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Abstract: Heavily imbalanced datasets are common in lesion segmentation. Specifically, the lesions
usually comprise less than 5% of the whole image volume when dealing with brain MRI. A common
solution when training with a limited dataset is the use of specific loss functions that rebalance the
effect of background and foreground voxels. These approaches are usually evaluated running a single
cross-validation split without taking into account other possible random aspects that might affect
the true improvement of the final metric (i.e., random weight initialisation or random shuffling).
Furthermore, the evolution of the effect of the loss on the heavily imbalanced class is usually not
analysed during the training phase. In this work, we present an analysis of different common
loss metrics during training on public datasets dealing with brain lesion segmentation in heavy
imbalanced datasets. In order to limit the effect of hyperparameter tuning and architecture, we chose
a 3D Unet architecture due to its ability to provide good performance on different segmentation
applications. We evaluated this framework on two public datasets and we observed that weighted
losses have a similar performance on average, even though heavily weighting the gradient of the
foreground class gives better performance in terms of true positive segmentation.

Keywords: medical imaging sensors; magnetic resonance imaging; brain; lesion segmentation;
imbalanced dataset; loss functions

1. Introduction

Magnetic resonance imaging (MRI) is one of the most common techniques using
sensors to obtain imaging information from the brain. Furthermore, lesion segmentation
is the most common image analysis task applied to brain MRI for different neurological
pathologies, such as multiple sclerosis [1,2], Alzheimer’s disease [3] or vascular cognitive
impairment [4]. Brain lesions, usually identified as white matter hyperintensities on
T2-weighted images, represent a small percentage of the whole brain volume, can have
different shapes and volumes and their spatial distribution can greatly vary between
patients. Due to these issues, the accurate detection and segmentation of white matter
hyperintensities is a challenging segmentation task.

Recently, deep learning approaches have rapidly become the state of the art for medical
image analysis [5,6], including binary image segmentation [7]. However, a severe data
imbalance can bias the training of the models and produce unexpected results (i.e., reduce
the accuracy of the lesion segmentation) [8,9]. The most common solutions are the use of
sampling techniques to increase the number of positive samples [10] and loss functions that
give different weights to the foreground and background classes, either implicitly [11,12]
or explicitly [13]. While different losses have been presented for medical imaging [14], they
are rarely analysed for datasets with heavy imbalances. Specifically, their effect on the
underrepresented class is not properly understood, how the loss evolves through time per
epoch is rarely studied, and the effect of randomness is usually excluded from the results,
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even though weight optimisation is inherently a stochastic process. To that end, multiple
studies have been published on understanding prediction uncertainty through probabilistic
frameworks and deep ensembles [15–18], suggesting the importance of reporting results
with multiple runs and random seeds. Furthermore, losses are usually defined based on
their value, but they are rarely designed taking into account their derivative and their effect
on optimisation.

In this paper, we present an analysis of the most common losses used for imbalanced
datasets, and we study their evolution during training focusing on the effect on the under-
represented class. Furthermore, we propose a new weighted loss function based on the
gradient of the cross-entropy loss (as opposed to focusing only on the loss function alone).
The rest of the paper is structured as follows: in Section 2, we present the framework and
public datasets we used, followed by the results in Section 3, a short discussion in Section 4
and conclusions and future works in Section 5.

2. Materials and Methods
2.1. Public Datasets

For this analysis, we used two public datasets with manual annotations of brain lesions
and a heavy imbalance. The statistics of the number of foreground and background voxels are
summarised in Table 1 and examples of images are given in Figure 1. While the ratio between
foreground and background voxels is bigger inside the training patches, they still represent
less than 5% of the whole patch on average.

Table 1. Statistics on the number of voxels for the foreground and background class for the analysed
datasets. % (brain) refers to the lesion voxel percentage mean ± standard deviation for the whole
brain, while % (batch) refers to the lesion voxel percentage for all the batches. Numbers in brackets
represent the global percentage for the whole dataset and batches.

Dataset % (Brain) % (Batch) Mean Lesion Size Lesion Number

WMH2017 1.54 ± 1.48 [1.57] 1.53 ± 2.40 [1.73] 111.1750 3679
LIT longitudinal 0.14 ± 0.18 [0.15] 0.48 ± 0.84 [0.51] 116.13 156

Figure 1. Example of slices of a randomly selected subject for each dataset. The first row depicts an
example of a T1 slice, a FLAIR slice and the boundary of all the lesions for a WMH2017 subject, while
the second row depicts an example of a baseline, follow-up image and the boundary of all the new
lesions (not appearing on the baseline image) for a LIT longitudinal subject.
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2.1.1. White Matter Hyperintensities (WMH) Challenge 2017 [4]

The WMH Segmentation Challenge was held during the MICCAI 2017 conference, and
it provided a standardized assessment of automatic methods for the segmentation of WMH.
The task for the challenge was defined as the segmentation of WMH of presumed vascular
origin on brain MR images. A total of 60 labelled images were acquired from three different
scanners with different sensors from three different vendors, in three different institutes.
For each subject, a 3D T1-weighted and a 2D multi-slice FLAIR image were provided.
Details on the acquisition and preprocessing steps for these images are summarised in the
original challenge paper [4]. In brief, all images were manually labelled for white matter
hyperintensities by an expert, and these annotations were afterwards reviewed by a second
expert who created the final mask. Other pathological regions were also labelled. However,
these regions were not evaluated during the challenge and, thus, we ignored this label for
our analysis. Finally, T1-weighted images were co-registered to the FLAIR space during
pre-processing, and we used these pre-processed images for our experiments.

The parameters of each acquisition are summarised as follows:

• UMC Utrecht, 3 T Philips Achieva: 3D T1-weighted sequence (192 slices, slice size:
256 × 256, voxel size: 1.00 × 1.00 × 1.00 mm3, repetition time (TR)/echo time (TE):
7.9/4.5 ms), 2D FLAIR sequence (48 slices, slice size: 240 × 240, voxel size:
0.96 × 0.95 × 3.00 mm3, TR/TE/inversion time (TI): 11,000/125/2800 ms).

• NUHS Singapore, 3 T Siemens TrioTim: 3D T1-weighted sequence (192 slices, slice
size: 256 × 256, voxel size: 1.00 × 1.00 × 1.00 mm3, TR/TE/TI: 2, 300/1.9/900 ms),
2D FLAIR sequence (48 slices, slice size: 256 × 256, voxel size: 1.00 × 1.00 × 3.00 mm3,
TR/TE/TI: 9000/82/2500 ms).

• VU Amsterdam, 3 T GE Signa HDxt: 3D T1-weighted sequence (176 slices, slice
size: 256 × 256, voxel size: 0.94 × 0.94 × 1.00 mm3, TR/TE: 7.8/3.0 ms), 3D FLAIR
sequence (132 slices, slice size: 83 × 256, voxel size: 0.98× 0.98× 1.20 mm3, TR/TE/TI:
8000/126/2340 ms).

2.1.2. Ljubljana Longitudinal Multiple Sclerosis Lesion Dataset [1]

This database contains baseline and follow-up MR images of 20 multiple sclerosis
(MS) patients. The images were acquired on a 1.5 T Philips MRI machine at the University
Medical Centre Ljubljana (UMCL), and the data were anonymized [1]. Each patient’s MR
acquisition contained a 2D T1-weighted (spin echo sequence, repetition time (TR) = 600 ms,
echo time (TE) = 15 ms, flip angle (FA) = 90°, sampling of 0.9 × 0.9 × 3 mm with no inter-
slice gap resulting in a 256 × 256 × 45 lattice), a 2D T2-weighted (spin echo sequence,
TR = 4500 ms, TE = 100 ms, FA = 90°, sampling of 0.45 × 0.45 × 3 mm with no inter-slice
gap, resulting in a 512 × 512 × 45 lattice), and a 2D FLAIR image (TR = 11,000, TE = 140,
TI = 2800, FA = 90, sampling of 0.9 × 0.9 × 3 mm with no inter-slice gap, resulting in
a 256 × 256 × 49 lattice). The median time between the baseline and follow-up studies
was 311 days, ranging from 81 to 723 days with the interquartile range (IQR) of 223 days.
For our analysis, we only focused on the FLAIR images that were skull stripped and
bias corrected using N4, followed by coregistration to the follow-up space using rigid
registration. To create a ground truth mask, an image neuroanalyst expert at our group
labelled all positive activity (new and enlarging lesions) using the coregistered FLAIR
images and their subtraction. Furthermore, 3 of the subjects were excluded due to a lack of
positive activity after the labelling. Therefore, only 17 patients from the original dataset
were used for the experiments.

2.1.3. Data Preparation

For both datasets we extracted patches of size 32 × 32 × 32 using a sliding window
(with an overlap of 16 voxels) on the brain bounding box to minimise the number of voxels
that did not belong to the brain. These patches were then sampled to decrease the imbalance
between foreground and background voxels. Only patches containing lesion voxels were
used for training in groups of 16.
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2.2. Network Architecture

In the last few years, the 3D Unet architecture [19] has become the state of the art
in volumetric medical image segmentation for different tasks and images [7]. In order
to train all the losses with a robust architecture, we decided to use a simple 3D Unet of
2,906,913 parameters using basic convolutional blocks (with 32, 64, 128 and 256 kernels
of size 3 × 3 × 3), followed by ReLU activation, group norm (with groups of 8 channels)
and max pooling of size 2 (see Figure 2). These hyperparameters were chosen empirically
based on the best performance of our previous works on other private datasets for lesion
segmentation [20,21]. To guarantee a fair comparison, these hyperparameters were also
shared for all the experiments (different seeds and loss functions). The weights were
randomly initialised using the same seed for all the losses in a given experiment to reduce
the effect of random initialisation. This seed was also used to ensure that the training
batches per epoch were shuffled the same way for all the losses.

Figure 2. Scheme of the simple Unet architecture used for this analysis.

2.3. Loss Functions
2.3.1. Cross-Entropy

The cross-entropy loss (xent) is one of the most commonly used loss functions for
deep neural networks. If we consider the distribution of the real labels (yi) and the pre-
dicted ones (ŷi), the cross-entropy expresses the similarity of these two distributions in the
following form:

LCE(ŷi, yi) =

{
− log ŷi, if foreground
− log(1 − ŷi), if background

(1)

In our case, this equation represents the loss for a single voxel, and the final value is
computed as the mean of the loss for all the voxels. By definition, all voxels have an equal
weight; therefore, during training, the optimiser will tend to favour the majority class.

2.3.2. Focal Loss

The focal loss function was presented by Tsung-Yi Lin et al. [13] for dense object
detection in the presence of an imbalance between positive and negative samples. Through
the use of a weighting variable (α) and a modulating factor (γ), they extended the cross-
entropy loss to increase the importance of positive samples and reduce the effect of samples
correctly classified with a high confidence. Following the notation for the cross-entropy
loss, the focal loss for a prediction ŷi can be defined as:

LFL(ŷi, yi) =

{
−α(1 − ŷi)

γ log ŷi, if foreground
−(1 − α)ŷi

γ log(1 − ŷi), if background
(2)

For our experiments, we used γ = 2 as suggested on the paper, and two different α
values: α1 = 0.25 (focal1) and α2 = 0.75 (focal2). On the original paper, they suggest to
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decrease α as γ is increased, and they noted that α = 0.25 gave the best results with γ = 2.
However, we also wanted to test the loss with a higher α value to give a higher weight to
positive samples.

2.3.3. Generalised Dice Loss

The generalised Dice loss was presented by Sudre et al. [12] to balance the effect of
positive and negative samples, based on a generalisation of the Dice similarity metric
(DSC) [22]. This loss function can be defined as:

LgDSC(Ŷ, Y) = 1 − 2 ·
(w f g + wbg) ·

N
∑
i

ŷi · yi + wbg · (N −
N
∑
i
(ŷi + yi)

(w f g − wbg) ·
N
∑
i
(ŷi + yi) + 2 · Nwbg

, (3)

where Ŷ and Y represent the predicted and true segmentation for the N image voxels (ŷi
and yi), and wbg and w f g are weights for the background and foreground class, respectively.

In the special case where wbg = 0, the generalised Dice loss becomes the commonly
used binary Dice loss originally presented by Milletari et al. [11]:

LDSC(Ŷ, Y) = 1 − 2 ·

N
∑
i

ŷi · yi + ϵ

N
∑
i
(ŷi + yi) + ϵ

, (4)

where ϵ is a small smoothing constant to avoid numerical issues when dividing by 0. In
our experiments, we used the generalised loss (gdsc) as defined on the original paper
(wbg = 1/N2

bg and w f g = 1/N2
f g, where Nbg and N f g refer to the number of background

and foreground voxels), the binary Dice loss (dsc) (wbg = 0 and w f g = 1) and a combination
of the binary Dice loss and cross-entropy with equal weights (mixed).

2.3.4. Weighted Gradient Loss

Similarly to the focal loss, we propose to introduce a weighting factor and a modular
factor to the cross-entropy loss. However, instead of applying that factor on the loss
function itself, we propose to apply it to the gradient of the cross-entropy when combined
with the gradient of the sigmoid function as follows:

∂LwCE(ŷi, yi)

∂ fi
=

{
α(1 − ŷi)

γ, if foreground
(1 − α)ŷγ

i , if background
(5)

where fi represents the output of the last layer before applying the final sigmoid activation.
In our experiments, we set γ = 2 and α = Nbg/N (new).

2.4. Experimental Design

In order to counter the effect on random initialisation and shuffling, we developed a
framework to train the same network with the same initialisation and batches by setting the
same random seed for each loss for a given experiment. With that setup, we run 5 different
5-fold cross-validation experiments with the same training/testing splits. We then evaluate
the models at the end of each epoch for a maximum of 25 epochs by analysing the Dice
similarity coefficient (DSC = 2 ∗ TP

2∗TP+FN+FP ); sensitivity, also known as true positive
fraction or TPf for short (TPf = TP

TP+FN ); and precision (P = TP
TP+FP ). We compute all

three metrics for the training patches, and the training and testing image segmentations
reconstructed from patches. In brief, patches of 32 × 32 × 32 are uniformly sampled for
each image with a sliding window of 16 × 16 × 16, and the final prediction for each voxel
is averaged between all the overlapping results. For the binary metrics, we first binarise
the predicted output of the network (with a threshold of 0.5). The goal of this setup is
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to analyse whether the difference in different executions are actually due to the training
variance caused by randomisation or the losses themselves.

2.5. Implementation Details

The framework was implemented using Python 3.6.9 and pytorch version 1.5.0 and the
code is publicly available at https://github.com/marianocabezas/rethinking_dsc (accessed
on 1 January 2024). The whole analysis was run on a NVIDIA DGX-1 server with 80 CPU
cores, 504 GB of RAM and two Tesla V100-SXM2.

3. Results

To analyse the performance of the different trained models for each epoch and seed, we
used the TPf and precision to illustrate the balance between over- and undersegmentation
and the DSC to highlight the overall segmentation. Ideally, we would like to maximise all
metrics, but in practise, increasing the TPf also increases the false positives, affecting the
precision and DSC values. Table 2 summarises the best performance when the best epoch
and random seed are known, while Figure 3 illustrates the curves for all folds and seeds for
each dataset in terms of each of the three different metrics we analysed (plots for each fold
are detailed in Figures 4 and 5). The curves are separated by the type of data being evaluated
(input patches and whole image segmentations reconstructed from patch segmentations) and
represent a summarised version of all the metrics for each different training seed setup. The
mean metric value is represented with a solid coloured line, while error bands around that
line are bounded by the minimum and maximum value per epoch for all the seeds. By using
upper and lower bounds, we can represent stochastic variability that could lead to different
conclusions if different seeds are used for each method. Furthermore, the error bands also
illustrate how robust the models can be to the problems represented by each dataset.

Table 2. Summary of the measures for the average of the best results for each fold. Patch and
train refer to the patch-wise and image-wise measures for the training set, while test stands for the
image-wise measures for the testing set.

Loss DSC Sensitivity (TPf ) Precision (P)

Patch Train Test Patch Train Test Patch Train Test

LIT longitudinal dataset

xent 0.64 0.51 0.46 0.62 0.55 0.49 0.54 0.48 0.46
gdsc 0.93 0.54 0.53 0.96 0.81 0.77 0.82 0.20 0.29
dsc 0.96 0.55 0.52 0.99 0.89 0.84 0.54 0.29 0.24

mixed 0.93 0.55 0.54 0.98 0.86 0.82 0.74 0.18 0.24
focal1 0.59 0.48 0.46 0.52 0.49 0.49 0.55 0.53 0.49
focal2 0.89 0.60 0.56 0.97 0.70 0.63 0.78 0.48 0.38
new 0.79 0.58 0.56 1.00 0.94 0.90 0.36 0.14 0.23

WMH challenge 2017

xent 0.96 0.68 0.42 0.95 0.60 0.55 0.97 0.80 0.47
gdsc 0.86 0.71 0.69 0.85 0.64 0.63 0.88 0.79 0.76
dsc 0.88 0.56 0.54 0.87 0.55 0.65 0.89 0.60 0.60

mixed 0.89 0.56 0.44 0.89 0.58 0.63 0.90 0.62 0.47
focal1 0.94 0.71 0.68 0.91 0.64 0.59 0.97 0.80 0.81
focal2 0.96 0.72 0.72 0.98 0.72 0.69 0.94 0.73 0.75
new 0.79 0.70 0.71 1.00 0.85 0.81 0.65 0.61 0.63

https://github.com/marianocabezas/rethinking_dsc
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Figure 3. Band plots of the DSC, sensitivity and precision metric for the weights of each epoch for
all the folds. The upper and lower bands represent the minimum and maximum values, while the
middle line represents the mean for all random seeds and folds. The first three rows summarise the
metrics for the LIT dataset, while the last three summarise the results for the WMH challenge dataset.
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Figure 4. Band plots of the DSC and sensitivity metric for the weights of each epoch for each fold of the LIT dataset. The upper and lower bands represent the
minimum and maximum values, while the middle line represents the mean for all the random seeds.
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Figure 5. Band plots of the DSC and sensitivity metric for the weights of each epoch for each fold of the WMH dataset. The upper and lower bands represent the
minimum and maximum values, while the middle line represents the mean for all the random seeds.
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Observing the table and curves, there is a clear discrepancy between the performance
on the training patches and the overall segmentation for the whole image. This difference
is emphasised on the Dice-based losses. Furthermore, it is also clear that weighting the
foreground class, either explicitly (focal and weighted loss) or implicitly (Dice based),
improves the performance in terms of the final DSC metric. However, the larger the weight,
the better the results. Furthermore, a high weight (higher than 0.9 for the weighted loss)
has a direct impact on the TPf measure throughout the whole training process.

A closer analysis of the curves highlights the trade-off between the precision and TPf
segmentation measures (also illustrated in the qualitative examples from Figures 4 and 5).
As the training progresses, the TPf metric decreases slowly, while the precision improves
(leading to an overall slightly better DSC value). Furthermore, if we observe the bands for
the losses, there is a clear overlap between all of them for the DSC metric. This suggests that
there is a large variability in the model performance depending on the chosen random seed
and fold. In general, the observed training pattern is similar for the weighted losses (Dice
based, focal and weighted) with an initial higher peak in terms of TPf and a slower decrease
for the losses with a higher weight for the foreground class. While the behaviour is similar
for both datasets, there is a bigger difference between losses for the longitudinal dataset,
which also presents a higher imbalance between classes. In fact, the variability in the LIT
dataset is also larger (wider error bands), leading to a larger overlap and an increased
difficulty to separate between methods. Curves for the WMH dataset, on the other hand,
have thinner error bands, and there is a clear separation between our proposed loss function
and the rest of methods for the TPf and precision metrics on the first few epochs, even
though the DSC values remain similar for the training and testing images. Nonetheless,
the curves converge to similar results as the number of epochs trained increases. Finally,
the curves on Figures 4 and 5 show the same trends observed on the general dataset
curves, albeit with reduced error bands (fewer samples are analysed per fold). Analysing
folds carefully (each row on the figures), the LIT shows larger differences between folds.
Specifically, the first row shows overall higher TPf and DSC values for all methods when
compared to the other folds.

To complement the analysis of the curves, qualitative results for epoch 25 (the last
epoch) are provided in Figures 6 and 7 for the LIT and WMH dataset, respectively. While
there seems to be a general agreement in terms of true positives (green colour), most losses
and examples show an increase in false negatives (blue colour) when compared to the new
proposal (as also evidenced by the numerical results). In particular, small lesions tend to be
missed by losses that do not heavily weight positive predictions,with cross-entropy having
the lowest detection. This is contrasted by a decrease in the number of false positives (red
colour), also evidenced by the precision metric on the numerical results. From the Dice-
based losses, mixed has the overall best results, with the dsc loss having a large number of
false positives (especially on the LIT dataset). Comparing the two focal losses, the results
are fairly similar with small differences in detection depending on the case, suggesting that
the value of α might not be as important as expected.

Finally, we summarise the DSC, TPf and precision metrics on the training and testing
images using a violin plot in Figure 8 to analyse the distribution of these metrics for each
loss according to the random seeds. Once again, we can observe that the best performance
(highest bound) is obtained with the heavily weighted gradient loss (new), even though
the plots present a similar shape for DSC in both datasets for most of the losses and a large
variability in general. However, we can also observe some important differences on the
TPf distribution for both datasets. On the longitudinal dataset, the focal losses and the
cross-entropy present a larger concentration of lower TPf values when compared to the
other losses, while only the lightly weighted focal loss (focal1) and cross-entropy present a
lower performance on the WMH dataset. These two losses also present the worst overall
performance on the longitudinal dataset in terms of DSC (as illustrated by a longer and
spread plot, concentrated on the lower bound).
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Figure 6. Qualitative examples of three subject from the LIT dataset where new lesions are segmented
(those that appear only on the follow-up image on the right). Classified voxel are colour coded to
represent true positives (green), false positives (red) and false negatives (blue).
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Figure 7. Qualitative examples of three subject from the WMH dataset, where white matter hyperin-
tensities are segmented. Classified voxel are colour coded to represent true positives (green), false
positives (red) and false negatives (blue).
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Figure 8. Violin plots for the DSC, sensitivity and precision metrics for all the folds and training
seeds. The first row represents the results on the LIT dataset, while the second row represents the
results on the WMH dataset.

4. Discussion
4.1. The Effect of Confident Errors on the Loss Function

The Dice loss is one of the most commonly used techniques to address class imbalance
due to its application as a metric for segmentation [23]. Furthermore, it is usually believed
that it is one of the best choices for heavily imbalanced datasets. However, the original
metric was not developed for optimisation and was designed to address a set theory
problems (specifically, to measure the overlap between two sets). As a consequence,
there are certain unexpected side effects when pairing it with common activations for
segmentation (sigmoid and softmax). One of these unexpected side effects is the effect of
confidently wrong predictions (for a mathematical analysis through derivation, we refer the
reader to Appendix A). This effect is evidenced by the metric curves for the Dice loss where
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we found the largest discrepancy between patch-based metrics (the ones during training)
and image-based metrics (the final desired output). On the first step, the Dice loss favours
the prediction of positive samples, leading to a high true TPf at the cost of a large number
of false positive predictions (as evidenced by the low DSC value). Some of these erroneous
predictions maintain a high confidence score throughout the whole process, leading to false
positive predictions that are never corrected even with a large number of epochs. These
findings align with another recent study where the effect of different loss functions on the
logits of the network were analysed [9] and extends to the other two related losses (mixed
and gdsc).

If we zoom out and analyse the other losses we explored in this study, we can observe
that they can be easily derived from the cross-entropy loss. This loss in particular is
ubiquitous in classification studies (including segmentation defined as pixel classification)
due to its simplicity and its relationship to logistic regression. As opposed to the Dice
loss, this function was derived to interact with sigmoid (and softmax in problems with
multiple labels), leading to a linear gradient. In that sense, if we observe the curves for these
losses (xent, focal1, focal2 and new), we can observe a smoother transition and increasing
tendency when it comes to sensitivity over number of epochs and a higher mean precision.
This suggests that false confident predictions are improved over time, as the weight updates
are mostly linear with respect to the error on the prediction. Furthermore, the weights on
the target class (lesions) are the most important trade-off between sensitivity and precision
as observed in the differences between the focal1 and focal2 losses. Finally, even though
cross-entropy is the most basic function, it is also highly reliable and can obtain similar
results, even though it might have a higher number of epochs.

Overall, the positive detection of lesions voxels remains high after 25 epochs as
evidenced by the qualitative examples in Figures 6 and 7. However, small differences in
false positives and negatives are observed depending on the loss, with a common trade-off
between them.

4.2. The Effect of Randomness during Training

To understand the effect of randomness during training, we use five random sets
that affect the initial value of the layer’s weights and the shuffling of the patches used for
training at each epoch. To illustrate this effect, we plot the results of each epoch with a set
of bands with the minimum, maximum and mean values over all seeds for each method in
Section 3. One of the first conclusions that can be observed is the large overlap between all
methods and metrics for image-wise results. As expected, this effect is made stronger on
the testing images that were not seen during the training process. In that sense, while the
mean curves can be easily distinguished between methods, it is also obvious that changing
the random seed could lead to different conclusions if the lowest bound for the “baseline”
methods is selected and the highest bound “seed” is used for a method we would like
to highlight over the others. Furthermore, datasets with a low percentage of foreground
voxels are more sensitive to that issue as exemplified by the curves on the LIT dataset
shown in Figure 4.

4.3. The Discrepancy between Patch-Based Results and Image-Based Results

The most common way to analyse how the training process evolves is to monitor the
training and validation losses. In the scenario where a model is trained on patches (due
to memory constraints), these two curves represent the ability of the model to segment
patches. Even though such measures are generally considered a good proxy for the real end
goal (segmenting lesions on the whole brain), our experiments suggest that these values are
not only over-optimistic but also highly misleading (especially when comparing methods).
If we look at the patch-based results for both datasets, all methods have high DSC values
over 0.7 (considered a good value for lesions) [24], with some losses reaching a value close
to 1 (a perfect score). While this is not surprising because the model is trained with these
same patches, the same metric drops drastically for the LIT dataset (the one with the lowest



Sensors 2024, 24, 1981 15 of 21

percentage of lesion voxels) and less so for the WMH dataset. Furthermore, our proposed
loss function that obtains the lowest DSC on the training patches by a large margin obtains
comparable results when evaluated on the image segmentation results reconstructed from
patches as shown in Figure 3.

On a related note, while it might seem counterintuitive that the sensitivity is also
affected when comparing results between patches and images, this phenomenon might be
caused by the reconstruction of the final results through averaging. In particular, boundary
lesion voxels might have a decreased score when considering different predictions for the
same voxel in different relative positions within the patch. In fact, previous studies on
CNNs have proven that while convolutions are inherently shift-invariant, pooling and
padding can lead to encoding positional information during training [25,26]. In that sense,
both reconstructing image segmentations from patches or performing inference directly on
the whole image would lead to different results when comparing metrics on images and
patches. Moreover, if overlapping patches are used during training, the loss metric might
be unrealistic image-wise, as some voxels would be counted as independent occurrences
more than once.

To conclude, these results suggest a few possible explanations that have also been
corroborated by previous studies focusing on the DSC metric and its role as a measure
of overlap that provides a balanced overview in terms of true and false predictions. On
one hand, it is well known that the DSC metric is sensitive to the size of the object being
analysed [23,27]. In our results, this is reflected by the difference between patch-wise and
image-wise results but also by the fact that LIT results are a decimal point lower than those
obtained with the WMH dataset. On the other hand, patch-wise results focus exclusively on
patches with both foreground and background voxels (as background-only patches would
not contribute to improve lesion segmentation and could be detrimental). In that sense,
our analysis further emphasises the importance of not relying on loss values alone when
evaluating model performance and to validate with metrics that are as close as possible to
the desired end goal.

5. Conclusions

In this paper, we presented an evaluation of a set of common losses used for binary
lesion segmentation on heavily imbalanced scenarios. We observed that training with
sampled patches from images gives an unrealistic measure of the final model when applied
to whole images. In other words, while some losses might provide a better performance
on the training patches, that improvement is not reflected on the training images as a
whole, due to the bias introduced during sampling. Furthermore, we have observed that
random initialisation and shuffling can cause a large variance on the performance metrics,
giving a range of different conclusions depending on which random seed and stopping
epoch we take to evaluate the losses. However, most of the analysed losses have similarly
optimal performance results (if the best stopping epoch and seed are known), even though
they show clearly different trends throughout the training process depending on what
the loss prioritises (e.g., an increase in positive predictions for our proposal). To conclude,
heavily weighting the gradient of the foreground class gives the best results in terms of
true positives, while still being able to obtain a competitive DSC metric on average, with
an acceptable number of false positives.
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Appendix A. Mathematical Analysis of the Dice Loss

Appendix A.1. The Dice Similarity Coefficient for Binary Masks

The Dice similarity coefficient was presented by Dice in 1945 to quantify the association
between ecological species [22]. Generally speaking, this metric evaluates the overlap
between two binary sets. Formally, given a set A ∈ {0, 1}N and a set B ∈ {0, 1}N , this
coefficient is computed with the following equation:

DSC =
2 · |A ∩ B|
|A|+ |B| , (A1)

where N is the number of elements in both sets. By definition, this metric is bounded
between 0 and 1, with 1 representing perfect overlap and 0 no overlap between the sets.
Furthermore, this metric is undefined when |A| = |B| = 0.

This metric has become the de facto standard in medical imaging to evaluate the
automatic segmentation of a tissue, lesion or structure given a previous manual or semiau-
tomatic annotation considering the ground truth. In that sense, the binary masks from the
automatic and manual segmentation can be interpreted as two sets over the voxels of the
image, where 1 represents the presence of a tissue and 0 the lack of it.

Appendix A.2. The Probabilistic Dice Function

Given the previous definition of the DSC metric and the domain of A and B,
Equation (A1) is equivalent to the following one:

pDSC =

2 ·
N
∑
i

min(ai, bi)

N
∑
i
(ai + bi)

, (A2)

where A = {a0, ..., an} and B = {b0, ..., bn} and ai, bi ∈ {0, 1}. This new interpretation of the
DSC metric can be used as an extension to fuzzy sets where now ai, bi ∈ [0, 1]. In our case,
only A is a fuzzy domain, and we can consider its values as probabilities that represent the
confidence of the binary segmentation. Thus, we can use the following equation which is
equivalent to (A2):

pDSC =

2 ·
N
∑
i

ai · bi

N
∑
i
(ai + bi)

. (A3)

This metric is still bounded between 0 and 1, with 1 still representing perfect over-
lap and 0 representing no overlap. We can easily generalise that metric to a multi-class
generalised coefficient (gDSC) following Crum et al.’s work [28] as follows:

gDSC = 2 ·

K
∑
k

wk ·
N
∑
i

ai · bi

K
∑
k

wk ·
N
∑
i
(ai + bi)

, (A4)

https://github.com/marianocabezas/rethinking_dsc
https://github.com/marianocabezas/rethinking_dsc
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where K is the total number of classes and wk is the weight for class k. Furthermore, if we
consider binary segmentation to be a two-class segmentation problem, we can simplify that
equation to:

gDSC = 2 ·
(w1 + w0) ·

N
∑
i

ai · bi + w0 · (N −
N
∑
i
(ai + bi))

(w1 − w0) ·
N
∑
i
(ai + bi) + 2 · w0N

, (A5)

where w0 and w1 are the weights for the background and foreground class, respectively.
The pDSC (Equation (A3)) is a special case of the gDSC, where w0 = 0.

Appendix A.3. The Dice Loss

Deep learning methods are currently the state of the art on medical image segmen-
tation. Letting X = {x0, ..., xN} represent the input data, each voxel xi has D features
(i.e., different contrasts), Y = {y0, ..., yN} represents the labels of that patch and yi ∈ {0, 1}
is the real binary value of a given voxel, representing whether it belongs to the foreground
or background class. Finally, we can define a deep learning model as:

Ŷ = σ( fi(X, Θ)), (A6)

where σ is the sigmoid function that provides the final estimate of whether the voxel
belongs to the foreground and fi(X, Θ) is the output i of the network according to its
weights Θ and input X.

These models rely on gradient descent techniques to update their weights according
to a loss function that we want to minimise. A common loss for imbalanced datasets
(i.e., small lesions inside the brain) is the so-called DSC loss. Given Equation (A5) for the
gDSC, the generalised DSC loss presented by Sudre et al. [12] can be defined as:

LDSC(Ŷ, Y) = 1 − 2 ·
(w1 + w0) ·

N
∑
i

ŷi · yi + w0 · (N −
N
∑
i
(ŷi + yi)

(w1 − w0) ·
N
∑
i
(ŷi + yi) + 2 · Nw0

, (A7)

where Ŷ is the estimated segmentation from Equation (A6) and Y is the real segmentation.
By definition, the gDSC is maximal when there is a perfect overlap; thus, we need to negate
the original equation for a minimisation approach.

Following the chain rule, the derivative of Equation (A7) with respect to the network
parameters Θ is given by:

∂LDSC(Ŷ, Y)
∂Θ

=
∂LDSC(Ŷ, Y)

∂Ŷ
∂Ŷ
∂Θ

=
N

∑
i

∂LDSC(Ŷ, Y)
∂ŷi

∂ŷi
∂Θ

. (A8)

Since we are only interested in how the loss affects the gradient of any network, we
will only analyse formally its derivative with respect to ŷi:

F (Ŷ) = (w1 + w0) ·
N

∑
i

ŷi · yi + w0 · (N −
N

∑
i
(ŷi + yi) (A9)

G(Ŷ) = (w1 − w0) ·
N

∑
i
(ŷi + yi) + 2 · Nw0 (A10)

LDSC(Ŷ, Y) = 1 − 2 · F (Ŷ)/G(Ŷ) (A11)

∂LDSC(Ŷ, Y)
∂ŷi

= −2 ·
∂F (Ŷ)

∂ŷi
∗ G(Ŷ)− ∂G(Ŷ)

∂ŷi
∗ F (Ŷ)

G(Ŷ)2
(A12)
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∂F (Ŷ)
∂ŷi

∗ G(Ŷ) =

((w1 + w0)yi − w0)((w1 − w0) ·
N

∑
j
(ŷj + yj) + 2 · Nw0) =

(w2
1 − w2

0) · yi ·
N

∑
j
(ŷj + yj)+

2 · Nw0 · (w1 + w0) · yi−

w0 · (w1 − w0) ·
N

∑
j
(ŷj + yj)−

2 · Nw2
0

(A13)

∂G(Ŷ)
∂ŷi

∗ F (Ŷ) = −(w1 − w0)((w1 + w0) ·
N

∑
j

ŷjyj + w0 · (N −
N

∑
j
(ŷj + yj))) =

−(w2
1 − w2

0) ·
N

∑
j

ŷjyj+

w0 · (w1 − w0) ·
N

∑
j
(ŷj + yj)−

Nw0 · (w1 − w0)

(A14)

∂LDSC(Ŷ, Y)
∂ŷi

=

−2 · (w1 + w0)

(w1 − w0)

[
yi ·

N
∑
j
(ŷj + yj)−

N
∑
j
(ŷjyj)

]
+ Nw0 · (2yi − 1)[

(w1 − w0) ·
N
∑
j
(ŷj + yj) + 2 · Nw0

]2 .
(A15)

This equation is independent of the prediction ŷi. Moreover, the denominator is the
same for all possible network outputs. Therefore, from now on, we will refer to it as the
normalising factor N (Ŷ, Y) = 2·(w1+w0)[

(w1−w0)·
N
∑
j
(ŷj+yj)+2·Nw0

]2 to simplify the analysis.

If we go back to Equation (A15), we can observe three different terms in the numerator:

a global one ∂GDSC
∂ŷi

= −(w1 − w0)

[
N
∑
j
(ŷjyj)

]
that is applied to the gradient of all voxels,

a term which only affects the foreground voxels ∂FDSC
∂ŷi

= (w1 − w0)

[
N
∑
j
(ŷj + yj)

]
and a

mixed term that depends on the label ∂MDSC
∂ŷi

= Nw0 · (2yi − 1). We will analyse each
of them independently with respect to a given weight Θ, and afterwards we will group
them together.

Given a true binary segmentation Y, we can define Y0 = {i : yi = 0} and
Y1 = {i : yi = 1} as the sets of voxels from the background and foreground class, re-
spectively. By definition, |Y0| + |Y1| = N. Now, starting with the global term, we can
define the gradient with respect to the output ŷi as follows:
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∂GDSC
∂Θ

= −(w1 − w0)

[
|Y1| E

i∈Y1
[ŷi]

][
|Y0| E

i∈Y0

[
∂ŷi
∂Θ

]
+ |Y1| E

i∈Y1

[
∂ŷi
∂Θ

]]
, (A16)

where E
i∈Y0

represents the expectation of the background voxels and E
i∈Y1

the expectation of

the foreground voxels. Continuing with the foreground term:

∂FDSC
∂Θ

= (w1 − w0)

[
|Y1|+ |Y0| E

i∈Y0
[ŷi] + |Y1| E

i∈Y1
[ŷi]

][
|Y1| E

i∈Y1

[
∂ŷi
∂Θ

]]
. (A17)

Finally, we can express the third term as:

∂MDSC
∂Θ

= Nw0

[
|Y1| E

i∈Y1

[
∂ŷi
∂Θ

]
− |Y0| E

i∈Y0

[
∂ŷi
∂Θ

]]
. (A18)

If we now group all three terms together again, the final gradient with respect to Θ is
given by:

∂LDSC
∂Θ

= −N (Ŷ, Y) ·
[

∂GDSC
∂Θ

+
∂FDSC

∂Θ
+

∂MDSC
∂Θ

]
. (A19)

If we ignore the normalising factor to focus on the relationship between background
and foreground voxels, we can simplify that equation as:

∂LDSC
∂Θ

∝ −(
∂GDSC

∂Θ
+

∂FDSC
∂Θ

+
∂MDSC

∂Θ
) =

|Y1|(w1 − w0)

[
|Y0| E

i∈Y1
[ŷi] E

i∈Y0

[
∂ŷi
∂Θ

]
− (|Y1|+ |Y0| E

i∈Y0
[ŷi]) E

i∈Y1

[
∂ŷi
∂Θ

]]
+

Nw0

[
|Y0| E

i∈Y0

[
∂ŷi
∂Θ

]
− |Y1| E

i∈Y1

[
∂ŷi
∂Θ

]]
.

(A20)

Since ŷi = σ( fi(X, Θ)) as defined by Equation (A6), its derivative with respect to a
given weight is given by:

∂ŷi
∂Θ

= ŷi(1 − ŷi)
∂ fi(X, Θ)

∂Θ
, (A21)

and so:

E
[

∂ŷi
∂Θ

]
= E

[
ŷi(1 − ŷi)

∂ fi(X, Θ)

∂Θ

]
. (A22)

Analysing that expectation, it becomes 0 when all the predictions have a value of either
0 or 1, independently of the real label. Furthermore, the maximum gradient for a voxel
is given when its probability is 0.5. This is usually the case after initialisation. However,
as the weights are updated and that probability moves away from 0.5, that gradient will
decrease whether the voxel is well-classified or not.

Taking that into account, the gradient from Equation (A19) becomes 0 when all voxels
(including background and foreground) have a prediction of 0 or 1. That means that extreme
false positives and false negatives will not have an effect on updating the network param-
eters using gradient descent. Furthermore, in the extreme case where all the foreground
voxels have been misclassified as background, they will not be taken into account while
updating the network weights. In an extremely unbalanced dataset, this risk is important
since the network might not be able to recover from that and miss all positive examples.

Now, if we analyse Equation (A20) with respect to the expectations of ŷi, we can see
how E

i∈Y1
[ŷi] represents the true positive rate for foreground voxels, while E

i∈Y0
[ŷi] can be
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regarded as a the rate of misclassified background voxels. In that sense, if we analyse the
first term, the gradient of the background voxels increases as the true positives increase,
while the gradient of the foreground voxels decreases as the false positive predictions
decrease. On the other hand, the second term only depends on the number of positive and
negative voxels. In an extremely unbalanced case, the gradient of the background voxels
would dominate that second term since |Y0| ≫ |Y1|. Furthermore, in order for the weight
of the first term (|Y1|(w1 − w0)) to be larger than the weight of the second term (Nw0),
w1 > Nw0

|Y1| + w0.
Finally, in the special case where w0 = 0, the most common use of the Dice loss

originally presented by Milletari et al. [11], the second term becomes 0 and the normalising
factor is simplified to N (Ŷ, Y) = 2[

N
∑
j
(ŷj+yj)

]2 . In that case, the derivative (and loss function)

are undefined when all predictions are set to 0 and all the voxels belong to the background.
Furthermore, the issues from the first term and the derivative of the sigmoid still apply to
that function.
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