the current RSSI read-
ings and compares them to the fingerprints for all of the regions to determine which is most
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similar. Because Bluetooth signals can fluctuate, we take an average of readings over 10 s of
all beacons in range [33]. For our evaluation, we also compare how effective our approach
is using durations of 3 and 5 s for averages. During this phase, we use this moving window
average instead of a Gaussian filter to reduce power consumption since these readings are
taken continuously. We compare the readings against each set of fingerprints and assign it
a score based on the weight of the fingerprint and how far away it is from the fingerprint.

When comparing the current readings to each set of fingerprints, there are different
weights to each beacon in a fingerprint. The beacon which belongs to the corresponding
region has a weight of 0.75, while the rest of the beacons in that fingerprint have a weight
of 1.0. For example, in Figure 2, the weights for Region 0 and Region 1 would be as they are
in Table 2, with Beacon 0 in Region 0 having a weight of 0.75, Beacon 1 in Region 1 having
a weight of 0.75, and all other beacons in these regions having a weight of 1.0. The weight
of 0.75 allows the algorithm to place a priority on that region’s beacon. This number was
determined through a series of trials testing different values. Both lower and higher values
decreased the accuracy, while 0.75 increased the accuracy.

Figure 2. Placement of Regions 0–4, Beacons B0–B4, and calibration locations for each region in home
for evaluation and data collection.

Table 2. Example of weights associated with the profile for Region 0 and Region 1.

Region ID Beacon ID Weight

0 0 0.75
1 1.0
2 1.0
3 1.0
4 1.0

1 0 1.0
1 0.75
2 1.0
3 1.0
4 1.0

To determine which region the user is located in, we utilize a weighted Nearest
Neighbor algorithm, seen in Algorithm 3, and we determine what the weighted score is for
each region’s profile. First, we take the current average of RSSI readings from each beacon
within range. This is considered the fingerprint of readings. We then compare the current
fingerprint RSSI readings to each beacon’s fingerprint profile. The difference is subtracted
from each RSSI pair—that is, the current RSSI reading for Beacon A is subtracted from
Region 1’s reading for Beacon A, and then the current reading for Beacon B is subtracted
from Region 1’s Beacon B, and so forth until we have the difference in values for each
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beacon for that region. The differences for each beacon in the region are then multiplied
by the appropriate weight, as described above. Finally, all the values for that region are
combined as the weighted score for that region. Algorithm 4 demonstrates a simplified
version of the overall process.

This process is repeated for each region profile. Whichever region has the lowest
weighted score is determined to be the region the user is closest to.

Algorithm 3 Determine the Nearest Neighbor

1: procedure NEARESTNEIGHBOR(pro f ile, f p)
2: Group pro f ile by region_id
3: for each region_id group i do
4: w = 0, t = 0
5: for j in (length(group[i]) do
6: t = pow(( f p[j][‘mean’] − group[i][j][‘mean’]), 2)
7: t = t × group[i][j][‘weight’]
8: w += t
9: wts[i] = [region, group[i][j][‘timestamp’].mean(), w]

10: return wts.minimum() ▷ Return region with lowest weight

Algorithm 4 Simulated tracking

1: procedure TRACKING(pro f ile, RSSI, f ilter, f req)
2: Group all readings by frequency ▷ 3 s, 5 s, or 10 s
3: for each frequency group i do
4: if Group i not Empty then
5: Group RSS[i] by Beacon_id
6: for each Beacon group j do
7: if f ilter == TRUE then
8: RSSI = MovingAvg(RSSI, 2)
9: f p[j] = getCurrentFingerprint(RSSI)

10: prediction[i][‘location’] = nearestNeighbor( f p, pro f ile)
11: prediction[i][‘true_loc’] = round(group[‘true_loc’].mean())
12: return prediction

4. Evaluation

To evaluate our approach, we conducted a test in a home environment. Live data
were collected from hardware during the test and were then processed through several
simulations of our indoor localization system using varying parameters. This allowed us
to compare different variations in our approach to determine the most effective one on the
same collection of data.

The simulations were separated into two primary parts, first using five regions, and
the second approach using only three of the regions. Both of these approaches were derived
from the same collected dataset to ensure an accurate comparison.

4.1. Environment

The evaluation was conducted inside one of the researchers’ residences across five
rooms of the home. The layout of the home can be seen in Figure 2, which is not to scale.
The overall area for the home is 7.32 m by 13.41 m, which is approximately 321.87 square
meters. Each region consists of a single room, with one beacon present in each region. Each
of the walls dividing the rooms is approximately 10.5 cm thick, with furniture arranged
throughout each room as indicated by rectangle boxes on the diagram. All beacons were
placed approximately 1 m from the ground, and the smartwatch was held at a steady 1 m
from the ground throughout the experiment.
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As this was a home environment, there were several Bluetooth- and Wi-Fi-connected
devices in use at the time of the experiment. This aspect of the testing area helps in
determining the efficiency of our system within a realistic environment.

4.2. Data Collection

Before tracking data were gathered for each session, we performed the calibration
sequence as described in the previous section. The number of regions, number of beacons,
and the beacon MAC addresses were hard-coded into the Android application and changed
manually depending on what was needed for each experiment. For each room in the testing
area, we gathered the RSSI readings in the center of each room for 180 s. After the 180 s
had elapsed, the user was prompted to relocate to the next region and press the button
when ready to begin for that region. We repeated this process in each of the regions to be
included in testing for that session.

During the calibration sequence, all RSSI readings collected were recorded raw, with-
out alteration, and saved to a file on the device.

Once the calibration data collection was complete, we moved on to the tracking phase.
For each region, we designated five positions for the user to stand stationary in. We have
chosen to have five stationary positions for experimenting to better understand where areas
of low accuracy might be found in a home environment. Readings were collected from each
position for five minutes before the user moved on to the next position in the region. The
same process was repeated for all regions. This number, as well as the 180 s for calibration,
was determined in consideration of the total testing time needed with combined calibration
and tracking phases. Three minutes per room, with five rooms, makes fifteen minutes for
the calibration phase. Then, with an additional 5 min per position in each room, the total
was 125 min for tracking—making a total of 140 min for both phases of the testing. The
placement of these positions can be seen in Figure 3, with each position indicated with a
black circle and the label P0–P4. The Android application was set to collect RSSI values
every ten seconds and save the collected data to a file. For this experiment, we appended all
received RSSI data to a raw data file for analysis, including the timestamp for each reading.

Figure 3. Placement of Positions P0–P4 in each region for evaluation and data collection.

We performed this experiment first using five BLE beacons across five regions and
then again with three BLE beacons across three regions. The placement of beacons in the
first experiment can be seen in Figure 2, with Beacons 0–4. The placement of beacons in the
second test is the same as the first but only uses Beacons 0–2.

To determine the ground-truth accuracy for which readings were associated with
which regions, the experiment was performed by one of the researchers of this work and
recorded with a web camera. The timestamps for entering and exiting each of the regions
were manually recorded in a file. Based on these timestamps, a Python script was written



Sensors 2024, 24, 2088 12 of 19

to insert the ground-truth location for each raw RSSI reading into the data file. Table 3
displays an example of tracking data collected during this phase of the experiment.

Table 3. Sample entries from tracking phase of the data collection.

Timestamp Beacon ID MAC Address RSSI True
Location

Position
Location

2023-02-06 20:06:20 1 B8:27:EB:54:87:D0 −71 2 2
2023-02-06 20:06:20 0 B8:27:EB:D6:2F:E2 −85 2 2
2023-02-06 20:06:20 4 B8:27:EB:DB:10:50 −87 2 2
2023-02-06 20:06:20 2 B8:27:EB:2C:39:0A −49 2 2
2023-02-06 20:06:20 3 B8:27:EB:D0:B5:91 −83 2 2

4.3. Technique Analysis

After the data have been collected, we transfer them to the computer for simulating
the tracking process with different variations. We used the same tracking algorithm for
each of the variations, which were (1) the application of a moving average filter, (2) RSSI
sample aggregation frequency, and (3) the number of beacons. We wanted to determine
the effectiveness of applying a simple moving average filter to the gathered RSSI data,
which can be seen in Algorithm 5. For each of the experiments and variations, we ran the
simulation with and without the filter on both the calibration data and the tracking data. In
addition to this, we wanted to determine how the performance fares aggregating the RSSI
samples at different frequencies—for example, determining the user’s location every 5 s.
We chose three sample frequencies: 3 s, 5 s, and 10 s.

The moving average filter is an important step in our approach as it is a simple means
of reducing the amount of fluctuation in the RSSI readings as they are collected by the
Android application. Figure 4 displays a sample of collected RSSI data for Beacon 4 while
the user is in Region 1. The top graph displays the unfiltered data, while the bottom graph
displays the simple moving average filter with a window size of 2. The red horizontal line
indicates the mean values.

Figure 4. Unfiltered and filtered RSSI reading comparison, with mean indicated as a red solid line
and the RSSI signal as a fluctuating blue line.
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Algorithm 5 Moving average filter

1: procedure MOVINGAVG(List RSSI, Integer window)
2: x = [0] × len(RSSI)
3: for i < length(RSSI) do
4: sum = RSSI[i]
5: count = 1
6: if i < window then
7: for j < window do
8: sum += RSSI[i + j]
9: count += 1

10: else if i > (length(RSSI) − window) then
11: for j < window do
12: sum += RSSI[i − j]
13: count += 1
14: else
15: for j < window do
16: sum += RSSI[i − j]
17: sum += RSSI[i + j]
18: count += 2
19: x[i] = sum / count
20: return x

The first step in our simulation is to load the raw RSSI data collected during the
calibration process. We group the data by region, then by Beacon ID, and pass them
through a moving average filter with a window of size 2. This size was chosen after a
trial-and-error process to determine which value produced the best results. Once we have
both the raw and the filtered data, we use these sets of data in our calibration algorithm,
which was seen previously in Algorithm 1. The calibrated region profiles are then saved
for use in the tracking portion of the simulator.

Once we have calibrated the beacons for each variation of the experiment, we are able
to move on to simulating the tracking portion of our experiment. We can see the overall
algorithm for determining the current location of the user in Algorithm 4, the Simulated
Tracking algorithm. This algorithm loads the raw RSSI data that were collected and then
groups them according to timestamps based on the frequency for aggregation of the data.
We run the full simulation experiment using first a 3-s frequency, then a 5-s frequency,
and finally a 10-s frequency. Then, for each of these frequencies, we run the simulation
experiment first without a moving average filter and then with the moving average filter.
The size of the Moving Average Window varied slightly between tests, depending on the
frequency. For the ten-second aggregation frequency we used a window size of 3, while for
both five- and three-second frequencies we used a window size of 2.

After the current group of data have been filtered, the current fingerprint of all the
beacon readings within range is collected using Algorithm 2. This essentially determines
the mean, variation, and average timestamp for the readings.

The current fingerprint of the beacons is then used to determine which region is closest
to the user. We use a weighted Nearest Neighbor, seen in Algorithm 3, to determine this.
This algorithm calculates the Euclidean distance between our current collection of RSSI
values (the current fingerprint) and the calibrated region profile RSSI values. The typical
Euclidean distance formula determines the distance between two vectors p and q. In our
application, the two vectors are the fingerprint of a region’s profile and the fingerprint of
the current RSSI readings for beacons within range.

We have adjusted the Nearest Neighbor algorithm to allow different weights for each
region’s RSSI values. In the original distance formula, the distance between the two vectors’
values is the sum of the difference of each value raised to the power of 2. The two vectors
being subtracted represent the RSSI values for each beacon from (a) the user’s current
position and (b) one of the region profiles. As previously stated, each beacon in a region
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profile has a weight assigned to it. For each region profile, the beacon which resides inside
of the same region as the profile has a weight of 0.75, while all other beacons have a weight
of 1.

When distance is calculated between corresponding beacons in the two vectors, we
multiply the outcome by its weight before adding it to the summation. As the region profile
with the lowest difference in RSSI values to the current readings is the closest region to
the user, our weighted algorithm allows more importance to be placed on beacons that
correspond with the region profile being evaluated.

Once all of the weighted Euclidean distances between the current RSSI readings
and each of the region profiles have been calculated, we are able to compare the values.
Whichever region profile has the lowest value is determined to be the region to which the
user is closest.

5. Results

In our experiments, we compared results using a variety of variables. We tested
results using five beacons and three beacons as well as varying the amount of time spent
aggregating RSSI readings for accuracy. In our evaluation, accuracy refers to whether the
algorithm predicted the correct region for where the user was. We also compared the
results, including a smoothing filter for RSSI readings. Experiments run with a moving
average smoothing filter had the filter applied to both the calibration readings as well as
the tracking readings.

We were able to achieve a 92.1% accuracy in our indoor tracking system using five
beacons across five rooms, and 85.9% accuracy using three beacons across three rooms.
Both of these results were attained by aggregating readings every ten seconds. Our worst
results were shown with 88.9% accuracy using five beacons at five-second aggregation and
83.8% using three beacons at three-second aggregation. The full table of results can be seen
in Table 4.

Table 4. Average evaluation accuracy for experiments with and without moving average filter. Best
performance for 5 and 3 beacons are seen in bold.

Beacons Filtering 10 s 5 s 3 s

5 Yes 92.106% 88.880% 88.973%
5 No 91.974% 88.946% 89.040%
3 Yes 85.939% 83.889% 83.950%
3 No 85.720% 83.778% 83.839%

In addition to the overall performance, we have also looked at the performance for
each individual region in each of the experiments. We can see a visual overview of some
of these results in Figures 5 and 6. In these heatmap plots, the color bar on the right side
indicates the color associated with the number of positive readings. Diagonal cells of the
heatmap are true positives (TPs) and all other cells are false positives (FPs). A true positive
indicates that it correctly predicted that location to be the current location. Under the FP or
TP designation is the total number of predictions for that location, followed by the percent
that represents samples for that location (row). For example, in the top row, Region 4, each
box on that row shows how often it predicted the user to be in Regions 0–1 while standing
in region 4. At position (4,4) we can see that there was a TP rate of 96.79% accuracy. Figure 5
demonstrates our experiment run with the worst overall performance. This figure displays
the number of true-positive and false-positive readings for each actual location. The overall
accuracy for this test was 83.778%; however, we can see that in Region 1 there was a 93.67%
true-positive rate. This discrepancy can also be seen in our best performance, with five
beacons and ten-second aggregation, which can be seen in Figure 6. The overall average
was 92.106%; however, we were able to achieve 98.68% accuracy in Region 3.
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Figure 5. Heatmap plot of the accuracy of predicted room locations versus actual room locations for
experiment with three beacons at 3-s aggregation with moving average filter.

Figure 6. Heatmap plot of accuracy of predicted room locations versus actual room locations for
experiment with five Beacons at 10-s aggregation with moving average filter.

When we take a closer look at the breakdown of the accuracy results for each position,
we begin to see a clearer picture of factors which may impact how accurate the system is in
a home environment. In Region 0, there are two positions where the accuracy was 100%.
This can be seen in Table 5. Meanwhile, the results for Region 3 demonstrate much higher
accuracy, with three results over 95%, as seen in Table 6.

Figure 7 displays the accuracy for each position in each region of the test environment.
Position 0 of Region 0 performed with the worst accuracy results and was placed in a
transitory area between Region 0 and Region 1. We can see from Table 5 that for Position
0, it correctly predicted Region 0 fifteen times and incorrectly predicted Region 1 twelve
times. Similarly, in the accuracy table for Region 2, Table 6, we see Position 0 incorrectly
predicting Region 1, which is the adjoining room. This trend of incorrect predictions is also
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partially reflected in Position 3 in Region 0. Although this position is not in a transitory
location, there are no walls separating it from Region 1. There is a clear path from Position
3 to Region 1 without any major obstructions, which may be causing uncertainty in the
readings. In addition to this, as this evaluation took place in a home environment, there is
the possibility of other wireless and Bluetooth devices interfering with the smartwatch’s
ability to accurately receive RSSIs in all areas of the home.

Table 5. Accuracy table for location predictions for Region 0, listed by each position in the region,
using moving average filter at 10-s frequency. The true location for this table is Region 0.

Position Predicted
Region 0

Predicted
Region 1

Predicted
Region 2

Predicted
Region 3

Predicted
Region 4 Accuracy

0 15 12 0 0 3 50.00%
1 21 8 0 0 1 70.00%
2 31 0 0 0 0 100.00%
3 22 8 0 0 0 73.33%
4 31 0 0 0 0 100.00%

Table 6. Accuracy table for location predictions for Region 2, listed by each position in the region,
using moving average filter at 10-s frequency. The true location for this table is Region 2.

Position Predicted
Region 0

Predicted
Region 1

Predicted
Region 2

Predicted
Region 3

Predicted
Region 4 Accuracy

0 0 9 21 0 0 70.00%
1 0 1 29 0 0 96.66%
2 0 0 30 0 0 100.00%
3 0 0 31 0 0 100.00%
4 0 6 24 0 0 80.00%

Figure 7. Accuracy results for each Position P0–P4 in each region.

6. Conclusions

Our primary goal for our research has been to develop an indoor localization system
which minimizes complexity while still maintaining a high rate of accuracy in its perfor-
mance. We were able to create an indoor localization system which operates with only
one Bluetooth beacon per room and with only one reference point in the initial calibration
process. The initial setup time can be completed in less than five minutes per room in the
end user’s home.

In addition to simplifying the equipment and setup process for our system, we also
reduced the amount of processing needed for detecting the user’s location by using a
simple moving average filter on the processed data and the Nearest Neighbor algorithm
for detecting position. We also sought to reduce battery consumption where possible, such
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as by utilizing Bluetooth Low Energy as our tracking method as an alternative to Wi-Fi.
These energy-conserving measures may allow the user to better utilize their smartwatch
for additional purposes other than solely for indoor localization.

In addition to this, because the entire process is self-contained in each smartwatch,
our system can easily support multiple users on the same system of beacons with no
interference. Our system overall provides an easy experience for any potential end users in
its initial setup and its continued use.

There are several limitations to our work that we believe could be overcome in future
works. Although our overall approach has a 92.1% accuracy rate, we believe that improve-
ment could be made in the calibration process that would provide better results. Including
multiple reference points per region, instead of only one, could provide a more diverse
understanding of typical RSSI readings for each region. This would be particularly helpful
in transitory regions, such as entrance ways from one region to the next. A balance between
reference points, accuracy, and setup time would need to be taken into account for future
works looking to improve on this aspect.

Additionally, the matter of scaling is another limitation of this approach. As it is, for a
five-room living space, it would take approximately fifteen minutes to calibrate the system.
Any time there is any significant change in the layout of the beacons, the system must
be re-calibrated. If this system were to be deployed on a larger scale, for example, in a
care home facility with significantly more rooms, then the setup time increases as well.
In a large-scale application, re-calibration becomes a significant time-consuming process.
Future work exploring ways to decrease this issue, without impacting accuracy, could be
very beneficial.

Other areas for future work may also lie in modifications to the user interface. As the
system currently is, many features are hard-coded into the smartwatch application, such
as the MAC address for each beacon and its corresponding region number. Users could
also be given the option to select sampling times, such as 5 or 10 s, to find a solution which
works for their needs. Additionally, creating a version of the application for smartwatches
would provide an alternative for those without access to or who are unable to afford a
smartwatch. The only hardware requirement for this system to operate on a smartphone or
tablet would be that has Bluetooth capabilities.

It is our hope that these contributions may provide members of the public with better
access to and use of a user-friendly indoor localization system to ensure better quality care
for themselves or their loved ones.
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